mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
zipformer BF16 training recipe (#1700)
Support Zipformer AMP +BF16 training
This commit is contained in:
parent
3b434fe83c
commit
a6c02a4d8c
@ -307,6 +307,23 @@ done
|
||||
|
||||
To decode with external language models, please refer to the documentation [here](https://k2-fsa.github.io/icefall/decoding-with-langugage-models/index.html).
|
||||
|
||||
We also support training Zipformer with AMP+bf16 format (requires bf16 support). See [here](https://github.com/k2-fsa/icefall/pull/1700) for more details and pre-trained models. **The same command can be used for decoding and exporting the model.**
|
||||
|
||||
The amp+bf16 training command is:
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
./zipformer/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 50 \
|
||||
--start-epoch 1 \
|
||||
--use-fp16 0 \
|
||||
--use-bf16 1 \
|
||||
--exp-dir zipformer/exp_amp_bf16 \
|
||||
--causal 0 \
|
||||
--full-libri 1 \
|
||||
--max-duration 1000
|
||||
```
|
||||
|
||||
##### small-scaled model, number of model parameters: 23285615, i.e., 23.3 M
|
||||
|
||||
The tensorboard log can be found at
|
||||
|
@ -297,7 +297,7 @@ class SoftmaxFunction(torch.autograd.Function):
|
||||
# (presumably) that op does not support float16, and autocast
|
||||
# is enabled.
|
||||
if torch.is_autocast_enabled():
|
||||
ans = ans.to(torch.float16)
|
||||
ans = ans.to(torch.get_autocast_gpu_dtype())
|
||||
ctx.save_for_backward(ans)
|
||||
ctx.x_dtype = x.dtype
|
||||
ctx.dim = dim
|
||||
@ -1234,7 +1234,7 @@ class DoubleSwishFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor) -> Tensor:
|
||||
requires_grad = x.requires_grad
|
||||
if x.dtype == torch.float16:
|
||||
if x.dtype == torch.float16 or x.dtype == torch.bfloat16:
|
||||
x = x.to(torch.float32)
|
||||
|
||||
s = torch.sigmoid(x - 1.0)
|
||||
@ -1346,7 +1346,7 @@ class SwooshLFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor) -> Tensor:
|
||||
requires_grad = x.requires_grad
|
||||
if x.dtype == torch.float16:
|
||||
if x.dtype == torch.float16 or x.dtype == torch.bfloat16:
|
||||
x = x.to(torch.float32)
|
||||
|
||||
zero = torch.tensor(0.0, dtype=x.dtype, device=x.device)
|
||||
@ -1379,7 +1379,7 @@ class SwooshLFunction(torch.autograd.Function):
|
||||
d_int = d_scaled.to(torch.uint8)
|
||||
ctx.save_for_backward(d_int)
|
||||
if x.dtype == torch.float16 or torch.is_autocast_enabled():
|
||||
y = y.to(torch.float16)
|
||||
y = y.to(torch.get_autocast_gpu_dtype())
|
||||
return y
|
||||
|
||||
@staticmethod
|
||||
@ -1425,7 +1425,7 @@ class SwooshRFunction(torch.autograd.Function):
|
||||
def forward(ctx, x: Tensor) -> Tensor:
|
||||
requires_grad = x.requires_grad
|
||||
|
||||
if x.dtype == torch.float16:
|
||||
if x.dtype == torch.float16 or x.dtype == torch.bfloat16:
|
||||
x = x.to(torch.float32)
|
||||
|
||||
zero = torch.tensor(0.0, dtype=x.dtype, device=x.device)
|
||||
@ -1455,7 +1455,7 @@ class SwooshRFunction(torch.autograd.Function):
|
||||
d_int = d_scaled.to(torch.uint8)
|
||||
ctx.save_for_backward(d_int)
|
||||
if x.dtype == torch.float16 or torch.is_autocast_enabled():
|
||||
y = y.to(torch.float16)
|
||||
y = y.to(torch.get_autocast_gpu_dtype())
|
||||
return y
|
||||
|
||||
@staticmethod
|
||||
|
@ -521,6 +521,13 @@ def get_parser():
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-bf16",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to use bf16 in AMP.",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
@ -1027,7 +1034,9 @@ def train_one_epoch(
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
try:
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
with torch.cuda.amp.autocast(
|
||||
enabled=params.use_autocast, dtype=params.dtype
|
||||
):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
@ -1047,9 +1056,7 @@ def train_one_epoch(
|
||||
scaler.update()
|
||||
optimizer.zero_grad()
|
||||
except Exception as e:
|
||||
logging.info(
|
||||
f"Caught exception: {e}."
|
||||
)
|
||||
logging.info(f"Caught exception: {e}.")
|
||||
save_bad_model()
|
||||
display_and_save_batch(batch, params=params, sp=sp)
|
||||
raise
|
||||
@ -1090,7 +1097,7 @@ def train_one_epoch(
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if batch_idx % 100 == 0 and params.use_fp16:
|
||||
if batch_idx % 100 == 0 and params.use_autocast:
|
||||
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
||||
# of the grad scaler is configurable, but we can't configure it to have different
|
||||
# behavior depending on the current grad scale.
|
||||
@ -1109,14 +1116,14 @@ def train_one_epoch(
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
cur_lr = max(scheduler.get_last_lr())
|
||||
cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
|
||||
cur_grad_scale = scaler._scale.item() if params.use_autocast else 1.0
|
||||
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||
f"lr: {cur_lr:.2e}, "
|
||||
+ (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
|
||||
+ (f"grad_scale: {scaler._scale.item()}" if params.use_autocast else "")
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
@ -1128,7 +1135,7 @@ def train_one_epoch(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||
if params.use_fp16:
|
||||
if params.use_autocast:
|
||||
tb_writer.add_scalar(
|
||||
"train/grad_scale", cur_grad_scale, params.batch_idx_train
|
||||
)
|
||||
@ -1204,9 +1211,25 @@ def run(rank, world_size, args):
|
||||
params.ctc_loss_scale = 1.0
|
||||
else:
|
||||
assert params.ctc_loss_scale + params.attention_decoder_loss_scale == 1.0, (
|
||||
params.ctc_loss_scale, params.attention_decoder_loss_scale
|
||||
params.ctc_loss_scale,
|
||||
params.attention_decoder_loss_scale,
|
||||
)
|
||||
|
||||
if params.use_bf16: # amp + bf16
|
||||
assert torch.cuda.is_bf16_supported(), "Your GPU does not support bf16!"
|
||||
assert not params.use_fp16, "You can only use either fp16 or bf16"
|
||||
params.dtype = torch.bfloat16
|
||||
params.use_autocast = True
|
||||
elif params.use_fp16: # amp + fp16
|
||||
params.dtype = torch.float16
|
||||
params.use_autocast = True
|
||||
else: # fp32
|
||||
params.dtype = torch.float32
|
||||
params.use_autocast = False
|
||||
|
||||
logging.info(f"Using dtype={params.dtype}")
|
||||
logging.info(f"Use AMP={params.use_autocast}")
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
@ -1339,7 +1362,7 @@ def run(rank, world_size, args):
|
||||
params=params,
|
||||
)
|
||||
|
||||
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
||||
scaler = GradScaler(enabled=params.use_autocast, init_scale=1.0)
|
||||
if checkpoints and "grad_scaler" in checkpoints:
|
||||
logging.info("Loading grad scaler state dict")
|
||||
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||||
@ -1439,7 +1462,9 @@ def scan_pessimistic_batches_for_oom(
|
||||
for criterion, cuts in batches.items():
|
||||
batch = train_dl.dataset[cuts]
|
||||
try:
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
with torch.cuda.amp.autocast(
|
||||
enabled=params.use_autocast, dtype=params.dtype
|
||||
):
|
||||
loss, _ = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
|
Loading…
x
Reference in New Issue
Block a user