diff --git a/docs/source/decoding-with-langugage-models/LODR.rst b/docs/source/decoding-with-langugage-models/LODR.rst index 453624e39..d02f8b305 100644 --- a/docs/source/decoding-with-langugage-models/LODR.rst +++ b/docs/source/decoding-with-langugage-models/LODR.rst @@ -70,9 +70,9 @@ As the initial step, let's download the pre-trained model. .. code-block:: bash - $ git lfs install - $ git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29 + $ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29 $ pushd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp + $ git lfs pull --include "pretrained.pt" $ ln -s pretrained.pt epoch-99.pt # create a symbolic link so that the checkpoint can be loaded To test the model, let's have a look at the decoding results **without** using LM. This can be done via the following command: @@ -81,8 +81,9 @@ To test the model, let's have a look at the decoding results **without** using L $ exp_dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp/ $ ./pruned_transducer_stateless7_streaming/decode.py \ - --epoch 30 \ - --avg 9 \ + --epoch 99 \ + --avg 1 \ + --use-averaged-model False \ --exp-dir $exp_dir \ --max-duration 600 \ --decode-chunk-len 32 \ @@ -102,11 +103,11 @@ Note that the bi-gram is estimated on the LibriSpeech 960 hours' text. .. code-block:: bash - $ git lfs install $ # download the external LM - $ git clone https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm + $ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm $ # create a symbolic link so that the checkpoint can be loaded $ pushd icefall-librispeech-rnn-lm/exp + $ git lfs pull --include "pretrained.pt" $ ln -s pretrained.pt epoch-99.pt $ popd $ diff --git a/docs/source/decoding-with-langugage-models/shallow-fusion.rst b/docs/source/decoding-with-langugage-models/shallow-fusion.rst index 3139329d2..98bc00120 100644 --- a/docs/source/decoding-with-langugage-models/shallow-fusion.rst +++ b/docs/source/decoding-with-langugage-models/shallow-fusion.rst @@ -31,9 +31,9 @@ As the initial step, let's download the pre-trained model. .. code-block:: bash - $ git lfs install - $ git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29 + $ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29 $ pushd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp + $ git lfs pull --include "pretrained.pt" $ ln -s pretrained.pt epoch-99.pt # create a symbolic link so that the checkpoint can be loaded To test the model, let's have a look at the decoding results without using LM. This can be done via the following command: @@ -42,8 +42,9 @@ To test the model, let's have a look at the decoding results without using LM. T $ exp_dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp/ $ ./pruned_transducer_stateless7_streaming/decode.py \ - --epoch 30 \ - --avg 9 \ + --epoch 99 \ + --avg 1 \ + --use-averaged-model False \ --exp-dir $exp_dir \ --max-duration 600 \ --decode-chunk-len 32 \ @@ -63,10 +64,12 @@ Training a language model usually takes a long time, we can download a pre-train .. code-block:: bash - $ git lfs install - $ git clone https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm + $ # download the external LM + $ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm + $ # create a symbolic link so that the checkpoint can be loaded $ pushd icefall-librispeech-rnn-lm/exp - $ ln -s pretrained.pt epoch-99.pt # create a symbolic link so that the checkpoint can be loaded + $ git lfs pull --include "pretrained.pt" + $ ln -s pretrained.pt epoch-99.pt $ popd .. note::