diff --git a/egs/speech_llm/SPEECH2SPEECH/README.md b/egs/speech_llm/SPEECH2SPEECH/README.md new file mode 100644 index 000000000..9a0b62914 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/README.md @@ -0,0 +1,55 @@ + +# Introduction + +This recipe includes scripts for training speech2speech models. + +# SPEECH2SPEECH + +The following table lists the folders for different tasks. + +|Recipe | Speech Input | Speech Output | Comment| +|--------------|--------------|---------------|--------| +|Qwen-omni like| Continuous Embeddins| Cosyvoice1 50Hz Single-codebook Token | Text-driven; using Thinker LLM for text token, small Talker LLM for speech token | + +### [Qwen-omni like Speech2speech Recipe](./qwen_omni) + +[Qwen2.5-Omni](https://github.com/QwenLM/Qwen2.5-Omni) style model using [worstchan/Belle_1.4M-SLAM-Omni](https://huggingface.co/datasets/worstchan/Belle_1.4M-SLAM-Omni) dataset. + +
+

+ +

+
+ +Command for training is: +```bash +torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \ + --max-duration 50 \ + --enable-musan False \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \ + --llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \ + --manifest-dir data/fbank \ + --deepspeed \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True \ + --use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True +``` + +Command for decoding is: +```bash +python3 ./qwen_omni/decode.py \ + --max-duration 1 \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \ + --llm-path-or-name models/Qwen2.5-0.5B-Instruct \ + --epoch 999 --avg 1 \ + --manifest-dir data/fbank \ + --use-flash-attn True \ + --method e2e-epoch10_speech2speech \ + --enable-speech-output True \ + --token2wav-path models/CosyVoice-300M-SFT \ + --use-lora True +``` + +Please see [`prepare.sh`](./prepare.sh) for more details. diff --git a/egs/speech_llm/SPEECH2SPEECH/assets/framework.png b/egs/speech_llm/SPEECH2SPEECH/assets/framework.png new file mode 100644 index 000000000..6cd941a0b Binary files /dev/null and b/egs/speech_llm/SPEECH2SPEECH/assets/framework.png differ diff --git a/egs/speech_llm/SPEECH2SPEECH/exp.sh b/egs/speech_llm/SPEECH2SPEECH/exp.sh new file mode 100644 index 000000000..26b2c8745 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/exp.sh @@ -0,0 +1,234 @@ +#!/usr/bin/env bash + +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python +export PYTHONPATH=$PYTHONPATH:/workspace/CosyVoice +# export HF_HOME="/lustre/fsw/general_sa/yuekaiz/.cache/huggingface" +set -eou pipefail + +stage=$1 +stop_stage=$2 + + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +if [ $stage -le 17 ] && [ $stop_stage -ge 17 ]; then + echo "cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd -" + if [ ! -L "/workspace/slam" ]; then + cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd - + fi + log "stage 17: Training Speech2Speech Model, full parameters" + exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_three_s2s + pretrained_dir=./qwen_omni/exp_speech2text + ngpu=4 + + latest_checkpoint_step=-1 + # Check if exp_dir exists and is a directory + if [ -d "$exp_dir" ]; then + # List directories matching checkpoint-* and find the one with the largest step number + for checkpoint_dir in $(ls -d $exp_dir/checkpoint-*/ 2>/dev/null | sort -V); do + checkpoint_name=$(basename "$checkpoint_dir") # e.g., checkpoint-1000 + # Extract step number using parameter expansion + current_step=${checkpoint_name#checkpoint-} + # Ensure current_step is a number + if [[ "$current_step" =~ ^[0-9]+$ ]] && [ "$current_step" -gt "$latest_checkpoint_step" ]; then + latest_checkpoint_step=$current_step + fi + done + fi + + train_cmd_args="--max-duration 200 \ + --enable-musan False \ + --exp-dir $exp_dir \ + --last-stage-model-path $pretrained_dir/checkpoint-58548/pytorch_model.bin \ + --speech-encoder-path-or-name models/large-v2.pt \ + --llm-path-or-name models/Qwen2.5-0.5B-Instruct \ + --on-the-fly-feats True --on-the-fly-speed-perturb False\ + --deepspeed \ + --huggingface-dataset-path-or-name /lustre/fsw/general_sa/yuekaiz/s2s \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True --on-the-fly-feats True \ + --dataset vocalnet_ultrachat_voiceassistant_instruct_s2s --num-epochs 10 \ + --use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output False" + + if [ "$latest_checkpoint_step" -ge 0 ]; then + log "Continuing training from checkpoint-$latest_checkpoint_step" + step=$latest_checkpoint_step + train_cmd_args="$train_cmd_args --pretrained-model-path $exp_dir/checkpoint-${step}/pytorch_model.bin --sampler-state-dict-path $exp_dir/checkpoint-${step}/sampler.pt" + else + log "Starting training from scratch as no checkpoint was found in $exp_dir" + # No pretrained model or sampler state dict needed for the first run + fi + + torchrun --nproc_per_node $ngpu --nnodes $SLURM_JOB_NUM_NODES --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d --rdzv_id $SLURM_JOBID ./qwen_omni/train.py \ + $train_cmd_args +fi + +if [ $stage -le 18 ] && [ $stop_stage -ge 18 ]; then + echo "cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd -" + # check if the link exists, if not exist, create it + if [ ! -L "/workspace/slam" ]; then + cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd - + fi + log "stage 17: Training Speech2Speech Model, full parameters" + exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_three_s2s_librispeech + pretrained_dir=./qwen_omni/exp_speech2text + ngpu=4 + + latest_checkpoint_step=-1 + # Check if exp_dir exists and is a directory + if [ -d "$exp_dir" ]; then + # List directories matching checkpoint-* and find the one with the largest step number + for checkpoint_dir in $(ls -d $exp_dir/checkpoint-*/ 2>/dev/null | sort -V); do + checkpoint_name=$(basename "$checkpoint_dir") # e.g., checkpoint-1000 + # Extract step number using parameter expansion + current_step=${checkpoint_name#checkpoint-} + # Ensure current_step is a number + if [[ "$current_step" =~ ^[0-9]+$ ]] && [ "$current_step" -gt "$latest_checkpoint_step" ]; then + latest_checkpoint_step=$current_step + fi + done + fi + + train_cmd_args="--max-duration 200 \ + --enable-musan False \ + --exp-dir $exp_dir \ + --last-stage-model-path $pretrained_dir/checkpoint-58548/pytorch_model.bin \ + --speech-encoder-path-or-name models/large-v2.pt \ + --llm-path-or-name models/Qwen2.5-0.5B-Instruct \ + --on-the-fly-feats True --on-the-fly-speed-perturb False\ + --deepspeed \ + --huggingface-dataset-path-or-name /lustre/fsw/general_sa/yuekaiz/s2s \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True --on-the-fly-feats True \ + --dataset vocalnet_ultrachat_voiceassistant_instruct_s2s_librispeech --num-epochs 10 \ + --use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output False" + + if [ "$latest_checkpoint_step" -ge 0 ]; then + log "Continuing training from checkpoint-$latest_checkpoint_step" + step=$latest_checkpoint_step + train_cmd_args="$train_cmd_args --pretrained-model-path $exp_dir/checkpoint-${step}/pytorch_model.bin --sampler-state-dict-path $exp_dir/checkpoint-${step}/sampler.pt" + else + log "Starting training from scratch as no checkpoint was found in $exp_dir" + # No pretrained model or sampler state dict needed for the first run + fi + + torchrun --nproc_per_node $ngpu --nnodes $SLURM_JOB_NUM_NODES --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d --rdzv_id $SLURM_JOBID ./qwen_omni/train.py \ + $train_cmd_args +fi + +if [ $stage -le 19 ] && [ $stop_stage -ge 19 ]; then + log "stage 19: Training TTS Model" + exp_dir=./qwen_omni/exp_tts_ultra_chat_voice_assistant + exp_dir=./qwen_omni/exp_tts_emilia_en_tts_only_template + exp_dir=./qwen_omni/exp_tts_emilia_en_tts_three_concat + pretrained_dir=./qwen_omni/exp_speech2text + ngpu=4 + + latest_checkpoint_step=-1 + # Check if exp_dir exists and is a directory + if [ -d "$exp_dir" ]; then + # List directories matching checkpoint-* and find the one with the largest step number + for checkpoint_dir in $(ls -d $exp_dir/checkpoint-*/ 2>/dev/null | sort -V); do + checkpoint_name=$(basename "$checkpoint_dir") # e.g., checkpoint-1000 + # Extract step number using parameter expansion + current_step=${checkpoint_name#checkpoint-} + # Ensure current_step is a number + if [[ "$current_step" =~ ^[0-9]+$ ]] && [ "$current_step" -gt "$latest_checkpoint_step" ]; then + latest_checkpoint_step=$current_step + fi + done + fi + # --dataset ultra_chat_voice_assistant + train_cmd_args="--batch-size 30 \ + --exp-dir $exp_dir \ + --llm-path-or-name models/Qwen2.5-0.5B-Instruct \ + --enable-speech-input False \ + --deepspeed \ + --dataset /lustre/fsw/general_sa/yuekaiz/s2s/VoxBox/manifests_emilia_en \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True \ + --num-epochs 3 \ + --use-lora False --unfreeze-llm False --enable-speech-output True" + + if [ "$latest_checkpoint_step" -ge 0 ]; then + log "Continuing training from checkpoint-$latest_checkpoint_step" + step=$latest_checkpoint_step + train_cmd_args="$train_cmd_args --pretrained-model-path $exp_dir/checkpoint-${step}/pytorch_model.bin --sampler-state-dict-path $exp_dir/checkpoint-${step}/sampler.pt" + else + log "Starting training from scratch as no checkpoint was found in $exp_dir" + # No pretrained model or sampler state dict needed for the first run + fi + + torchrun --nproc_per_node $ngpu --nnodes $SLURM_JOB_NUM_NODES --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d --rdzv_id $SLURM_JOBID ./qwen_omni/train_tts.py \ + $train_cmd_args +fi + + +# if [ $stage -le 20 ] && [ $stop_stage -ge 20 ]; then +# log "stage 20: Training TTS Model" +# echo "cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd -" +# if [ ! -L "/workspace/slam" ]; then +# cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd - +# fi +# exp_dir=./qwen_omni/exp_test +# ngpu=4 + +# latest_checkpoint_step=-1 +# # Check if exp_dir exists and is a directory +# if [ -d "$exp_dir" ]; then +# # List directories matching checkpoint-* and find the one with the largest step number +# for checkpoint_dir in $(ls -d $exp_dir/checkpoint-*/ 2>/dev/null | sort -V); do +# checkpoint_name=$(basename "$checkpoint_dir") # e.g., checkpoint-1000 +# # Extract step number using parameter expansion +# current_step=${checkpoint_name#checkpoint-} +# # Ensure current_step is a number +# if [[ "$current_step" =~ ^[0-9]+$ ]] && [ "$current_step" -gt "$latest_checkpoint_step" ]; then +# latest_checkpoint_step=$current_step +# fi +# done +# fi + +# train_cmd_args="--max-duration 150 \ +# --enable-musan False \ +# --exp-dir $exp_dir \ +# --speech-encoder-path-or-name models/large-v2.pt \ +# --llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \ +# --dataset vocalnet_ultrachat_voiceassistant \ +# --manifest-dir data/fbank \ +# --deepspeed \ +# --deepspeed_config ./qwen_omni/ds_config_zero1.json \ +# --use-flash-attn True --on-the-fly-feats True \ +# --use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True" + +# if [ "$latest_checkpoint_step" -ge 0 ]; then +# log "Continuing training from checkpoint-$latest_checkpoint_step" +# step=$latest_checkpoint_step +# train_cmd_args="$train_cmd_args --pretrained-model-path $exp_dir/checkpoint-${step}/pytorch_model.bin --sampler-state-dict-path $exp_dir/checkpoint-${step}/sampler.pt" +# else +# log "Starting training from scratch as no checkpoint was found in $exp_dir" +# # No pretrained model or sampler state dict needed for the first run +# fi + +# torchrun --nproc_per_node $ngpu --nnodes $SLURM_JOB_NUM_NODES --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d --rdzv_id $SLURM_JOBID ./qwen_omni/train.py \ +# $train_cmd_args +# fi + + +# if [ $stage -le 21 ] && [ $stop_stage -ge 21 ]; then +# log "stage 21: TTS Decoding Test Set" +# exp_dir=./qwen_omni/exp_tts +# torchrun --nproc_per_node=2 ./qwen_omni/decode_tts.py \ +# --exp-dir $exp_dir \ +# --speech-encoder-path-or-name models/large-v2.pt \ +# --llm-path-or-name models/Qwen2.5-0.5B-Instruct \ +# --pretrained-model-path $exp_dir/checkpoint-32001/pytorch_model.bin \ +# --use-flash-attn True \ +# --enable-speech-output True \ +# --token2wav-path /workspace/CosyVoice2-0.5B \ +# --use-lora True +# fi diff --git a/egs/speech_llm/SPEECH2SPEECH/local/compute_whisper_fbank.py b/egs/speech_llm/SPEECH2SPEECH/local/compute_whisper_fbank.py new file mode 100755 index 000000000..58d7cf3d6 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/local/compute_whisper_fbank.py @@ -0,0 +1,291 @@ +#!/usr/bin/env python3 +# Copyright 2021 Johns Hopkins University (Piotr Żelasko) +# Copyright 2021 Xiaomi Corp. (Fangjun Kuang) +# Copyright 2023 Xiaomi Corp. (Zengrui Jin) +# Copyright 2025 Nvidia (Yuekai Zhang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + python3 local/compute_whisper_fbank.py \ + --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \ + --out-dir data/fbank \ + --huggingface-dataset-path-or-name worstchan/UltraChat-300K-SLAM-Omni \ + --audio-key question_audio --text-key answer \ + --prefix ultrachat +""" + + +import argparse +import logging +from pathlib import Path + +import torch +from datasets import load_dataset +from lhotse import CutSet, LilcomChunkyWriter, WhisperFbank, WhisperFbankConfig +from vocalnet_lhotse_cutset import LazyCustomDatasetIterator + +from icefall.utils import str2bool + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--num-mel-bins", + type=int, + default=80, + help="""The number of mel bins for Fbank""", + ) + parser.add_argument( + "--whisper-fbank", + type=str2bool, + default=True, + help="Use WhisperFbank instead of Fbank. Default: False.", + ) + parser.add_argument( + "--resample-to-16kHz", + type=str2bool, + default=True, + help="Resample audio to 16kHz. Default: False.", + ) + parser.add_argument( + "--speed-perturb", + type=str2bool, + default=False, + help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.", + ) + parser.add_argument( + "--out-dir", + type=str, + default="data/fbank", + help="Output directory for the computed features", + ) + parser.add_argument( + "--huggingface-dataset-path-or-name", + type=str, + default="/workspace/Belle_1.4M-SLAM-Omni", + help="The path or name of the Huggingface dataset", + ) + parser.add_argument( + "--audio-key", + type=str, + default="question_audio", + help="The key in the Huggingface dataset containing the audio data", + ) + parser.add_argument( + "--text-key", + type=str, + default="answer", + help="The key in the Huggingface dataset containing the text data", + ) + parser.add_argument( + "--prefix", + type=str, + default="belle", + help="""The dataset prefix to use when saving the features""", + ) + parser.add_argument( + "--json-file-path", + type=str, + default=None, + help="The path to the json file containing the vocalnet data", + ) + parser.add_argument( + "--drop-recordings", + type=str2bool, + default=True, + help="Drop recordings. Default: False.", + ) + parser.add_argument( + "--subset", + type=str, + default=None, + help="The subset to use from the Huggingface dataset", + ) + parser.add_argument( + "--split", + type=str, + default="train", + help="The split to use from the Huggingface dataset", + ) + return parser + + +def remove_short_and_long_utt(c): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + if c.duration < 1.0 or c.duration > 50.0: + # logging.warning( + # f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + # ) + return False + return True + + +def compute_fbank(args): + in_out_dir = Path(args.out_dir) + in_out_dir.mkdir(parents=True, exist_ok=True) + # number of workers in dataloader + num_workers = 4 + + # number of seconds in a batch + batch_duration = 10 + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + if args.whisper_fbank: + extractor = WhisperFbank( + WhisperFbankConfig(num_filters=args.num_mel_bins, device=device) + ) + else: + raise NotImplementedError("Only WhisperFbank is implemented.") + + logging.info(f"device: {device}") + + dataset = load_dataset( + args.huggingface_dataset_path_or_name, + args.subset, + streaming=True, + split=args.split, + ) + num_shards = dataset.num_shards + num_digits = 5 + for i in range(252, num_shards): + shard = dataset.shard(num_shards, i) + # shard = shard.take(10) # for testing + logging.info( + f"Loading dataset shard {i} from {args.huggingface_dataset_path_or_name}" + ) + + idx = f"{i}".zfill(num_digits) + + cut_set = CutSet.from_huggingface_dataset( + shard, audio_key=args.audio_key, text_key=args.text_key + ) + + cut_set = cut_set.filter(remove_short_and_long_utt) + if args.resample_to_16kHz: + cut_set = cut_set.resample(16000) + if args.speed_perturb: + cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) + + logging.info("Computing features") + cut_set = cut_set.compute_and_store_features_batch( + extractor=extractor, + storage_path=f"{in_out_dir}/feats_{idx}_{args.subset}", + num_workers=num_workers, + batch_duration=batch_duration, + storage_type=LilcomChunkyWriter, + overwrite=True, + ) + # cut_set = cut_set.trim_to_supervisions( + # keep_overlapping=False, min_duration=None + # ) + cuts_path = f"{in_out_dir}/cuts_{args.prefix}.{idx}.{args.subset}.jsonl.gz" + logging.info(f"Saving to {cuts_path}") + # see https://github.com/lhotse-speech/lhotse/issues/1125 + if args.drop_recordings: + cut_set.drop_recordings().to_file(cuts_path) + else: + cut_set.to_file(cuts_path) + + +def compute_fbank_vocalnet(args): + in_out_dir = Path(args.out_dir) + in_out_dir.mkdir(parents=True, exist_ok=True) + # number of workers in dataloader + num_workers = 4 + + # number of seconds in a batch + batch_duration = 10 + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + if args.whisper_fbank: + extractor = WhisperFbank( + WhisperFbankConfig(num_filters=args.num_mel_bins, device=device) + ) + else: + raise NotImplementedError("Only WhisperFbank is implemented.") + + logging.info(f"device: {device}") + + num_shards = 50 + num_digits = 5 + for i in range(num_shards): + logging.info(f"Processing shard {i}") + idx = f"{i}".zfill(num_digits) + cut_set = CutSet( + LazyCustomDatasetIterator( + json_file_path=args.json_file_path, shard_id=i, num_shards=num_shards + ) + ) + cut_set = cut_set.trim_to_supervisions( + keep_overlapping=False, min_duration=None + ) + + if args.resample_to_16kHz: + cut_set = cut_set.resample(16000) + if args.speed_perturb: + cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) + + logging.info("Computing features") + cut_set = cut_set.compute_and_store_features_batch( + extractor=extractor, + storage_path=f"{in_out_dir}/feats_{idx}", + num_workers=num_workers, + batch_duration=batch_duration, + storage_type=LilcomChunkyWriter, + overwrite=True, + ) + cuts_path = f"{in_out_dir}/cuts_{args.prefix}.{idx}.jsonl.gz" + logging.info(f"Saving to {cuts_path}") + # see https://github.com/lhotse-speech/lhotse/issues/1125 + cut_set.to_file(cuts_path) + + +def main(): + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + + parser = get_parser() + args = parser.parse_args() + logging.info(vars(args)) + if args.json_file_path is not None: + compute_fbank_vocalnet(args) + else: + compute_fbank(args) + + +if __name__ == "__main__": + main() diff --git a/egs/speech_llm/SPEECH2SPEECH/local/vocalnet_lhotse_cutset.py b/egs/speech_llm/SPEECH2SPEECH/local/vocalnet_lhotse_cutset.py new file mode 100644 index 000000000..f7519fbfe --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/local/vocalnet_lhotse_cutset.py @@ -0,0 +1,99 @@ +# https://huggingface.co/datasets/VocalNet/UltraChat-vocalnet/blob/main/UltraChat.json +# https://huggingface.co/datasets/VocalNet/VoiceAssistant-430K-vocalnet/blob/main/VoiceAssistant-430K.json +import json +import os + +import numpy as np +from lhotse import CutSet +from lhotse.audio import Recording +from lhotse.supervision import SupervisionSegment + + +class LazyCustomDatasetIterator: + """ + Thin wrapper on top of HF datasets objects that allows to interact with them through a Lhotse CutSet. + It can be initialized with an existing HF dataset, or args/kwargs passed on to ``datasets.load_dataset()``. + Use ``audio_key``, ``text_key``, ``lang_key`` and ``gender_key`` options to indicate which keys in dict examples + returned from HF Dataset should be looked up for audio, transcript, language, and gender respectively. + The remaining keys in HF dataset examples will be stored inside ``cut.custom`` dictionary. + Example with existing HF dataset:: + >>> import datasets + ... dataset = datasets.load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="test") + ... dataset = dataset.map(some_transform) + ... cuts_it = LazyHFDatasetIterator(dataset) + ... for cut in cuts_it: + ... pass + Example providing HF dataset init args/kwargs:: + >>> import datasets + ... cuts_it = LazyHFDatasetIterator("mozilla-foundation/common_voice_11_0", "hi", split="test") + ... for cut in cuts_it: + ... pass + """ + + def __init__(self, json_file_path: str, shard_id: int = 0, num_shards: int = 100): + self.json_file_path = json_file_path + self.shard_id = shard_id + self.num_shards = num_shards + + def __iter__(self): + + with open(self.json_file_path, "r", encoding="utf-8") as f: + list_data_dict = json.load(f) + list_data_dict = list_data_dict[self.shard_id :: self.num_shards] + for item in list_data_dict: + custom_data = item.copy() + json_file_parent_of_parent_dir = os.path.dirname( + os.path.dirname(self.json_file_path) + ) + units_path = os.path.join( + json_file_parent_of_parent_dir, custom_data["units"] + ) + speech_token_dict = np.load(units_path, allow_pickle=True).item() + speech_token = speech_token_dict["speech_token"].squeeze(0).tolist() + speech_token_len = speech_token_dict["speech_token_len"] + + assert len(speech_token) == speech_token_len + custom_data["speech_token"] = speech_token + audio_path = custom_data.pop("speech", None) + audio_path = os.path.join(json_file_parent_of_parent_dir, audio_path) + item_id = item.get("id") + recording = Recording.from_file(path=audio_path, recording_id=item_id) + + conversations = item.get("conversations") + assert isinstance(conversations, list) and len(conversations) == 2 + for conv in conversations: + if isinstance(conv, dict) and conv.get("from") == "gpt": + gpt_text = conv.get("value") + break + assert gpt_text is not None + + supervision = SupervisionSegment( + id=item_id, + recording_id=recording.id, + start=0.0, # Assuming the supervision covers the entire recording + duration=recording.duration, + text=gpt_text, + ) + + cut = recording.to_cut() + # cut.id will be the same as recording.id + + cut.supervisions = [supervision] + # custom_data contains the original item's fields, minus "speech". + # So, "id", "conversations", "units", etc., are preserved here. + custom_data.pop("conversations") + custom_data.pop("units") + cut.custom = custom_data + + yield cut + + +if __name__ == "__main__": + json_file_path = ( + "/workspace/slam/VoiceAssistant-430K-vocalnet/VoiceAssistant-430K.json" + ) + cut_set = CutSet(LazyCustomDatasetIterator(json_file_path=json_file_path)) + + for cut in cut_set: + print(cut) + input() diff --git a/egs/speech_llm/SPEECH2SPEECH/prepare.sh b/egs/speech_llm/SPEECH2SPEECH/prepare.sh new file mode 100644 index 000000000..a75cd33ff --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/prepare.sh @@ -0,0 +1,444 @@ +#!/usr/bin/env bash + +# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python + +export PYTHONPATH=$PYTHONPATH:/workspace/icefall + +set -eou pipefail + +stage=$1 +stop_stage=$2 +# All files generated by this script are saved in "data". +# You can safely remove "data" and rerun this script to regenerate it. +mkdir -p data + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + + +if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then + log "stage 0: Clone CosyVoice repo and install requirements inside the container" + # docker: ghcr.io/swivid/f5-tts:main + pip install k2==1.24.4.dev20241030+cuda12.4.torch2.4.0 -f https://k2-fsa.github.io/k2/cuda.html + git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git /workspace/CosyVoice + cd /workspace/CosyVoice + # If you failed to clone submodule due to network failures, please run following command until success + git submodule update --init --recursive + pip install -r qwen_omni/requirements.txt + pip install -r qwen_omni/requirements-cosyvoice.txt + + # For Chinese only dataset, you can use the following command to download the Chinese fine-tuned whisper model. + huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper + # Cosyvoice pretrained model for speech token2wav module + huggingface-cli download --local-dir models/CosyVoice-300M-SFT FunAudioLLM/CosyVoice-300M-SFT + # Qwen Pretrained model + huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct + # Qwen-Omni like speech2speech model trained on worstchan/Belle_1.4M-SLAM-Omni + huggingface-cli download --local-dir models/qwen-omni-like-speech2speech-belle-1.4M yuekai/qwen-omni-like-speech2speech-belle-1.4M + + # For Gradio demo, we follow https://arxiv.org/abs/2412.15649 to use ASR model to decode the history speech as context. + pip install sherpa-onnx + model_path=local/sherpa-onnx-paraformer-zh-2023-09-14 + if [ ! -d $model_path ]; then + wget -nc https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2 + tar xvf sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2 -C local + fi +fi +export PYTHONPATH=$PYTHONPATH:/workspace/CosyVoice + +if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then + log "stage 1: Compute fbank feature from huggingface" + python3 local/compute_whisper_fbank.py \ + --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \ + --out-dir data/fbank_test \ + --huggingface-dataset-path-or-name /workspace/Belle_1.4M-SLAM-Omni \ + --audio-key question_audio --text-key answer \ + --prefix belle +fi + +if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then + log "Stage 2: Combine features" + manifest_dir=data/fbank + if [ ! -f $manifest_dir/cuts_belle_00001-01600.jsonl.gz ]; then + mv $manifest_dir/cuts_belle.00000.jsonl.gz ./ + # exclude cust_belle_00000.jsonl.gz for valid and test set + pieces=$(find $manifest_dir -name "cuts_belle.*.jsonl.gz" | sort) + echo $pieces | wc + lhotse combine $pieces data/fbank/cuts_belle_00001-01600.jsonl.gz + mv ./cuts_belle.00000.jsonl.gz $manifest_dir # put it back + cd $manifest_dir && ln -s cuts_belle_00001-01600.jsonl.gz cuts_belle_train.jsonl.gz + ln -s cuts_belle.00000.jsonl.gz cuts_belle_test.jsonl.gz && cd - + fi +fi + +ngpu=8 +exp_dir=./qwen_omni/exp_speech2speech +if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then + log "stage 3: Training Speech2Speech Model" + torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \ + --max-duration 50 \ + --enable-musan False \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \ + --llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \ + --manifest-dir data/fbank \ + --deepspeed \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True \ + --use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True +fi + +if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then + log "stage 4: Decoding, only support batch_size=1 for now." + cd $exp_dir && ln -s ../../models/qwen-omni-like-speech2speech-belle-1.4M/pytorch_model.bin epoch-999.pt && cd - + python3 ./qwen_omni/decode.py \ + --max-duration 1 \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \ + --llm-path-or-name models/Qwen2.5-0.5B-Instruct \ + --epoch 999 --avg 1 \ + --manifest-dir data/fbank \ + --use-flash-attn True \ + --method e2e-epoch10_speech2speech \ + --enable-speech-output True \ + --token2wav-path models/CosyVoice-300M-SFT \ + --use-lora True +fi + +if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then + log "stage 5: Gradio Demo" + python3 ./qwen_omni/web_demo.py \ + --speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \ + --llm-path-or-name models/Qwen2.5-0.5B-Instruct \ + --checkpoint-path $exp_dir/epoch-999.pt \ + --use-flash-attn True \ + --enable-speech-output True \ + --asr-model-dir local/sherpa-onnx-paraformer-zh-2023-09-14 \ + --use-lora True --token2wav-path /workspace/CosyVoice-300M-SFT --share +fi + +if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then + log "stage 6: Compute fbank feature from huggingface" + # CUDA_VISIBLE_DEVICES=0 python3 local/compute_whisper_fbank.py \ + # --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \ + # --out-dir data/fbank_voice_assistant \ + # --huggingface-dataset-path-or-name worstchan/VoiceAssistant-400K-SLAM-Omni \ + # --audio-key question_audio --text-key answer \ + # --prefix voice_assistant + CUDA_VISIBLE_DEVICES=0 python3 local/compute_whisper_fbank.py \ + --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \ + --out-dir data/fbank_voice_assistant_cosy2 \ + --json-file-path /workspace/slam/VoiceAssistant-430K-vocalnet/VoiceAssistant-430K.json \ + --prefix voice_assistant +fi + +if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then + log "stage 7: Compute fbank feature from huggingface" + # CUDA_VISIBLE_DEVICES=1 python3 local/compute_whisper_fbank.py \ + # --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \ + # --out-dir data/fbank_ultrachat \ + # --huggingface-dataset-path-or-name worstchan/UltraChat-300K-SLAM-Omni \ + # --audio-key question_audio --text-key answer \ + # --prefix ultrachat + CUDA_VISIBLE_DEVICES=1 python3 local/compute_whisper_fbank.py \ + --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \ + --out-dir data/fbank_ultrachat_cosy2 \ + --json-file-path /workspace/slam/UltraChat-vocalnet/UltraChat.json \ + --prefix ultrachat +fi + +if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then + log "stage 8: Compute fbank feature from huggingface" + + CUDA_VISIBLE_DEVICES=1 python3 local/compute_whisper_fbank.py \ + --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \ + --out-dir data/fbank_gigaspeech \ + --huggingface-dataset-path-or-name speechcolab/gigaspeech \ + --subset test --split test \ + --audio-key audio --text-key text \ + --prefix gigaspeech + + CUDA_VISIBLE_DEVICES=0 python3 local/compute_whisper_fbank.py \ + --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb True \ + --out-dir data/fbank_gigaspeech \ + --huggingface-dataset-path-or-name speechcolab/gigaspeech \ + --subset xl --split train \ + --audio-key audio --text-key text \ + --prefix gigaspeech +fi + +# cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd - +ngpu=4 +exp_dir=./qwen_omni/exp_speech2speech_en +if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then + log "stage 10: Training Speech2Speech Model" + torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \ + --max-duration 150 \ + --enable-musan False \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/large-v2.pt \ + --llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \ + --dataset-format vocalnet \ + --manifest-dir data/fbank \ + --deepspeed \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True --on-the-fly-feats True \ + --use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True +fi + + +if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then + log "stage 11: Decoding EN, val set only support batch_size=1 for now." + exp_dir=./qwen_omni/exp_speech2speech_en_continue + # cd $exp_dir && ln -s ../../models/qwen-omni-like-speech2speech-belle-1.4M/pytorch_model.bin epoch-999.pt && cd - + python3 ./qwen_omni/decode.py \ + --max-duration 1 \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/large-v2.pt \ + --llm-path-or-name models/Qwen2.5-0.5B-Instruct \ + --epoch 997 --avg 1 \ + --manifest-dir data/fbank \ + --use-flash-attn True \ + --method e2e-epoch4_speech2speech \ + --enable-speech-output True \ + --token2wav-path /workspace/CosyVoice2-0.5B \ + --use-lora True +fi + + +if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then + log "stage 12: Decoding EN voicebench" + exp_dir=./qwen_omni/exp_speech2speech_en_continue + torchrun --nproc_per_node=2 \ + ./qwen_omni/decode_dist.py \ + --output-dir $exp_dir/log_voicebench \ + --speech-encoder-path-or-name models/large-v2.pt \ + --llm-path-or-name models/Qwen2.5-0.5B-Instruct \ + --use-flash-attn True \ + --enable-speech-output True \ + --checkpoint-path $exp_dir/epoch-10-checkpoint-40000.pt/pytorch_model.bin \ + --use-lora True --subset-name openbookqa --split-name test +fi + + +if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then + log "stage 13: Server" + exp_dir=./qwen_omni/exp_speech2speech_en_continue + python3 ./qwen_omni/server.py \ + --speech-encoder-path-or-name models/large-v2.pt \ + --llm-path-or-name models/Qwen2.5-0.5B-Instruct \ + --checkpoint-path $exp_dir/epoch-10-checkpoint-40000.pt/pytorch_model.bin \ + --use-flash-attn True \ + --enable-speech-output True \ + --use-lora True +fi + +if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then + log "stage 14: Client" + exp_dir=./qwen_omni/exp_speech2text_first_libri_continuation_second_ce + exp_dir=./qwen_omni/exp_speech2text_first_asr_second_ce + exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_qa + exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_three_s2s_librispeech + # exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_three_s2s + # The final assignment of datasets in the original script is used here: + # (alpacaeval_full wildvoice mmsu advbench bbh ifeval commoneval openbookqa sd-qa) + declare -a target_datasets=("alpacaeval_full" "wildvoice" "ifeval" "commoneval" "openbookqa" "sd-qa" "advbench" "bbh" "mmsu") + declare -a target_datasets=("alpacaeval_full" "wildvoice" "ifeval" "commoneval" "openbookqa" "sd-qa" "advbench" "bbh") + declare -a target_datasets=("mmsu") + + NUM_CLIENT_JOBS=4 # Number of parallel client jobs + BASE_PORT=8000 # Base port for servers + + log "Starting $NUM_CLIENT_JOBS parallel client jobs to process ${#target_datasets[@]} datasets." + + for job_id in $(seq 0 $(($NUM_CLIENT_JOBS - 1))) + do + ( # Start a subshell for backgrounding this client job's tasks + current_port=$(expr $BASE_PORT + $job_id) + log "Client Job $job_id: Initializing. Will connect to port $current_port." + + processed_count_for_this_job=0 + # Iterate over all datasets using their indices + for i in "${!target_datasets[@]}"; do + # Assign dataset to job_id in a round-robin fashion + if [ $(($i % $NUM_CLIENT_JOBS)) -eq $job_id ]; then + dataset="${target_datasets[$i]}" + + # local split_name # Determine split_name based on dataset + if [ "$dataset" == "sd-qa" ]; then + split_name="usa" + else + split_name="test" + fi + + log "Client Job $job_id (Port $current_port): Processing dataset '$dataset' (split '$split_name')" + python3 ./qwen_omni/client.py \ + --subset-name "$dataset" \ + --split-name "$split_name" \ + --output-dir "$exp_dir/results" \ + --port "$current_port" # Assuming client.py accepts --port + + if [ $? -ne 0 ]; then + log "Client Job $job_id (Port $current_port): ERROR processing dataset '$dataset'." + fi + processed_count_for_this_job=$(($processed_count_for_this_job + 1)) + fi + done + log "Client Job $job_id (Port $current_port): Finished. Processed $processed_count_for_this_job datasets." + ) & # Run this client job's subshell in the background + done + + log "All client jobs launched. Waiting for completion..." + wait # Wait for all backgrounded client jobs to complete + log "All client jobs have completed." +fi + +if [ $stage -le 15 ] && [ $stop_stage -ge 15 ]; then + log "stage 15: Training Speech2Speech Model, adaptor only" + exp_dir=./qwen_omni/exp_speech2text + ngpu=2 + torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \ + --max-duration 700 \ + --enable-musan False \ + --audio-key audio --text-key continuation \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/large-v2.pt \ + --llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \ + --on-the-fly-feats True \ + --deepspeed \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True \ + --dataset-format speech_continuation \ + --start-epoch 4 --pretrained-model-path $exp_dir/epoch-3/pytorch_model.bin \ + --use-lora False --unfreeze-llm False --unfreeze-speech-projector True --enable-speech-output False +fi + +if [ $stage -le 16 ] && [ $stop_stage -ge 16 ]; then + log "stage 16: Training Speech2Speech Model, adaptor only" + exp_dir=./qwen_omni/exp_speech2text + ngpu=4 + + latest_checkpoint_step=-1 + # Check if exp_dir exists and is a directory + if [ -d "$exp_dir" ]; then + # List directories matching checkpoint-* and find the one with the largest step number + for checkpoint_dir in $(ls -d $exp_dir/checkpoint-*/ 2>/dev/null | sort -V); do + checkpoint_name=$(basename "$checkpoint_dir") # e.g., checkpoint-1000 + # Extract step number using parameter expansion + current_step=${checkpoint_name#checkpoint-} + # Ensure current_step is a number + if [[ "$current_step" =~ ^[0-9]+$ ]] && [ "$current_step" -gt "$latest_checkpoint_step" ]; then + latest_checkpoint_step=$current_step + fi + done + fi + + train_cmd_args="--max-duration 800 \ + --enable-musan False \ + --audio-key audio --text-key continuation \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/large-v2.pt \ + --llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \ + --on-the-fly-feats True \ + --deepspeed \ + --huggingface-dataset-path-or-name /lustre/fsw/general_sa/yuekaiz/s2s \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True \ + --dataset-format speech_continuation \ + --use-lora False --unfreeze-llm False --unfreeze-speech-projector True --enable-speech-output False" + + if [ "$latest_checkpoint_step" -ge 0 ]; then + log "Continuing training from checkpoint-$latest_checkpoint_step" + step=$latest_checkpoint_step + train_cmd_args="$train_cmd_args --pretrained-model-path $exp_dir/checkpoint-${step}/pytorch_model.bin --sampler-state-dict-path $exp_dir/checkpoint-${step}/sampler.pt" + else + log "Starting training from scratch as no checkpoint was found in $exp_dir" + # No pretrained model or sampler state dict needed for the first run + fi + + torchrun --nproc_per_node $ngpu --nnodes $SLURM_JOB_NUM_NODES --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d --rdzv_id $SLURM_JOBID ./qwen_omni/train.py \ + $train_cmd_args +fi + + +if [ $stage -le 17 ] && [ $stop_stage -ge 17 ]; then + # pip install gradio sherpa-onnx + log "stage 17: Server for adapter only speech continuation" + exp_dir=./qwen_omni/exp_speech2text_first_libri_continuation_second_ce + exp_dir=./qwen_omni/exp_speech2text_first_asr_second_ce + exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_qa + exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_three_s2s_librispeech + exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_three_s2s + + N_GPUS=4 # Define the number of GPUs/processes you want to launch + + for id in $(seq 0 $(($N_GPUS - 1))) + do + log "Launching server on GPU $id with port $(expr 8000 + $id)" + CUDA_VISIBLE_DEVICES=$id python3 ./qwen_omni/server.py \ + --speech-encoder-path-or-name models/large-v2.pt \ + --llm-path-or-name models/Qwen2.5-0.5B-Instruct \ + --checkpoint-path $exp_dir/checkpoint-55276/pytorch_model.bin \ + --use-flash-attn True \ + --enable-speech-output False \ + --port $(expr 18000 + $id) \ + --use-lora True & + done + + wait # Wait for all background processes to complete +fi + +if [ $stage -le 18 ] && [ $stop_stage -ge 18 ]; then + log "stage 18: Training kl-div Speech2Speech Model, adaptor only" + exp_dir=./qwen_omni/exp_speech2text_kl + ngpu=2 + torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \ + --max-duration 700 \ + --enable-musan False \ + --audio-key audio --text-key continuation \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/large-v2.pt \ + --llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \ + --on-the-fly-feats True \ + --deepspeed \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True \ + --dataset-format speech_continuation \ + --loss-type kl_div --dataset librispeech \ + --pretrained-model-path $exp_dir/checkpoint-1001/pytorch_model.bin --sampler-state-dict-path $exp_dir/checkpoint-1001/sampler.pt \ + --use-lora False --unfreeze-llm False --unfreeze-speech-projector True --enable-speech-output False +fi + +if [ $stage -le 19 ] && [ $stop_stage -ge 19 ]; then + log "stage 19: Server for kl loss" + exp_dir=./qwen_omni/exp_speech2text_kl + python3 ./qwen_omni/server.py \ + --speech-encoder-path-or-name models/large-v2.pt \ + --llm-path-or-name models/Qwen2.5-0.5B-Instruct \ + --checkpoint-path $exp_dir/epoch-10/pytorch_model.bin \ + --use-flash-attn True \ + --enable-speech-output False \ + --use-lora False --prompt-template qa +fi + +if [ $stage -le 20 ] && [ $stop_stage -ge 20 ]; then + log "stage 20: Training Speech2Speech Model, adaptor + lora, second stage" + exp_dir=./qwen_omni/exp_speech2text_kl_llm + pretrained_dir=./qwen_omni/exp_speech2text_kl + ngpu=2 + torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \ + --max-duration 200 \ + --enable-musan False \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/large-v2.pt \ + --llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \ + --deepspeed \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True \ + --pretrained-model-path $pretrained_dir/epoch-10/pytorch_model.bin \ + --use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output False --dataset-format vocalnet +fi diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/client.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/client.py new file mode 100644 index 000000000..7dc279e48 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/client.py @@ -0,0 +1,156 @@ +# client.py +import argparse +import json +import os + +import requests +from datasets import concatenate_datasets, load_dataset +from tqdm import tqdm + + +def get_args(): + parser = argparse.ArgumentParser(description="Speech-to-Text Client") + parser.add_argument( + "--server-url", + type=str, + default="http://localhost", + help="URL of the FastAPI server", + ) + parser.add_argument( + "--port", + type=int, + default=8000, + help="Port of the FastAPI server", + ) + parser.add_argument( + "--dataset-name", + type=str, + default="hlt-lab/voicebench", + help="Hugging Face dataset name", + ) + parser.add_argument( + "--subset-name", + type=str, + default="commoneval", # Adjust as needed + help="Dataset subset name", + ) + parser.add_argument( + "--split-name", + type=str, + default=None, # Adjust as needed + help="Dataset split name", + ) + parser.add_argument( + "--output-dir", required=True, type=str, help="Directory to save results" + ) + args = parser.parse_args() + return args + + +def main(): + args = get_args() + os.makedirs(args.output_dir, exist_ok=True) + output_filename = os.path.join( + args.output_dir, + f"{args.subset_name}-{args.split_name}.jsonl", + ) + server_decode_url = f"{args.server_url}:{args.port}/decode" + + print("Loading dataset...") + if args.subset_name != "mmsu": + dataset = load_dataset( + args.dataset_name, + args.subset_name, + split=args.split_name, + trust_remote_code=True, + ) + else: + # load all splits and concatenate them + dataset = load_dataset( + args.dataset_name, + args.subset_name, + trust_remote_code=True, + ) + dataset = concatenate_datasets([dataset[subset] for subset in dataset]) + + print(f"Dataset loaded with {len(dataset)} samples.") + print(f"Sending requests to {server_decode_url}...") + print(f"Saving results to {output_filename}") + + with open(output_filename, "w", encoding="utf-8") as outfile: + # Iterate directly over the dataset + progress_bar = tqdm(dataset, desc="Processing", unit="samples") + for item in progress_bar: + + audio_info = item.get("audio") + assert ( + audio_info["sampling_rate"] == 16000 + ), f"Sampling rate is {audio_info['sampling_rate']}, not 16khz" + + # Prepare data for JSON serialization and server request + audio_array = audio_info["array"].tolist() # Convert numpy array to list + result_dict = {} + for key in item.keys(): + if key != "audio": + # Ensure other fields are JSON serializable + try: + # Attempt to serialize to catch issues early (optional) + json.dumps(item[key]) + result_dict[key] = item[key] + except (TypeError, OverflowError): + print( + f"Warning: Converting non-serializable key '{key}' to string." + ) + result_dict[key] = str( + item[key] + ) # Convert problematic types to string + + payload = { + "audio": audio_array, + "sampling_rate": 16000, + } + + try: + response = requests.post(server_decode_url, json=payload, timeout=60) + response.raise_for_status() + server_response = response.json() + decoded_text = server_response.get("text", "") + + # Add the response to the result dictionary + result_dict["response"] = decoded_text + print(result_dict) + # Write result to JSONL file + json.dump(result_dict, outfile, ensure_ascii=False) + outfile.write("\n") + + except requests.exceptions.RequestException as e: + print(f"\nError sending request for an item: {e}") + error_entry = result_dict # Use the data prepared so far + error_entry["error"] = str(e) + error_entry["response"] = "" + json.dump(error_entry, outfile, ensure_ascii=False) + outfile.write("\n") + except json.JSONDecodeError: + print("\nError decoding server response for an item.") + error_entry = result_dict + error_entry["error"] = "Invalid JSON response from server" + error_entry["response"] = "" + json.dump(error_entry, outfile, ensure_ascii=False) + outfile.write("\n") + except Exception as e: + print(f"\nUnexpected error processing an item: {e}") + error_entry = result_dict + error_entry["error"] = f"Unexpected error: {str(e)}" + error_entry["response"] = "" + json.dump(error_entry, outfile, ensure_ascii=False) + outfile.write("\n") + + # Progress bar updates automatically by iterating over tqdm(dataset) + + # No need to close progress_bar explicitly when iterating directly + + print("Processing finished.") + + +if __name__ == "__main__": + main() diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/data_module.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/data_module.py new file mode 100644 index 000000000..457c3e107 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/data_module.py @@ -0,0 +1,813 @@ +# Copyright 2021 Piotr Żelasko +# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import inspect +import logging +from functools import lru_cache +from pathlib import Path +from typing import Any, Dict, Optional + +import torch +from datasets import interleave_datasets, load_dataset, Audio, Features, Value, Sequence +from lhotse import ( + CutSet, + WhisperFbank, + WhisperFbankConfig, + load_manifest, + load_manifest_lazy, +) +from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures + CutConcatenate, + CutMix, + DynamicBucketingSampler, + K2SpeechRecognitionDataset, + PerturbSpeed, + PrecomputedFeatures, + SimpleCutSampler, + SpecAugment, +) +from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples + AudioSamples, + OnTheFlyFeatures, +) +from lhotse.utils import fix_random_seed +from torch.utils.data import DataLoader +from utils import get_local_rank, str2bool +import io +import wave +import random + +class _SeedWorkers: + def __init__(self, seed: int): + self.seed = seed + + def __call__(self, worker_id: int): + fix_random_seed(self.seed + worker_id) + + +class AsrDataModule: + """ + DataModule for k2 ASR experiments. + It assumes there is always one train and valid dataloader, + but there can be multiple test dataloaders (e.g. LibriSpeech test-clean + and test-other). + + It contains all the common data pipeline modules used in ASR + experiments, e.g.: + - dynamic batch size, + - bucketing samplers, + - cut concatenation, + - augmentation, + - on-the-fly feature extraction + + This class should be derived for specific corpora used in ASR tasks. + """ + + def __init__(self, args: argparse.Namespace): + self.args = args + + @classmethod + def add_arguments(cls, parser: argparse.ArgumentParser): + group = parser.add_argument_group( + title="ASR data related options", + description="These options are used for the preparation of " + "PyTorch DataLoaders from Lhotse CutSet's -- they control the " + "effective batch sizes, sampling strategies, applied data " + "augmentations, etc.", + ) + group.add_argument( + "--manifest-dir", + type=Path, + default=Path("data/fbank"), + help="Path to directory with train/valid/test cuts.", + ) + group.add_argument( + "--max-duration", + type=int, + default=300.0, + help="Maximum pooled recordings duration (seconds) in a " + "single batch. You can reduce it if it causes CUDA OOM.", + ) + group.add_argument( + "--bucketing-sampler", + type=str2bool, + default=True, + help="When enabled, the batches will come from buckets of " + "similar duration (saves padding frames).", + ) + group.add_argument( + "--num-buckets", + type=int, + default=30, + help="The number of buckets for the DynamicBucketingSampler" + "(you might want to increase it for larger datasets).", + ) + group.add_argument( + "--on-the-fly-feats", + type=str2bool, + default=False, + help="When enabled, use on-the-fly cut mixing and feature " + "extraction. Will drop existing precomputed feature manifests " + "if available.", + ) + group.add_argument( + "--on-the-fly-speed-perturb", + type=str2bool, + default=True, + help="When enabled, use on-the-fly speed perturbation. " + "Will drop existing precomputed feature manifests " + "if available.", + ) + group.add_argument( + "--shuffle", + type=str2bool, + default=True, + help="When enabled (=default), the examples will be " + "shuffled for each epoch.", + ) + group.add_argument( + "--drop-last", + type=str2bool, + default=True, + help="Whether to drop last batch. Used by sampler.", + ) + group.add_argument( + "--return-cuts", + type=str2bool, + default=True, + help="When enabled, each batch will have the " + "field: batch['supervisions']['cut'] with the cuts that " + "were used to construct it.", + ) + + group.add_argument( + "--num-workers", + type=int, + default=4, + help="The number of training dataloader workers that " + "collect the batches.", + ) + + group.add_argument( + "--enable-spec-aug", + type=str2bool, + default=True, + help="When enabled, use SpecAugment for training dataset.", + ) + + group.add_argument( + "--spec-aug-time-warp-factor", + type=int, + default=80, + help="Used only when --enable-spec-aug is True. " + "It specifies the factor for time warping in SpecAugment. " + "Larger values mean more warping. " + "A value less than 1 means to disable time warp.", + ) + + group.add_argument( + "--enable-musan", + type=str2bool, + default=True, + help="When enabled, select noise from MUSAN and mix it" + "with training dataset. ", + ) + + group.add_argument( + "--input-strategy", + type=str, + default="PrecomputedFeatures", + help="AudioSamples or PrecomputedFeatures", + ) + + group.add_argument( + "--huggingface-dataset-path-or-name", + type=str, + default=None, + help="The path or name of the Huggingface dataset", + ) + group.add_argument( + "--audio-key", + type=str, + default=None, + help="The key in the Huggingface dataset containing the audio data", + ) + group.add_argument( + "--text-key", + type=str, + default=None, + help="The key in the Huggingface dataset containing the text data", + ) + + def train_dataloaders( + self, + cuts_train: CutSet, + sampler_state_dict: Optional[Dict[str, Any]] = None, + ) -> DataLoader: + """ + Args: + cuts_train: + CutSet for training. + sampler_state_dict: + The state dict for the training sampler. + """ + transforms = [] + if self.args.enable_musan: + logging.info("Enable MUSAN") + logging.info("About to get Musan cuts") + cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") + transforms.append( + CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True) + ) + else: + logging.info("Disable MUSAN") + if self.args.on_the_fly_speed_perturb and self.args.on_the_fly_feats: + transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2 / 3)] + transforms + + input_transforms = [] + if self.args.enable_spec_aug: + logging.info("Enable SpecAugment") + logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") + # Set the value of num_frame_masks according to Lhotse's version. + # In different Lhotse's versions, the default of num_frame_masks is + # different. + num_frame_masks = 10 + num_frame_masks_parameter = inspect.signature( + SpecAugment.__init__ + ).parameters["num_frame_masks"] + if num_frame_masks_parameter.default == 1: + num_frame_masks = 2 + logging.info(f"Num frame mask: {num_frame_masks}") + input_transforms.append( + SpecAugment( + time_warp_factor=self.args.spec_aug_time_warp_factor, + num_frame_masks=num_frame_masks, + features_mask_size=27, + num_feature_masks=2, + frames_mask_size=100, + ) + ) + else: + logging.info("Disable SpecAugment") + + logging.info("About to create train dataset") + rank = get_local_rank() + + train = K2SpeechRecognitionDataset( + input_strategy=OnTheFlyFeatures( + WhisperFbank(WhisperFbankConfig(num_filters=80, device=f"cuda:{rank}")) + ) + if self.args.on_the_fly_feats + else eval(self.args.input_strategy)(), + cut_transforms=transforms, + input_transforms=input_transforms, + return_cuts=self.args.return_cuts, + ) + + if self.args.bucketing_sampler: + logging.info("Using DynamicBucketingSampler.") + train_sampler = DynamicBucketingSampler( + cuts_train, + max_duration=self.args.max_duration, + shuffle=self.args.shuffle, + num_buckets=self.args.num_buckets, + buffer_size=self.args.num_buckets * 1000, + drop_last=self.args.drop_last, + ) + else: + logging.info("Using SimpleCutSampler.") + train_sampler = SimpleCutSampler( + cuts_train, + max_duration=self.args.max_duration, + shuffle=self.args.shuffle, + ) + logging.info("About to create train dataloader") + + if sampler_state_dict is not None: + logging.info("Loading sampler state dict") + train_sampler.load_state_dict(sampler_state_dict) + + # 'seed' is derived from the current random state, which will have + # previously been set in the main process. + seed = torch.randint(0, 100000, ()).item() + worker_init_fn = _SeedWorkers(seed) + + train_dl = DataLoader( + train, + sampler=train_sampler, + batch_size=None, + num_workers=self.args.num_workers, + persistent_workers=True if self.args.num_workers > 0 else False, + pin_memory=True, + worker_init_fn=worker_init_fn, + ) + + return train_dl + + def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader: + """ + Args: + cuts_valid: + CutSet for validation. + """ + logging.info("About to create dev dataset") + rank = get_local_rank() + validate = K2SpeechRecognitionDataset( + input_strategy=OnTheFlyFeatures( + WhisperFbank(WhisperFbankConfig(num_filters=80, device=f"cuda:{rank}")) + ) + if self.args.on_the_fly_feats + else eval(self.args.input_strategy)(), + return_cuts=self.args.return_cuts, + ) + if self.args.bucketing_sampler: + valid_sampler = DynamicBucketingSampler( + cuts_valid, + max_duration=self.args.max_duration, + shuffle=False, + ) + else: + valid_sampler = SimpleCutSampler( + cuts_valid, + max_duration=self.args.max_duration, + shuffle=False, + ) + logging.info("About to create dev dataloader") + valid_num_workers = 1 + valid_dl = DataLoader( + validate, + sampler=valid_sampler, + batch_size=None, + num_workers=valid_num_workers, + persistent_workers=True if valid_num_workers > 0 else False, + ) + + return valid_dl + + def test_dataloaders(self, cuts: CutSet) -> DataLoader: + logging.debug("About to create test dataset") + test = K2SpeechRecognitionDataset( + input_strategy=OnTheFlyFeatures( + WhisperFbank(WhisperFbankConfig(num_filters=80, device="cpu")) + ) + if self.args.on_the_fly_feats + else eval(self.args.input_strategy)(), + return_cuts=self.args.return_cuts, + ) + sampler = DynamicBucketingSampler( + cuts, + max_duration=self.args.max_duration, + shuffle=False, + ) + logging.debug("About to create test dataloader") + test_dl = DataLoader( + test, + batch_size=None, + sampler=sampler, + num_workers=self.args.num_workers, + ) + return test_dl + + @lru_cache() + def test_cuts_belle(self) -> CutSet: + logging.info("About to get test cuts") + return { + "test": load_manifest_lazy( + self.args.manifest_dir / "cuts_belle_test.jsonl.gz" + ) + } + @lru_cache() + def dev_cuts_belle(self) -> CutSet: + logging.info("About to get test cuts") + return load_manifest_lazy( + self.args.manifest_dir / "cuts_belle_test.jsonl.gz" + ) + @lru_cache() + def train_cuts_belle(self) -> CutSet: + logging.info("About to get train cuts") + slam_omni_zh_cuts = load_manifest_lazy( + self.args.manifest_dir / "cuts_belle_train.jsonl.gz" + ) + return slam_omni_zh_cuts + + @lru_cache() + def train_cuts_en_vocalnet(self) -> CutSet: + logging.info("About to get train cuts") + VoiceAssistant_cuts = load_manifest_lazy( + self.args.manifest_dir / "cuts_voice_assistant_00001-00049.jsonl.gz" + ) + ultrachat_cuts = load_manifest_lazy( + self.args.manifest_dir / "cuts_ultrachat_train.jsonl.gz" + ) + VoiceAssistant_cuts = VoiceAssistant_cuts.resample(16000) + ultrachat_cuts = ultrachat_cuts.resample(16000) + return CutSet.mux( + VoiceAssistant_cuts, + ultrachat_cuts, + weights=[ + len(VoiceAssistant_cuts), + len(ultrachat_cuts), + ], + ) + @lru_cache() + def valid_cuts_en_vocalnet(self) -> CutSet: + logging.info("About to get valid cuts") + VoiceAssistant_cuts = load_manifest_lazy( + self.args.manifest_dir / "cuts_voice_assistant.00000.jsonl.gz" + ) + VoiceAssistant_cuts = VoiceAssistant_cuts.resample(16000) + return VoiceAssistant_cuts + + @lru_cache() + def test_cuts_en_vocalnet(self) -> CutSet: + logging.info("About to get test cuts") + VoiceAssistant_cuts = load_manifest_lazy( + self.args.manifest_dir / "cuts_voice_assistant_small.00000.jsonl.gz" + ) + VoiceAssistant_cuts = VoiceAssistant_cuts.resample(16000) + return {"test": VoiceAssistant_cuts} + + @lru_cache() + def train_cuts_ultravox(self) -> CutSet: + logging.info("About to get train cuts") + if self.args.huggingface_dataset_path_or_name is not None: + librispeech_path = ( + self.args.huggingface_dataset_path_or_name + "/librispeech_asr" + ) + people_speech_path = ( + self.args.huggingface_dataset_path_or_name + "/peoples_speech" + ) + gigaspeech_path = self.args.huggingface_dataset_path_or_name + "/gigaspeech" + else: + librispeech_path = "fixie-ai/librispeech_asr" + people_speech_path = "fixie-ai/peoples_speech" + gigaspeech_path = "fixie-ai/gigaspeech" + # 148_688 + librispeech_other = load_dataset( + librispeech_path, "other", split="train.500", streaming=True + ) + # 104_014 + librispeech_clean_360 = load_dataset( + librispeech_path, "clean", split="train.360", streaming=True + ) + # 28_539 + librispeech_clean_100 = load_dataset( + librispeech_path, "clean", split="train.100", streaming=True + ) + + # 1_501_271 + people_speech_clean = load_dataset( + people_speech_path, "clean", split="train", streaming=True + ) + # 548_000 + people_speech_dirty_sa = load_dataset( + people_speech_path, "dirty_sa", split="train", streaming=True + ) + + # 8_266_422 + + gigaspeech = load_dataset( + gigaspeech_path, "xl-empty-audio-removed", split="train", streaming=True + ) + + librispeech_clean_100_cuts = CutSet.from_huggingface_dataset( + librispeech_clean_100, + audio_key="audio", + text_key="text", + ) + + librispeech_other_cuts = CutSet.from_huggingface_dataset( + librispeech_other, + audio_key="audio", + text_key="text", + ) + + librispeech_clean_360_cuts = CutSet.from_huggingface_dataset( + librispeech_clean_360, + audio_key="audio", + text_key="text", + ) + + gigaspeech_cuts = CutSet.from_huggingface_dataset( + gigaspeech, audio_key="audio", text_key="text" + ) + + people_speech_clean_cuts = CutSet.from_huggingface_dataset( + people_speech_clean, + audio_key="audio", + text_key="text", + ) + + people_speech_dirty_sa_cuts = CutSet.from_huggingface_dataset( + people_speech_dirty_sa, + audio_key="audio", + text_key="text", + ) + + return CutSet.mux( + librispeech_clean_100_cuts, + librispeech_clean_360_cuts, + librispeech_other_cuts, + gigaspeech_cuts, + people_speech_clean_cuts, + people_speech_dirty_sa_cuts, + weights=[ + 28539, + 104014, + 148688, + 8266422, + 1501271, + 548000, + ], + ) + + @lru_cache() + def valid_cuts_ultravox(self) -> CutSet: + logging.info("About to get valid cuts") + librispeech_path = "fixie-ai/librispeech_asr" + librispeech_clean_valid = load_dataset( + librispeech_path, "clean", split="validation", streaming=True + ) + librispeech_clean_valid_cuts = CutSet.from_huggingface_dataset( + librispeech_clean_valid, + audio_key="audio", + text_key="text", + ) + return librispeech_clean_valid_cuts + + @lru_cache() + def train_cuts_librispeech(self) -> CutSet: + logging.info("About to get train cuts") + if self.args.huggingface_dataset_path_or_name is not None: + librispeech_path = self.args.huggingface_dataset_path_or_name + "/librispeech_asr" + else: + librispeech_path = "fixie-ai/librispeech_asr" + # 148_688 + librispeech_other = load_dataset( + librispeech_path, "other", split="train.500", streaming=True + ) + # 104_014 + librispeech_clean_360 = load_dataset( + librispeech_path, "clean", split="train.360", streaming=True + ) + # 28_539 + librispeech_clean_100 = load_dataset( + librispeech_path, "clean", split="train.100", streaming=True + ) + + librispeech_clean_100_cuts = CutSet.from_huggingface_dataset( + librispeech_clean_100, + audio_key="audio", + text_key="text", + ) + + librispeech_other_cuts = CutSet.from_huggingface_dataset( + librispeech_other, + audio_key="audio", + text_key="text", + ) + + librispeech_clean_360_cuts = CutSet.from_huggingface_dataset( + librispeech_clean_360, + audio_key="audio", + text_key="text", + ) + + return CutSet.mux( + librispeech_clean_100_cuts, + librispeech_clean_360_cuts, + librispeech_other_cuts, + weights=[ + 28539, + 104014, + 148688, + ], + ) + + @lru_cache() + def train_cuts_gigaspeech(self) -> CutSet: + logging.info("About to get train cuts") + gigaspeech_path = "fixie-ai/gigaspeech" + gigaspeech = load_dataset( + gigaspeech_path, "xl-empty-audio-removed", split="train", streaming=True + ) + + gigaspeech_cuts = CutSet.from_huggingface_dataset( + gigaspeech, audio_key="audio", text_key="text" + ) + + return gigaspeech_cuts + + @lru_cache() + def train_cuts_instruct_s2s(self) -> CutSet: + logging.info("About to get train cuts") + if self.args.huggingface_dataset_path_or_name is not None: + data_path = self.args.huggingface_dataset_path_or_name + "/InstructS2S-200K" + else: + data_path = "yuekai/InstructS2S-200K" + # 148_688 + instruct_s2s_train = load_dataset( + data_path, split="train", streaming=True + ) + + instruct_s2s_train_cuts = CutSet.from_huggingface_dataset( + instruct_s2s_train, + audio_key="question_audio", + text_key="answer", + ) + + instruct_s2s_train_cuts = instruct_s2s_train_cuts.resample(16000) + + return instruct_s2s_train_cuts + + @lru_cache() + def train_cuts_en_speech2speech(self) -> CutSet: + logging.info("About to get train cuts") + VoiceAssistant_cuts = load_manifest_lazy( + self.args.manifest_dir / "cuts_voice_assistant_00001-00049.jsonl.gz" + ) + ultrachat_cuts = load_manifest_lazy( + self.args.manifest_dir / "cuts_ultrachat_train.jsonl.gz" + ) + + if self.args.huggingface_dataset_path_or_name is not None: + data_path = self.args.huggingface_dataset_path_or_name + "/InstructS2S-200K" + else: + data_path = "yuekai/InstructS2S-200K" + # 148_688 + instruct_s2s_train = load_dataset( + data_path, split="train", streaming=True + ) + + instruct_s2s_train_cuts = CutSet.from_huggingface_dataset( + instruct_s2s_train, + audio_key="question_audio", + text_key="answer", + ) + + instruct_s2s_train_cuts = instruct_s2s_train_cuts.resample(16000) + + + return CutSet.mux( + VoiceAssistant_cuts, + ultrachat_cuts, + instruct_s2s_train_cuts, + weights=[ + len(VoiceAssistant_cuts), + len(ultrachat_cuts), + 423_000, + ], + ) + + @lru_cache() + def train_cuts_en_speech2speech_librispeech(self) -> CutSet: + logging.info("About to get train cuts") + VoiceAssistant_cuts = load_manifest_lazy( + self.args.manifest_dir / "cuts_voice_assistant_00001-00049.jsonl.gz" + ) + ultrachat_cuts = load_manifest_lazy( + self.args.manifest_dir / "cuts_ultrachat_train.jsonl.gz" + ) + + if self.args.huggingface_dataset_path_or_name is not None: + data_path = self.args.huggingface_dataset_path_or_name + "/InstructS2S-200K" + else: + data_path = "yuekai/InstructS2S-200K" + # 148_688 + instruct_s2s_train = load_dataset( + data_path, split="train", streaming=True + ) + + instruct_s2s_train_cuts = CutSet.from_huggingface_dataset( + instruct_s2s_train, + audio_key="question_audio", + text_key="answer", + ) + + instruct_s2s_train_cuts = instruct_s2s_train_cuts.resample(16000) + + if self.args.huggingface_dataset_path_or_name is not None: + librispeech_path = self.args.huggingface_dataset_path_or_name + "/librispeech_asr" + else: + librispeech_path = "fixie-ai/librispeech_asr" + # 148_688 + librispeech_other = load_dataset( + librispeech_path, "other", split="train.500", streaming=True + ) + # 104_014 + librispeech_clean_360 = load_dataset( + librispeech_path, "clean", split="train.360", streaming=True + ) + # 28_539 + librispeech_clean_100 = load_dataset( + librispeech_path, "clean", split="train.100", streaming=True + ) + + librispeech_clean_100_cuts = CutSet.from_huggingface_dataset( + librispeech_clean_100, + audio_key="audio", + text_key="text", + ) + + librispeech_other_cuts = CutSet.from_huggingface_dataset( + librispeech_other, + audio_key="audio", + text_key="text", + ) + + librispeech_clean_360_cuts = CutSet.from_huggingface_dataset( + librispeech_clean_360, + audio_key="audio", + text_key="text", + ) + + + return CutSet.mux( + librispeech_other_cuts, + VoiceAssistant_cuts, + ultrachat_cuts, + librispeech_clean_360_cuts, + instruct_s2s_train_cuts, + librispeech_clean_100_cuts, + weights=[ + 148688, + len(VoiceAssistant_cuts), + len(ultrachat_cuts), + 104014, + 423_000, + 28539, + ], + ) + + @lru_cache() + def train_cuts_emilia_en(self) -> CutSet: + logging.info("About to get train cuts") + data_path = "/lustre/fsw/general_sa/yuekaiz/s2s" + "/emilia_en" + # if self.args.huggingface_dataset_path_or_name is not None: + # data_path = self.args.huggingface_dataset_path_or_name + "/emilia_en" + # else: + # data_path = "yuekai/emilia_en" + + emilia_en_data = load_dataset( + data_path, split="train", streaming=True + ) + + def update_wav_path(example): + sampling_rate = 16000 # From current_features + duration = 1 # seconds, arbitrary duration for random audio + num_channels = 1 # mono + sample_width = 2 # 2 bytes = 16-bit audio + + num_frames = int(duration * sampling_rate) + + # Generate random bytes for the PCM data part + # This will be random noise, but structurally valid for a WAV file + pcm_data = bytes([random.randint(0, 255) for _ in range(num_frames * num_channels * sample_width)]) + + # Create a WAV file in memory + audio_buffer = io.BytesIO() + with wave.open(audio_buffer, 'wb') as wf: + wf.setnchannels(num_channels) + wf.setsampwidth(sample_width) + wf.setframerate(sampling_rate) + wf.writeframes(pcm_data) # writeframes expects bytes + + example["wav"] = audio_buffer.getvalue() + return example + + emilia_en_data = emilia_en_data.map(update_wav_path) + current_features = Features({ + 'id': Value('string'), + 'text': Value('string'), + 'duration': Value('float'), + 'language': Value('string'), + 'dnsmos': Value('float'), + 'speech_token': Sequence(Value('int32')), + 'wav': Audio(sampling_rate=16000) + + }) + emilia_en_data = emilia_en_data.rename_column("code", "speech_token") + emilia_en_data = emilia_en_data.cast(current_features) + + emilia_en_train_cuts = CutSet.from_huggingface_dataset( + emilia_en_data, # Adjusted from instruct_s2s_train + audio_key="wav", + text_key="text", + ) + return emilia_en_train_cuts \ No newline at end of file diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/decode.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/decode.py new file mode 100755 index 000000000..8e915cf26 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/decode.py @@ -0,0 +1,759 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, +# Fangjun Kuang, +# Wei Kang) +# 2024 Yuekai Zhang +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +# Command for decoding using fine-tuned models: +huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper +# Cosyvoice pretrained model for speech token2wav module +huggingface-cli download --local-dir models/CosyVoice-300M-SFT FunAudioLLM/CosyVoice-300M-SFT +# Qwen Pretrained model +huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct +# Qwen-Omni like speech2speech model trained on worstchan/Belle_1.4M-SLAM-Omni +huggingface-cli download --local-dir models/qwen-omni-like-speech2speech-belle-1.4M yuekai/qwen-omni-like-speech2speech-belle-1.4M + +cd $exp_dir && ln -s ../../models/qwen-omni-like-speech2speech-belle-1.4M/pytorch_model.bin epoch-999.pt && cd - +python3 ./qwen_omni/decode.py \ +--max-duration 1 \ +--exp-dir $exp_dir \ +--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \ +--llm-path-or-name models/Qwen2.5-0.5B-Instruct \ +--epoch 999 --avg 1 \ +--manifest-dir data/fbank \ +--use-flash-attn True \ +--method e2e-epoch10_speech2speech \ +--enable-speech-output True \ +--token2wav-path models/CosyVoice-300M-SFT \ +--use-lora True +""" + +import argparse +import logging +import sys +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import soundfile as sf +import torch +import torch.nn as nn +import transformers +import whisper +from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2 +from cosyvoice.utils.file_utils import load_wav +from data_module import AsrDataModule +from lhotse.cut import Cut +from model import SPEECH_LLM, EncoderProjector +from peft import LoraConfig, get_peft_model +from train import DEFAULT_SPEECH_TOKEN, add_model_arguments +from transformers import AutoModelForCausalLM, AutoTokenizer, Qwen2Config +from utils import AttributeDict, setup_logger, store_transcripts, write_error_stats +from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward + +sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS") + + +def audio_decode_cosyvoice2( + audio_tokens, prompt_text, prompt_speech_16k, codec_decoder +): + """ + Generate audio from tokens with optional tone and prompt embedding. + + Args: + audio_tokens (list): List of audio tokens to be processed. + model_config: Configuration object containing vocab settings. + codec_decoder: Codec decoder for generating audio. + tone_dir (str): The tone directory or setting. + audio_prompt_path (str, optional): Path to the audio prompt file. Required when tone_dir is not "default_tone". + code_layer (int, optional): Number of code layers. Defaults to 1. + num_latency_tokens (int, optional): Number of latency tokens to ignore. Defaults to 0. + speed (float, optional): Speed factor for audio generation. Defaults to 1.0. + + Returns: + torch.Tensor: Generated audio waveform. + """ + model_inputs_dict = codec_decoder.frontend.frontend_zero_shot( + "empty", prompt_text, prompt_speech_16k, 24000 + ) + tts_mel, _ = codec_decoder.model.flow.inference( + token=audio_tokens.to(codec_decoder.model.device), + token_len=torch.tensor([audio_tokens.shape[1]], dtype=torch.int32).to( + codec_decoder.model.device + ), + prompt_token=model_inputs_dict["flow_prompt_speech_token"].to( + codec_decoder.model.device + ), + prompt_token_len=torch.tensor( + [model_inputs_dict["flow_prompt_speech_token_len"]], dtype=torch.int32 + ).to(codec_decoder.model.device), + prompt_feat=model_inputs_dict["prompt_speech_feat"].to( + codec_decoder.model.device + ), + prompt_feat_len=model_inputs_dict["prompt_speech_feat_len"].to( + codec_decoder.model.device + ), + embedding=model_inputs_dict["flow_embedding"].to(codec_decoder.model.device), + finalize=True, + ) + + audio_hat, _ = codec_decoder.model.hift.inference( + speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0) + ) + + return audio_hat + + +def audio_decode_cosyvoice(audio_tokens, codec_decoder): + """ + Generate audio from tokens with optional tone and prompt embedding. + + Args: + audio_tokens (list): List of audio tokens to be processed. + codec_decoder: Codec decoder for generating audio. + + Returns: + torch.Tensor: Generated audio waveform. + """ + flow_embedding = codec_decoder.frontend.spk2info["中文女"]["embedding"] + flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32) + prompt_speech_feat = torch.zeros(1, 0, 80) + tts_mel, _ = codec_decoder.model.flow.inference( + token=audio_tokens.to(codec_decoder.model.device), + token_len=torch.tensor([audio_tokens.shape[1]], dtype=torch.int32).to( + codec_decoder.model.device + ), + prompt_token=flow_prompt_speech_token.to(codec_decoder.model.device), + prompt_token_len=torch.tensor( + [flow_prompt_speech_token.shape[1]], dtype=torch.int32 + ).to(codec_decoder.model.device), + prompt_feat=prompt_speech_feat.to(codec_decoder.model.device), + prompt_feat_len=torch.tensor( + [prompt_speech_feat.shape[1]], dtype=torch.int32 + ).to(codec_decoder.model.device), + embedding=flow_embedding.to(codec_decoder.model.device), + flow_cache=torch.zeros(1, 80, 0, 2).to(codec_decoder.model.device), + ) + + audio_hat, _ = codec_decoder.model.hift.inference( + speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0) + ) + + return audio_hat + + +def get_model(params, device): + """Load and prepare the speech-to-speech model.""" + if params.remove_whisper_encoder_input_length_restriction: + replace_whisper_encoder_forward() + + whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu") + speech_encoder = whisper_model.encoder + speech_encoder_dim = whisper_model.dims.n_audio_state + tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name) + + if params.use_flash_attn: + attn_implementation = "flash_attention_2" + # torch_dtype=torch.bfloat16 FIX ME + torch_dtype = torch.float16 + tokenizer.padding_side = "left" + + else: + attn_implementation = "eager" + torch_dtype = torch.float16 + tokenizer.padding_side = "right" + + llm = AutoModelForCausalLM.from_pretrained( + params.llm_path_or_name, + attn_implementation=attn_implementation, + torch_dtype=torch_dtype, + ) + if params.use_lora: + lora_config = LoraConfig( + r=64, + lora_alpha=16, + target_modules=[ + "q_proj", + "k_proj", + "v_proj", + "o_proj", + "up_proj", + "gate_proj", + "down_proj", + ], + task_type="CAUSAL_LM", + ) + llm = get_peft_model(llm, lora_config) + llm.print_trainable_parameters() + + special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]} + tokenizer.add_special_tokens(special_tokens_dict) + llm.config.pad_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>") + llm.config.bos_token_id = tokenizer.convert_tokens_to_ids("<|im_start|>") + llm.config.eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>") + + llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids( + DEFAULT_SPEECH_TOKEN + ) + + encoder_projector = EncoderProjector( + speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate + ) + + if params.enable_speech_output: + # Determine attn_implementation and torch_dtype based on use_flash_attn + if params.use_flash_attn: + attn_implementation = "flash_attention_2" + torch_dtype = torch.float16 # Or torch.bfloat16 if needed/supported + else: + attn_implementation = "eager" + torch_dtype = torch.float16 + + # TODO: FIX ME + # codec_vocab_size = 4096 + 4 + codec_vocab_size = 6561 + 4 + config = Qwen2Config( + vocab_size=codec_vocab_size, + hidden_size=1024, + num_hidden_layers=12, + num_attention_heads=16, + num_key_value_heads=16, + intermediate_size=2048, + max_position_embeddings=4096, + ) + + codec_lm = AutoModelForCausalLM.from_config( + config=config, + attn_implementation=attn_implementation, + torch_dtype=torch_dtype, + ) + + codec_lm.resize_token_embeddings(codec_vocab_size) + codec_lm.vocab_size = codec_vocab_size + codec_lm.config.pad_token_id = codec_vocab_size - 1 + codec_lm.config.eos_token_id = codec_vocab_size - 2 + codec_lm.config.bos_token_id = codec_vocab_size - 3 + codec_lm.config.mask_token_id = codec_vocab_size - 4 + else: + codec_lm = None + + model = SPEECH_LLM( + speech_encoder, + llm, + encoder_projector, + codec_lm, + codec_lm_padding_side="left" if params.use_flash_attn else "right", + ) + + if params.avg > 1: + start = params.epoch - params.avg + 1 + assert start >= 1, start + checkpoint = torch.load( + f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu" + ) + assert "model" not in checkpoint + # deepspeed converted checkpoint only contains model state_dict + filenames = [ + f"{params.exp_dir}/epoch-{epoch}.pt" + for epoch in range(start, params.epoch + 1) + ] + avg_checkpoint = average_checkpoints(filenames) + model.load_state_dict(avg_checkpoint, strict=False) + + filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt" + torch.save(avg_checkpoint, filename) + else: + checkpoint = torch.load( + f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu" + ) + model.load_state_dict(checkpoint, strict=False) + + model.to(device) + model.eval() + return model, tokenizer + + +def average_checkpoints( + filenames: List[Path], device: torch.device = torch.device("cpu") +) -> dict: + """Average a list of checkpoints. + The function is mainly used for deepspeed converted checkpoint averaging, which only include model state_dict. + + Args: + filenames: + Filenames of the checkpoints to be averaged. We assume all + checkpoints are saved by :func:`save_checkpoint`. + device: + Move checkpoints to this device before averaging. + Returns: + Return a dict (i.e., state_dict) which is the average of all + model state dicts contained in the checkpoints. + """ + n = len(filenames) + + if "model" in torch.load(filenames[0], map_location=device): + avg = torch.load(filenames[0], map_location=device)["model"] + else: + avg = torch.load(filenames[0], map_location=device) + + # Identify shared parameters. Two parameters are said to be shared + # if they have the same data_ptr + uniqued: Dict[int, str] = dict() + + for k, v in avg.items(): + v_data_ptr = v.data_ptr() + if v_data_ptr in uniqued: + continue + uniqued[v_data_ptr] = k + + uniqued_names = list(uniqued.values()) + + for i in range(1, n): + if "model" in torch.load(filenames[i], map_location=device): + state_dict = torch.load(filenames[i], map_location=device)["model"] + else: + state_dict = torch.load(filenames[i], map_location=device) + for k in uniqued_names: + avg[k] += state_dict[k] + + for k in uniqued_names: + if avg[k].is_floating_point(): + avg[k] /= n + else: + avg[k] //= n + + return avg + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=-1, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + parser.add_argument( + "--avg", + type=int, + default=1, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + + parser.add_argument( + "--method", + type=str, + default="beam-search", + help="""Decoding method. + Supported values are: + - beam-search + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=1, + help="beam size for beam search decoding", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="whisper/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--token2wav-path", + type=str, + default="/workspace/CosyVoice-300M-SFT", + help="The path to the token2wav model", + ) + + parser.add_argument( + "--prompt_text", + type=str, + default="Romeo and Juliet might be the most famous act of William Shakespeare.", + help="The prompt text", + ) + + parser.add_argument( + "--prompt_speech_path", + type=str, + default="./assets/common_voice_en_2586258.wav", + help="The path to the prompt speech", + ) + + add_model_arguments(parser) + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict({}) + return params + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + tokenizer: AutoTokenizer, + token2wav_model: nn.Module, + batch: dict, +) -> Dict[str, List[List[int]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: "beam-search" + - value: A list of lists. Each sublist is a list of token IDs. + Args: + params: + It is returned by :func:`get_params`. + model: + The neural model. + batch: + It is returned by :meth:`torch.utils.data.DataLoader.__iter__`. + Returns: + Return a dict, whose key may be "beam-search". + """ + + def preprocess( + messages, + tokenizer: transformers.PreTrainedTokenizer, + ) -> Dict: + """Preprocesses the data for supervised fine-tuning.""" + texts = [] + TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{''}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}" + for i, msg in enumerate(messages): + texts.append( + tokenizer.apply_chat_template( + msg, + tokenize=True, + add_generation_prompt=False, + chat_template=TEMPLATE, + padding="longest", + truncation=False, + ) + ) + max_len_texts = max([len(text) for text in texts]) + if tokenizer.padding_side == "right": + texts = [ + text + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + for text in texts + ] + else: + texts = [ + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + text + for text in texts + ] + + input_ids = torch.tensor(texts, dtype=torch.int) + + attention_mask = input_ids.ne(tokenizer.pad_token_id) + + return input_ids, attention_mask + + dtype = torch.float32 + device = model.llm.device + + feature = batch["inputs"] + assert feature.ndim == 3 + feature = feature.to(device, dtype=dtype).transpose(1, 2) + if not params.remove_whisper_encoder_input_length_restriction: + T = 3000 + if feature.shape[2] < T: + feature = torch.cat( + [ + feature, + torch.zeros( + feature.shape[0], feature.shape[1], T - feature.shape[2] + ).to(device, dtype=dtype), + ], + 2, + ) + + # chat_rounds = [cut.custom["round"] for cut in batch["supervisions"]["cut"]] + + # questions_with_history = [ + # cut.custom["question"] for cut in batch["supervisions"]["cut"] + # ] + # history_contexts = [ + # question.rsplit(":", 1)[0].strip() for question in questions_with_history + # ] + # last_questions = [ + # question.split(": ")[-1].strip() for question in questions_with_history + # ] + # messages = [] + # for i, total_round in enumerate(chat_rounds): + # message = [] + # if total_round > 1: + # history_question_answer = history_contexts[i].split("USER:") + # history_question_answer = [item for item in history_question_answer if item] + # for j in range(total_round - 1): + # question_answer = history_question_answer[j].split("ASSISTANT:") + # message += [ + # {"role": "user", "content": question_answer[0].strip()}, + # {"role": "assistant", "content": question_answer[1].strip()}, + # ] + # message += [ + # {"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"}, + # {"role": "assistant", "content": ""}, + # ] + # print(f"message: {message}, batch_size {len(chat_rounds)}") + # messages.append(message) + messages = [] + for i in range(len(batch["supervisions"]["cut"])): + message = [ + {"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"}, + {"role": "assistant", "content": ""}, + ] + messages.append(message) + input_ids, attention_mask = preprocess(messages, tokenizer) + if params.enable_speech_output: + generated_ids, generated_speech_output = model.decode_with_speech_output( + feature, input_ids.to(device, dtype=torch.long), attention_mask.to(device) + ) + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + generated_speech_output = [ + generated_speech_output + ] # WAR: only support batch = 1 for now + for cut_id, audio_tokens in zip(cut_ids, generated_speech_output): + speech_file_name = params.log_dir / f"{cut_id}.wav" + # audio_tokens = [token for token in audio_tokens if token < 4096] + audio_tokens = torch.tensor(audio_tokens, dtype=torch.int32).unsqueeze(0) + if "CosyVoice2" in params.token2wav_path: + prompt_speech_16k = load_wav(params.prompt_speech_path, 16000) + audio_hat = audio_decode_cosyvoice2( + audio_tokens, + params.prompt_text, + prompt_speech_16k, + token2wav_model, + ) + sf.write(speech_file_name, audio_hat.squeeze(0).cpu().numpy(), 24000) + else: + audio_hat = audio_decode_cosyvoice(audio_tokens, token2wav_model) + sf.write(speech_file_name, audio_hat.squeeze(0).cpu().numpy(), 22050) + else: + generated_ids = model.decode( + feature, input_ids.to(device, dtype=torch.long), attention_mask.to(device) + ) + hyps = tokenizer.batch_decode(generated_ids, skip_special_tokens=False) + print(f"hyps: {hyps}") + return {"beam-search": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + tokenizer: AutoTokenizer, + token2wav_model: nn.Module, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + The dataloader. + params: + It is returned by :func:`get_params`. + model: + The neural model. + Returns: + Return a dict, whose key may be "beam-search". + """ + results = [] + + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + # questions_with_history = [ + # cut.custom["question"] for cut in batch["supervisions"]["cut"] + # ] + # texts = [ + # question.split(": ")[-1].strip() + # for question in questions_with_history + # ] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + token2wav_model=token2wav_model, + batch=batch, + tokenizer=tokenizer, + ) + + for lm_scale, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + print(f"ref: {ref_text}") + print(f"hyp: {''.join(hyp_words)}") + this_batch.append((cut_id, ref_words, hyp_words)) + + results[lm_scale].extend(this_batch) + + num_cuts += len(batch["supervisions"]["text"]) + + if batch_idx % 100 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + + enable_log = True + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.log_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + if enable_log: + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.log_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results_char = [] + for res in results: + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results_char, enable_log=enable_log + ) + test_set_wers[key] = wer + + if enable_log: + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = params.log_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt" + with open(errs_info, "w") as f: + print("settings\tCER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, CER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + AsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + params.log_dir = Path(params.exp_dir) / f"log-{params.method}" + params.log_dir.mkdir(parents=True, exist_ok=True) + setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode-{params.suffix}") + + logging.info("Decoding started") + logging.info(params) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda") + + logging.info(f"device: {device}") + + model, tokenizer = get_model(params, device) + if "CosyVoice2" in params.token2wav_path: + token2wav_model = CosyVoice2( + params.token2wav_path, load_jit=False, load_trt=False, fp16=False + ) + else: + token2wav_model = CosyVoice( + params.token2wav_path, load_jit=False, load_trt=False, fp16=False + ) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + args.return_cuts = True + data_module = AsrDataModule(args) + + def remove_long_utt(c: Cut): + # Keep only utterances with duration in 30 seconds + # + if c.duration > 30.0: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + ) + return False + return True + + # TODO: FIX ME + # test_sets_cuts = data_module.test_cuts_belle() + test_sets_cuts = data_module.test_cuts_en_vocalnet() + test_sets = test_sets_cuts.keys() + test_dls = [ + data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_long_utt)) + for cuts_name in test_sets + ] + + for test_set, test_dl in zip(test_sets, test_dls): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + token2wav_model=token2wav_model, + tokenizer=tokenizer, + ) + + save_results(params=params, test_set_name=test_set, results_dict=results_dict) + + logging.info("Done!") + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/decode_dist.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/decode_dist.py new file mode 100644 index 000000000..dd69fce10 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/decode_dist.py @@ -0,0 +1,256 @@ +# Copyright (c) 2024 Tsinghua Univ. (authors: Xingchen Song) +# 2025 (authors: Yuekai Zhang) +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# Modified from https://github.com/xingchensong/S3Tokenizer/blob/main/s3tokenizer/cli.py +""" Example Usage +split=test_zh +llm_path=f5-tts/exp_zh/checkpoint-805000 +huggingface-cli download --local-dir f5-tts-small-wenetspeech4tts-basic yuekai/f5-tts-semantic-token-small-wenetspeech4tts-basic +model_path=f5-tts-small-wenetspeech4tts-basic/epoch-10-avg-5.pt +huggingface-cli download nvidia/bigvgan_v2_24khz_100band_256x --local-dir ./bigvgan_v2_24khz_100band_256x +vocoder=./bigvgan_v2_24khz_100band_256x +torchrun --nproc_per_node=2 \ + f5-tts/infer_dist.py \ + --output_dir $output_dir \ + --batch_size 1 \ + --num_workers 2 \ + --llm-model-name-or-path $llm_path \ + --flow-matching-model-path $model_path \ + --decoder-dim 768 --nhead 12 --num-decoder-layers 18 \ + --use-cosyvoice-semantic-token True \ + --vocoder-dir $vocoder \ + --split-name $split -top-k 50 -top-p 0.95 -temperature 0.8 \ + --tokenizer-dir Qwen/Qwen2.5-0.5B-Instruct +""" + +import argparse +import json +import os +from pathlib import Path + +import torch +import torch.distributed as dist +import torch.nn.functional as F +import whisper +from datasets import load_dataset +from torch.utils.data import DataLoader, Dataset, DistributedSampler +from tqdm import tqdm +from train import DEFAULT_SPEECH_TOKEN, add_model_arguments +from transformers import AutoTokenizer +from web_demo import get_model +from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward + +# https://github.com/FunAudioLLM/CosyVoice/tree/main/third_party +# sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS") +try: + torch.multiprocessing.set_start_method("spawn") +except RuntimeError: + pass + + +def get_args(): + parser = argparse.ArgumentParser(description="extract speech code") + parser.add_argument( + "--split-name", + type=str, + default="test", + help="huggingface dataset split name", + ) + parser.add_argument( + "--subset-name", + type=str, + default="commoneval", + help="subset name", + ) + parser.add_argument( + "--output-dir", required=True, type=str, help="dir to save result" + ) + parser.add_argument( + "--batch-size", + type=int, + default=1, + help="batch size (per-device) for inference", + ) + parser.add_argument( + "--num-workers", type=int, default=2, help="workers for dataloader" + ) + parser.add_argument( + "--prefetch", type=int, default=2, help="prefetch for dataloader" + ) + parser.add_argument( + "--checkpoint-path", + type=str, + default=None, + help="Checkpoint name or path, default to %(default)r", + ) + # parser.add_argument( + # "--top-k", + # type=int, + # default=50, + # help="top k for sampling", + # ) + # parser.add_argument( + # "--top-p", + # type=float, + # default=0.95, + # help="top p for sampling", + # ) + # parser.add_argument( + # "--temperature", + # type=float, + # default=0.8, + # help="temperature for sampling", + # ) + add_model_arguments(parser) + args = parser.parse_args() + return args + + +def init_distributed(): + world_size = int(os.environ.get("WORLD_SIZE", 1)) + local_rank = int(os.environ.get("LOCAL_RANK", 0)) + rank = int(os.environ.get("RANK", 0)) + print( + "Inference on multiple gpus, this gpu {}".format(local_rank) + + ", rank {}, world_size {}".format(rank, world_size) + ) + torch.cuda.set_device(local_rank) + dist.init_process_group("nccl") + return world_size, local_rank, rank + + +def preprocess( + messages, + tokenizer, +): + """Preprocesses the data for supervised fine-tuning.""" + texts = [] + TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{''}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}" + for i, msg in enumerate(messages): + texts.append( + tokenizer.apply_chat_template( + msg, + tokenize=True, + add_generation_prompt=False, + chat_template=TEMPLATE, + padding="longest", + truncation=False, + ) + ) + max_len_texts = max([len(text) for text in texts]) + if tokenizer.padding_side == "right": + texts = [ + text + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + for text in texts + ] + else: + texts = [ + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + text + for text in texts + ] + + input_ids = torch.tensor(texts, dtype=torch.int) + + attention_mask = input_ids.ne(tokenizer.pad_token_id) + + return input_ids, attention_mask + + +def custom_collate(batch): + assert len(batch) == 1 + audio = batch[0]["audio"] + assert audio["sampling_rate"] == 16000 + result = {"audio": audio["array"]} + for keys in batch[0].keys(): + if keys != "audio": + result[keys] = batch[0][keys] + return result + + +def main(): + args = get_args() + os.makedirs(args.output_dir, exist_ok=True) + + assert torch.cuda.is_available() + world_size, local_rank, rank = init_distributed() + device = torch.device(f"cuda:{local_rank}") + + dataset = load_dataset( + "hlt-lab/voicebench", + args.subset_name, + split=args.split_name, + trust_remote_code=True, + ) + + model, tokenizer = get_model(args) + # tokenizer = AutoTokenizer.from_pretrained(args.llm_path_or_name) + sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank) + + dataloader = DataLoader( + dataset, + batch_size=args.batch_size, + sampler=sampler, + shuffle=False, + num_workers=args.num_workers, + prefetch_factor=args.prefetch, + collate_fn=custom_collate, + ) + + total_steps = len(dataset) + + if rank == 0: + progress_bar = tqdm(total=total_steps, desc="Processing", unit="wavs") + + message = [ + {"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"}, + {"role": "assistant", "content": ""}, + ] + input_ids, attention_mask = preprocess([message], tokenizer) + results_jsonl_file = open( + os.path.join( + args.output_dir, + f"results-{args.subset_name}-{args.split_name}-{rank}-audio.jsonl", + ), + "w", + ) + for batch in dataloader: + audio = batch["audio"] + audio = torch.from_numpy(audio).to(device).to(torch.float32) + fbank = whisper.log_mel_spectrogram(audio, device=device) + fbank = fbank.unsqueeze(0) + generated_ids = model.decode( + fbank, input_ids.to(device, dtype=torch.long), attention_mask.to(device) + ) + hyps = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) + + result_dict = {} + for key in batch.keys(): + if key != "audio": + result_dict[key] = batch[key] + result_dict["response"] = hyps[0] + json.dump(result_dict, results_jsonl_file) + results_jsonl_file.write("\n") + + if rank == 0: + progress_bar.update(world_size * args.batch_size) + + if rank == 0: + progress_bar.close() + + dist.barrier() + dist.destroy_process_group() + + +if __name__ == "__main__": + main() diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/decode_tts.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/decode_tts.py new file mode 100755 index 000000000..c9383232c --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/decode_tts.py @@ -0,0 +1,310 @@ +#!/usr/bin/env python3 +# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang) +# 2024 Yuekai Zhang +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +# For Chinese dataset, you can use the following command to download the Chinese fine-tuned whisper model. +huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper +# Qwen Pretrained model +huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct + +torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \ + --max-duration 50 \ + --enable-musan False \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \ + --llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \ + --manifest-dir data/fbank \ + --deepspeed \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True \ + --use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True +""" + +import argparse +import copy +import logging +import os +import random +import sys +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple, Union + +import soundfile as sf +import torch +import torch.multiprocessing as mp +import torch.nn as nn +import transformers +from cosyvoice.cli.cosyvoice import CosyVoice2 +from datasets import Audio, load_dataset +from decode import audio_decode_cosyvoice2 +from label_smoothing import LabelSmoothingLoss +from lhotse.utils import fix_random_seed +from model import IGNORE_TOKEN_ID, SPEECH_LLM +from peft import LoraConfig, get_peft_model +from torch import Tensor +from torch.utils.data import DataLoader, DistributedSampler +from torch.utils.tensorboard import SummaryWriter +from train import add_model_arguments, add_training_arguments, get_model, get_params +from transformers import ( + AutoModelForCausalLM, + AutoTokenizer, + Qwen2Config, + Qwen2ForCausalLM, +) +from utils import ( # filter_uneven_sized_batch, + AttributeDict, + MetricsTracker, + get_local_rank, + get_rank, + get_world_size, + setup_logger, + str2bool, +) + +# sys.path.append("/lustre/fsw/general_sa/yuekaiz/s2s/CosyVoice/third_party/Matcha-TTS") +sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS") +DEFAULT_SPEECH_TOKEN = "" +try: + torch.multiprocessing.set_start_method("spawn") +except RuntimeError: + pass + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--batch-size", + type=int, + default=1, + help="The batch size to use.", + ) + + parser.add_argument( + "--split-name", + type=str, + default="test_en", + choices=["wenetspeech4tts", "test_zh", "test_en", "test_hard"], + help="huggingface dataset split name", + ) + parser.add_argument( + "--token2wav-path", + type=str, + default="/workspace/CosyVoice-300M-SFT", + help="The path to the token2wav model", + ) + + add_model_arguments(parser) + add_training_arguments(parser) + + return parser + + +def preprocess( + messages, + tokenizer: transformers.PreTrainedTokenizer, +) -> Dict: + """Preprocesses the data for supervised fine-tuning.""" + texts = [] + TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}" + for i, msg in enumerate(messages): + texts.append( + tokenizer.apply_chat_template( + msg, + tokenize=True, + chat_template=TEMPLATE, + add_generation_prompt=False, + padding="longest", # FIX me change padding to longest + truncation=False, + ) + ) + if len(texts) != len(messages): + logging.warning(f"Remove too long text, {messages} ") + max_len_texts = max([len(text) for text in texts]) + if tokenizer.padding_side == "right": + texts = [ + text + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + for text in texts + ] + else: + texts = [ + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + text + for text in texts + ] + input_ids = torch.tensor(texts, dtype=torch.int) + + target_ids = input_ids.clone() + target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID + # mask all tokens before token_id with IGNORE_TOKEN_ID + # first get the indices of the tokens + mask_prompt = True + if mask_prompt: + default_speech_token_id = tokenizer.convert_tokens_to_ids(DEFAULT_SPEECH_TOKEN) + mask_indices = torch.where(input_ids == default_speech_token_id) + for i in range(mask_indices[0].size(0)): + row = mask_indices[0][i] + col = mask_indices[1][i] + # + 2 to skip: 'assistant', '\n' + # WAR: TODO FIXME check qwen3 + # THIS IS THE ONLY DIFFERENCE FROM preprocess + target_ids[row, : col + 6] = IGNORE_TOKEN_ID + target_ids[row, col] = default_speech_token_id + # remove default_speech_token_id from target_ids and input_ids + batch_size = target_ids.size(0) + + target_ids = target_ids[target_ids != default_speech_token_id].view(batch_size, -1) + input_ids = input_ids[input_ids != default_speech_token_id].view(batch_size, -1) + + attention_mask = input_ids.ne(tokenizer.pad_token_id) + return input_ids, attention_mask, target_ids + + +def data_collator(batch): + prompt_texts, prompt_speech_16k, messages, ids, target_texts = [], [], [], [], [] + for i, item in enumerate(batch): + # speech_tokens.append(item["prompt_audio_cosy2_tokens"]) + message_list_item = [] + message_list_item += [ + { + "role": "user", + "content": f"Generate a speech from the following text:\n\n{item['target_text']}{DEFAULT_SPEECH_TOKEN}", + }, + {"role": "assistant", "content": ""}, + ] + messages.append(message_list_item) + target_texts.append(item["target_text"]) + + ids.append(item["id"]) + prompt_texts.append(item["prompt_text"]) + speech_org = item["prompt_audio"] + + speech_org = torch.tensor(speech_org["array"], dtype=torch.float32).unsqueeze(0) + speech_org = speech_org.mean(dim=0, keepdim=True) + prompt_speech_16k.append(speech_org) + + # resample to 16k + + return { + "prompt_texts": prompt_texts, + "target_texts": target_texts, + "prompt_speech_16k": prompt_speech_16k, + "messages": messages, + "ids": ids, + } + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + params.log_dir = Path(params.exp_dir) / "log-results-wav" + params.log_dir.mkdir(parents=True, exist_ok=True) + + fix_random_seed(params.seed) + + if rank == 0: + setup_logger(f"{params.exp_dir}/log/log-decode-tts") + logging.info(params) + logging.info("About to create model") + model, tokenizer = get_model(params) + if torch.cuda.is_available(): + device = torch.device("cuda", get_local_rank()) + else: + device = torch.device("cpu") + logging.info(f"Device: {device}") + model.to(device) + + dataset = load_dataset("yuekai/seed_tts_cosy2", split=params.split_name) + dataset = dataset.cast_column("prompt_audio", Audio(sampling_rate=16000)) + + sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank) + data_loader = DataLoader( + dataset, + batch_size=params.batch_size, + sampler=sampler, + shuffle=False, + num_workers=1, + prefetch_factor=1, + collate_fn=data_collator, + ) + token2wav_model = CosyVoice2( + params.token2wav_path, load_jit=False, load_trt=False, fp16=False + ) + for batch in data_loader: + messages = batch["messages"] + prompt_texts = batch["prompt_texts"] + prompt_speech_16k = batch["prompt_speech_16k"] + target_texts = batch["target_texts"] + ids = batch["ids"] + input_ids, attention_mask, _ = preprocess(messages, tokenizer) + generated_ids, generated_speech_output = model.decode_with_speech_output( + None, input_ids.to(device, dtype=torch.long), attention_mask.to(device) + ) + generated_speech_output = [ + generated_speech_output + ] # WAR: only support batch = 1 for now + for cut_id, audio_tokens, prompt_text, prompt_speech, target_text in zip( + ids, generated_speech_output, prompt_texts, prompt_speech_16k, target_texts + ): + speech_file_name = params.log_dir / f"{cut_id}.wav" + # save target_text to file + with open(params.log_dir / f"{cut_id}.txt", "w") as f: + f.write(f"{target_text}\n") + audio_tokens = torch.tensor(audio_tokens, dtype=torch.int32).unsqueeze(0) + if "CosyVoice2" in params.token2wav_path: + audio_hat = audio_decode_cosyvoice2( + audio_tokens, + prompt_text, + prompt_speech, + token2wav_model, + ) + sf.write(speech_file_name, audio_hat.squeeze(0).cpu().numpy(), 24000) + + logging.info("Done!") + + +def main(): + parser = get_parser() + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = get_world_size() + rank = get_rank() + + torch.set_num_threads(1) + # torch.set_num_interop_threads(1) + warnings.filterwarnings("ignore", category=FutureWarning) + run(rank=rank, world_size=world_size, args=args) + + +if __name__ == "__main__": + main() diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/ds_config_zero1.json b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/ds_config_zero1.json new file mode 120000 index 000000000..4fbacea32 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/ds_config_zero1.json @@ -0,0 +1 @@ +../../ASR_LLM/whisper_llm_zh/ds_config_zero1.json \ No newline at end of file diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/label_smoothing.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/label_smoothing.py new file mode 120000 index 000000000..e9d239fff --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/label_smoothing.py @@ -0,0 +1 @@ +../../../librispeech/ASR/conformer_ctc/label_smoothing.py \ No newline at end of file diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/model.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/model.py new file mode 100644 index 000000000..baec602bb --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/model.py @@ -0,0 +1,838 @@ +from typing import List, Tuple + +import torch +from torch import nn +from torchmetrics.classification import MulticlassAccuracy +from transformers.trainer_pt_utils import LabelSmoother + +IGNORE_TOKEN_ID = LabelSmoother.ignore_index +import logging + + +class EncoderProjector(nn.Module): + """ + The encoder projector module. It is used to project the encoder outputs to the same dimension as the language model. + Modified from https://github.com/X-LANCE/SLAM-LLM/blob/main/src/slam_llm/models/projector.py. + Args: + encoder_dim (:obj:`int`): The dimension of the encoder outputs. + llm_dim (:obj:`int`): The dimension of the language model. + downsample_rate (:obj:`int`, `optional`, defaults to 5): The downsample rate to use. + """ + + def __init__(self, encoder_dim, llm_dim, downsample_rate=5): + super().__init__() + self.downsample_rate = downsample_rate + self.linear1 = nn.Linear(encoder_dim * self.downsample_rate, llm_dim) + self.relu = nn.ReLU() + self.linear2 = nn.Linear(llm_dim, llm_dim) + + def forward(self, x): + + batch_size, seq_len, feat_dim = x.size() + num_frames_to_discard = seq_len % self.downsample_rate + if num_frames_to_discard > 0: + x = x[:, :-num_frames_to_discard, :] + seq_len = x.size(1) + + x = x.contiguous() + x = x.view( + batch_size, seq_len // self.downsample_rate, feat_dim * self.downsample_rate + ) + + x = self.linear1(x) + x = self.relu(x) + x = self.linear2(x) + return x + + +class SPEECH_LLM(nn.Module): + """ + The Speech-to-Text model. It consists of an encoder, a language model and an encoder projector. + The encoder is used to extract speech features from the input speech signal. + The encoder projector is used to project the encoder outputs to the same dimension as the language model. + The language model is used to generate the text from the speech features. + Args: + encoder (:obj:`nn.Module`): The encoder module. + llm (:obj:`nn.Module`): The language model module. + encoder_projector (:obj:`nn.Module`): The encoder projector module. + """ + + def __init__( + self, + encoder: nn.Module = None, + llm: nn.Module = None, + encoder_projector: nn.Module = None, + codec_lm: nn.Module = None, + codec_lm_padding_side: str = "left", + teacher_llm: nn.Module = None, + kl_temperature: float = 2.0, + ): + super().__init__() + self.encoder = encoder + self.llm = llm + self.encoder_projector = encoder_projector + self.codec_lm = codec_lm + if self.codec_lm: + self.speech_token_projector = nn.Linear( + self.llm.config.hidden_size + self.llm.config.hidden_size, + self.codec_lm.config.hidden_size, + ) + self.codec_lm_head = nn.Linear( + self.codec_lm.config.hidden_size, self.codec_lm.config.vocab_size + ) + self.speech_token_projector = self.speech_token_projector.to( + dtype=torch.float16 + ) + self.codec_lm_head = self.codec_lm_head.to(dtype=torch.float16) + self.loss_fct = torch.nn.CrossEntropyLoss() + self.codec_lm_padding_side = codec_lm_padding_side + + self.audio_accuracy_metric = MulticlassAccuracy( + self.codec_lm.vocab_size, + top_k=10, + average="micro", + multidim_average="global", + ignore_index=IGNORE_TOKEN_ID, + ) + if teacher_llm is not None: + self.teacher_llm = teacher_llm + self.kl_temperature = kl_temperature + + def _merge_input_ids_with_speech_features( + self, speech_features, inputs_embeds, input_ids, attention_mask, labels=None + ): + """ + Merge the speech features with the input_ids and attention_mask. This is done by replacing the speech tokens + with the speech features and padding the input_ids to the maximum length of the speech features. + Modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py#L277. + Args: + speech_features (:obj:`torch.Tensor`): The speech features to merge with the input_ids. + inputs_embeds (:obj:`torch.Tensor`): The embeddings of the input_ids. + input_ids (:obj:`torch.Tensor`): The input ids to merge. + attention_mask (:obj:`torch.Tensor`): The attention mask to merge. + labels (:obj:`torch.Tensor`, `optional`): The labels to merge. + Returns: + :obj:`Tuple(torch.Tensor)`: The merged embeddings, attention mask, labels and position ids. + """ + num_speechs, speech_len, embed_dim = speech_features.shape + batch_size, sequence_length = input_ids.shape + left_padding = not torch.sum( + input_ids[:, -1] == torch.tensor(self.llm.config.pad_token_id) + ) + # 1. Create a mask to know where special speech tokens are + special_speech_token_mask = input_ids == self.llm.config.default_speech_token_id + num_special_speech_tokens = torch.sum(special_speech_token_mask, dim=-1) + # Compute the maximum embed dimension + max_embed_dim = ( + num_special_speech_tokens.max() * (speech_len - 1) + ) + sequence_length + batch_indices, non_speech_indices = torch.where( + input_ids != self.llm.config.default_speech_token_id + ) + + # 2. Compute the positions where text should be written + # Calculate new positions for text tokens in merged speech-text sequence. + # `special_speech_token_mask` identifies speech tokens. Each speech token will be replaced by `nb_text_tokens_per_speechs - 1` text tokens. + # `torch.cumsum` computes how each speech token shifts subsequent text token positions. + # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. + new_token_positions = ( + torch.cumsum((special_speech_token_mask * (speech_len - 1) + 1), -1) - 1 + ) + nb_speech_pad = max_embed_dim - 1 - new_token_positions[:, -1] + if left_padding: + new_token_positions += nb_speech_pad[:, None] # offset for left padding + text_to_overwrite = new_token_positions[batch_indices, non_speech_indices] + + # 3. Create the full embedding, already padded to the maximum position + final_embedding = torch.zeros( + batch_size, + max_embed_dim, + embed_dim, + dtype=inputs_embeds.dtype, + device=inputs_embeds.device, + ) + final_attention_mask = torch.zeros( + batch_size, + max_embed_dim, + dtype=attention_mask.dtype, + device=inputs_embeds.device, + ) + if labels is not None: + final_labels = torch.full( + (batch_size, max_embed_dim), + IGNORE_TOKEN_ID, + dtype=input_ids.dtype, + device=input_ids.device, + ) + # In case the Vision model or the Language model has been offloaded to CPU, we need to manually + # set the corresponding tensors into their correct target device. + target_device = inputs_embeds.device + batch_indices, non_speech_indices, text_to_overwrite = ( + batch_indices.to(target_device), + non_speech_indices.to(target_device), + text_to_overwrite.to(target_device), + ) + attention_mask = attention_mask.to(target_device) + + # 4. Fill the embeddings based on the mask. If we have ["hey" "", "how", "are"] + # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the speech features + final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[ + batch_indices, non_speech_indices + ] + final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[ + batch_indices, non_speech_indices + ] + if labels is not None: + final_labels[batch_indices, text_to_overwrite] = labels[ + batch_indices, non_speech_indices + ] + + # 5. Fill the embeddings corresponding to the speechs. Anything that is not `text_positions` needs filling (#29835) + speech_to_overwrite = torch.full( + (batch_size, max_embed_dim), + True, + dtype=torch.bool, + device=inputs_embeds.device, + ) + speech_to_overwrite[batch_indices, text_to_overwrite] = False + speech_to_overwrite &= speech_to_overwrite.cumsum(-1) - 1 >= nb_speech_pad[ + :, None + ].to(target_device) + + if speech_to_overwrite.sum() != speech_features.shape[:-1].numel(): + raise ValueError( + f"The input provided to the model are wrong. The number of speech tokens is {torch.sum(special_speech_token_mask)} while" + f" the number of speech given to the model is {num_speechs}. This prevents correct indexing and breaks batch generation." + ) + + final_embedding[speech_to_overwrite] = ( + speech_features.contiguous().reshape(-1, embed_dim).to(target_device) + ) + final_attention_mask |= speech_to_overwrite + position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_( + (final_attention_mask == 0), 1 + ) + + # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens. + batch_indices, pad_indices = torch.where( + input_ids == self.llm.config.pad_token_id + ) + indices_to_mask = new_token_positions[batch_indices, pad_indices] + + final_embedding[batch_indices, indices_to_mask] = 0 + + if labels is None: + final_labels = None + + return final_embedding, final_attention_mask, final_labels, position_ids + + def forward( + self, + fbank: torch.Tensor = None, + input_ids: torch.LongTensor = None, + attention_mask: torch.Tensor = None, + labels: torch.LongTensor = None, + ): + encoder_outs = self.encoder(fbank) + + speech_features = self.encoder_projector(encoder_outs) + + inputs_embeds = self.llm.get_input_embeddings()(input_ids) + + ( + inputs_embeds, + attention_mask, + labels, + _, + ) = self._merge_input_ids_with_speech_features( + speech_features, inputs_embeds, input_ids, attention_mask, labels + ) + + model_outputs = self.llm( + inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels + ) + + with torch.no_grad(): + preds = torch.argmax(model_outputs.logits, -1) + acc = compute_accuracy( + preds.detach()[:, :-1], + labels.detach()[:, 1:], + ignore_label=IGNORE_TOKEN_ID, + ) + return model_outputs.loss, acc + + def forward_kl_div( + self, + fbank: torch.Tensor = None, + input_ids: torch.LongTensor = None, + attention_mask: torch.Tensor = None, + labels: torch.LongTensor = None, + teacher_input_ids: torch.LongTensor = None, + teacher_attention_mask: torch.Tensor = None, + teacher_labels: torch.LongTensor = None, + ): + encoder_outs = self.encoder(fbank) + + speech_features = self.encoder_projector(encoder_outs) + + inputs_embeds = self.llm.get_input_embeddings()(input_ids) + + ( + inputs_embeds, + attention_mask, + labels, + _, + ) = self._merge_input_ids_with_speech_features( + speech_features, inputs_embeds, input_ids, attention_mask, labels + ) + + model_outputs = self.llm( + inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels + ) + + teacher_outputs = self.teacher_llm( + input_ids=teacher_input_ids, + attention_mask=teacher_attention_mask, + ) + + kl_loss = torch.nn.functional.kl_div( + torch.nn.functional.log_softmax( + model_outputs.logits[labels != -100] / self.kl_temperature, + dim=-1, + ), + torch.nn.functional.softmax( + teacher_outputs.logits[teacher_labels != -100] / self.kl_temperature, + dim=-1, + ), + reduction="batchmean", + ) + + with torch.no_grad(): + preds = torch.argmax(model_outputs.logits, -1) + teacher_preds = torch.argmax(teacher_outputs.logits, -1) + acc = compute_accuracy( + preds.detach()[:, :-1], + labels.detach()[:, 1:], + ignore_label=IGNORE_TOKEN_ID, + ) + acc_teacher = compute_accuracy( + teacher_preds.detach()[:, :-1], + teacher_labels.detach()[:, 1:], + ignore_label=IGNORE_TOKEN_ID, + ) + return kl_loss, acc, acc_teacher + + def forward_with_speech_output( + self, + fbank: torch.Tensor = None, + input_ids: torch.LongTensor = None, + attention_mask: torch.Tensor = None, + labels: torch.LongTensor = None, + speech_codec_ids: torch.LongTensor = None, + ): + inputs_embeds = self.llm.get_input_embeddings()(input_ids) + if fbank is not None: + encoder_outs = self.encoder(fbank) + speech_features = self.encoder_projector(encoder_outs) + ( + inputs_embeds, + attention_mask, + labels, + _, + ) = self._merge_input_ids_with_speech_features( + speech_features, inputs_embeds, input_ids, attention_mask, labels + ) + + input_seq_len = attention_mask.sum(dim=1) # shape, B + ( + text_label_start_index_list, + text_input_start_index_list, + input_question_len_list, + ) = ([], [], []) + for i in range(labels.shape[0]): + input_embeds_valid_index = torch.where(attention_mask[i] != 0)[0] + input_embeds_start_index = input_embeds_valid_index[0] + text_labels_valid_index = torch.where(labels[i] != IGNORE_TOKEN_ID)[0] + text_labels_start_index = text_labels_valid_index[0] + + assert ( + input_seq_len[i] + == input_embeds_valid_index[-1] - input_embeds_start_index + 1 + ), f"input_seq_len: {input_seq_len[i]}, input_embeds_valid_index: {input_embeds_valid_index}, input_embeds_start_index: {input_embeds_start_index}" + assert ( + input_embeds_valid_index[-1] == text_labels_valid_index[-1] + ), f"input_embeds_valid_index: {input_embeds_valid_index}, text_labels_valid_index: {text_labels_valid_index}" + input_question_len = text_labels_start_index - input_embeds_start_index + assert ( + input_question_len + + text_labels_valid_index[-1] + - text_labels_start_index + + 1 + == input_seq_len[i] + ) + text_label_start_index_list.append(text_labels_start_index) + text_input_start_index_list.append(input_embeds_start_index) + input_question_len_list.append(input_question_len) + + model_outputs = self.llm( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + labels=labels, + output_hidden_states=True, + ) + text_loss = model_outputs.loss + delay_step = 1 + # prepare codec lm inputs + audio_codes_lens = [ + len(x) + input_question_len_list[i] + delay_step + 1 + for i, x in enumerate(speech_codec_ids) + ] + max_len_speech_codec = max(audio_codes_lens) + + if self.codec_lm_padding_side == "right": + audio_codes = [ + [self.codec_lm.config.mask_token_id] + * (input_question_len_list[i] + delay_step) + + [self.codec_lm.config.bos_token_id] + + x + + [self.codec_lm.config.pad_token_id] + * (max_len_speech_codec - audio_codes_lens[i]) + for i, x in enumerate(speech_codec_ids) + ] + audio_labels = [ + [self.codec_lm.config.pad_token_id] + * (input_question_len_list[i] + delay_step) + + x + + [self.codec_lm.config.eos_token_id] + + [self.codec_lm.config.pad_token_id] + * (max_len_speech_codec - audio_codes_lens[i]) + for i, x in enumerate(speech_codec_ids) + ] + elif self.codec_lm_padding_side == "left": + audio_codes = [ + [self.codec_lm.config.pad_token_id] + * (max_len_speech_codec - audio_codes_lens[i]) + + [self.codec_lm.config.mask_token_id] + * (input_question_len_list[i] + delay_step) + + [self.codec_lm.config.bos_token_id] + + x + for i, x in enumerate(speech_codec_ids) + ] + audio_labels = [ + [self.codec_lm.config.pad_token_id] + * (max_len_speech_codec - audio_codes_lens[i]) + + [self.codec_lm.config.pad_token_id] + * (input_question_len_list[i] + delay_step) + + x + + [self.codec_lm.config.eos_token_id] + for i, x in enumerate(speech_codec_ids) + ] + audio_codes = torch.tensor( + audio_codes, dtype=torch.int64, device=input_ids.device + ) + audio_labels = torch.tensor( + audio_labels, dtype=torch.int64, device=input_ids.device + ) + + audio_attention_mask = audio_codes.ne(self.codec_lm.config.pad_token_id) + audio_embeddings = self.codec_lm.get_input_embeddings()(audio_codes) + + # text_last_hidden_lists, text_embeds_list, text_input_embeds_list = [], [], [] + text_input_embeds_list = [] + for i in range(len(text_label_start_index_list)): + text_last_hidden = model_outputs.hidden_states[-1][ + i, + text_input_start_index_list[i] : text_input_start_index_list[i] + + input_seq_len[i] + - 1, + ] + # text_last_hidden_lists.append(text_last_hidden) + text_embed = inputs_embeds[ + i, + text_input_start_index_list[i] + + 1 : text_input_start_index_list[i] + + input_seq_len[i], + ] # exclude bos + # text_embeds_list.append(text_embed) + + text_input_embeds = torch.cat( + [ + text_last_hidden, + text_embed, + ], + dim=-1, + ) # shape, T, D1 + D2 + text_input_embeds = self.speech_token_projector( + text_input_embeds + ) # shape, T, D_codec + text_input_embeds_list.append(text_input_embeds) + + for i in range(audio_embeddings.shape[0]): + text_input_embeds = text_input_embeds_list[i] + if self.codec_lm_padding_side == "right": + audio_embeddings[i, : text_input_embeds.shape[0]] += text_input_embeds + elif self.codec_lm_padding_side == "left": + start_idx = torch.where( + audio_codes[i] == self.codec_lm.config.mask_token_id + )[0][0] + start_idx_re_compute = torch.where(audio_attention_mask[i] != 0)[0][0] + assert ( + start_idx == start_idx_re_compute + ), f"start_idx: {start_idx}, start_idx_re_compute: {start_idx_re_compute}" + if text_input_embeds.shape[0] > audio_embeddings.shape[1] - start_idx: + logging.warning( + f"Truncate text_input_embeds: {text_input_embeds.shape} to {audio_embeddings.shape[1] - start_idx}\naudio_codes_lens: {audio_codes_lens[i]}\ninput_question_len_list: {input_question_len_list[i]}\ninput_seq_len: {input_seq_len[i]}\n" + ) + # breakpoint() + text_input_embeds = text_input_embeds[ + : audio_embeddings.shape[1] - start_idx + ] + audio_embeddings[ + i, start_idx : start_idx + text_input_embeds.shape[0] + ] += text_input_embeds + + speech_outputs = self.codec_lm( + attention_mask=audio_attention_mask, + inputs_embeds=audio_embeddings, + return_dict=True, + output_hidden_states=True, + ) + last_hidden_state = speech_outputs.hidden_states[-1].clone() + + audio_logits = self.codec_lm_head(last_hidden_state) # shape, B, T, vocab_size + audio_logits = audio_logits.contiguous().view( + -1, self.codec_lm.config.vocab_size + ) + audio_labels = audio_labels.contiguous().view(-1) + audio_labels = audio_labels.masked_fill( + audio_labels == self.codec_lm.config.pad_token_id, IGNORE_TOKEN_ID + ) + codec_loss = self.loss_fct(audio_logits, audio_labels) + audio_preds = torch.argmax(audio_logits, -1) + + with torch.no_grad(): + preds = torch.argmax(model_outputs.logits, -1) + acc = compute_accuracy( + preds.detach()[:, :-1], + labels.detach()[:, 1:], + ignore_label=IGNORE_TOKEN_ID, + ) + audio_acc = compute_accuracy( + audio_preds.detach(), + audio_labels.detach(), + ignore_label=IGNORE_TOKEN_ID, + ) + audio_topk_acc = self.audio_accuracy_metric( + audio_logits.detach(), audio_labels.detach() + ).item() + + return text_loss, acc, codec_loss, audio_acc, audio_topk_acc + + def decode( + self, + fbank: torch.Tensor = None, + input_ids: torch.LongTensor = None, + attention_mask: torch.Tensor = None, + **kwargs, + ): + + encoder_outs = self.encoder(fbank) + speech_features = self.encoder_projector(encoder_outs) + speech_features = speech_features.to(torch.float16) + inputs_embeds = self.llm.get_input_embeddings()(input_ids) + ( + inputs_embeds, + attention_mask, + _, + _, + ) = self._merge_input_ids_with_speech_features( + speech_features, inputs_embeds, input_ids, attention_mask + ) + generated_ids = self.llm.generate( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + max_new_tokens=kwargs.get("max_new_tokens", 1024), + num_beams=kwargs.get("num_beams", 1), + do_sample=kwargs.get("do_sample", True), + min_length=kwargs.get("min_length", 1), + top_p=kwargs.get("top_p", 0.5), + top_k=kwargs.get("top_k", 20), + repetition_penalty=kwargs.get("repetition_penalty", 1.1), + temperature=kwargs.get("temperature", 0.7), + bos_token_id=self.llm.config.bos_token_id, + eos_token_id=self.llm.config.eos_token_id, + pad_token_id=self.llm.config.pad_token_id, + ) + + return generated_ids + + def decode_with_speech_output( + self, + fbank: torch.Tensor = None, + input_ids: torch.LongTensor = None, # Prompt input_ids + attention_mask: torch.Tensor = None, # Prompt attention_mask + max_text_new_tokens: int = 1024, + max_speech_new_tokens: int = 2048, # Max length for speech tokens + llm_kwargs: dict = None, # Kwargs for text LLM generate + codec_lm_kwargs: dict = None, # Kwargs for codec LM (e.g., temperature for sampling) - NOT IMPLEMENTED YET + ) -> Tuple[torch.LongTensor, List[List[int]]]: + """ + Generates text and corresponding speech tokens using the revised logic. + + Args: + fbank: Input audio features. + input_ids: Input token IDs for the text prompt. + attention_mask: Attention mask for the text prompt. + max_text_new_tokens: Max new tokens for text generation. + max_speech_new_tokens: Max new tokens for speech generation. + llm_kwargs: Additional arguments for self.llm.generate. + codec_lm_kwargs: Additional arguments for self.codec_lm.generate. + + Returns: + Tuple[torch.LongTensor, List[List[int]]]: + - generated_text_ids: Tensor of generated text token IDs (including prompt). + - generated_speech_tokens: List of lists, where each inner list contains + the generated speech codec tokens for a batch item. + """ + batch_size = input_ids.shape[0] + assert batch_size == 1, "Batch size must be 1 for speech generation." + + device = next(self.parameters()).device # Use model's device + + prompt_embeds = self.llm.get_input_embeddings()(input_ids) + + # Merge speech features with prompt embeddings + if fbank is not None: + encoder_outs = self.encoder(fbank) + speech_features = self.encoder_projector(encoder_outs) + speech_features = speech_features.to(self.llm.dtype) # Ensure matching dtype + ( + merged_prompt_inputs_embeds, + merged_prompt_attention_mask, + _, + _, + ) = self._merge_input_ids_with_speech_features( + speech_features, prompt_embeds, input_ids, attention_mask + ) + else: + merged_prompt_inputs_embeds = prompt_embeds + merged_prompt_attention_mask = attention_mask + + # --- 2. Generate Text using LLM --- + # Use merged embeds/mask as input to generate + # Ensure kwargs passed are suitable for llm.generate + # Note: Using default generation params from `decode` if not provided in kwargs + final_llm_kwargs = { + "bos_token_id": self.llm.config.bos_token_id, + "eos_token_id": self.llm.config.eos_token_id, + "pad_token_id": self.llm.config.pad_token_id, + "num_beams": 1, + "do_sample": True, # Typically false for S2ST/S2TT tasks unless exploration needed + "top_p": 0.5, + "top_k": 20, + "repetition_penalty": 1.1, + "temperature": 0.7, + **(llm_kwargs or {}), # User-provided kwargs override defaults + } + + text_outputs = self.llm.generate( + inputs_embeds=merged_prompt_inputs_embeds, + attention_mask=merged_prompt_attention_mask, + max_new_tokens=max_text_new_tokens, + return_dict_in_generate=True, + output_hidden_states=True, + **final_llm_kwargs, + ) + delay_step = 1 + generated_text_ids = text_outputs.sequences # [B, S_full] + eos_token_id = self.llm.config.eos_token_id + eos_token_embedding = self.llm.get_input_embeddings()( + torch.tensor([[eos_token_id]], device=device) + ) + assert ( + generated_text_ids[0, -1] == eos_token_id + ), f"Last token is not EOS: {generated_text_ids[0, -1]} != {eos_token_id}" + thinker_token_embeds_org = [ + token_hidden_states[0].to(self.llm.device) + for token_hidden_states in text_outputs.hidden_states + ] + + first_thinker_token_embed = torch.cat( + [ + thinker_token_embeds_org[0][:, 1:], + thinker_token_embeds_org[1], + ], + dim=1, + ) + + thinker_token_embeds = ( + [first_thinker_token_embed] + + thinker_token_embeds_org[2:] + + [eos_token_embedding] + ) + thinker_hidden_states = [ + token_hidden_states[-1].to(self.llm.device) + for token_hidden_states in text_outputs.hidden_states + ] + + thinker_reply_part = [ + torch.cat( + [ + thinker_hidden_state, + thinker_token_embed, + ], + dim=-1, + ) + for thinker_hidden_state, thinker_token_embed in zip( + thinker_hidden_states[1:], thinker_token_embeds[1:] + ) + ] + thinker_reply_part = torch.cat(thinker_reply_part, dim=1) + # thinker_prompt_part = thinker_hidden_states[0] + thinker_token_embeds[0] + thinker_prompt_part = torch.cat( + [ + thinker_hidden_states[0], + thinker_token_embeds[0], + ], + dim=-1, + ) + + thinker_prompt_part = self.speech_token_projector(thinker_prompt_part) + thinker_reply_part = self.speech_token_projector(thinker_reply_part) + + thinker_prompt_part_seq_len = thinker_prompt_part.shape[1] + talker_input_ids = torch.full( + (batch_size, thinker_prompt_part_seq_len + delay_step + 1), + self.codec_lm.config.mask_token_id, + dtype=torch.long, + device=self.llm.device, + ) + talker_input_ids[:, -1] = self.codec_lm.config.bos_token_id + talker_inputs_embeds = self.codec_lm.get_input_embeddings()(talker_input_ids) + thinker_input_embeds = torch.cat( + [ + thinker_prompt_part, + thinker_reply_part[:, : delay_step + 1, :], + ], + dim=1, + ) + talker_inputs_embeds += thinker_input_embeds + thinker_reply_part = thinker_reply_part[:, delay_step + 1 :, :] + + past_key_values = None + + generated_speech_tokens_list = [] + next_token_ids = None + + for t in range(max_speech_new_tokens): + if t > 0: + talker_inputs_embeds = self.codec_lm.get_input_embeddings()( + next_token_ids + ) + if thinker_reply_part.shape[1] > 0: + talker_inputs_embeds += thinker_reply_part[:, :1, :] + thinker_reply_part = thinker_reply_part[:, 1:, :] + + codec_outputs = self.codec_lm( + inputs_embeds=talker_inputs_embeds, + past_key_values=past_key_values, + use_cache=True, + return_dict=True, + output_hidden_states=True, + ) + last_token_hidden_state = codec_outputs.hidden_states[-1][:, -1, :] + next_token_logits = self.codec_lm_head(last_token_hidden_state) + + next_token_ids = topk_sampling( + next_token_logits, + ) + if next_token_ids[0, 0] == self.codec_lm.config.eos_token_id: + break + + past_key_values = codec_outputs.past_key_values # Update KV cache + generated_speech_tokens_list.append( + next_token_ids.squeeze(1).cpu().tolist()[0] + ) + + return generated_text_ids, generated_speech_tokens_list + + +def compute_accuracy(pad_outputs, pad_targets, ignore_label): + """Calculate accuracy. + Copied from https://github.com/X-LANCE/SLAM-LLM/blob/main/src/slam_llm/utils/metric.py + Args: + pad_outputs (LongTensor): Prediction tensors (B, Lmax). + pad_targets (LongTensor): Target label tensors (B, Lmax). + ignore_label (int): Ignore label id. + + Returns: + float: Accuracy value (0.0 - 1.0). + + """ + mask = pad_targets != ignore_label + numerator = torch.sum( + pad_outputs.masked_select(mask) == pad_targets.masked_select(mask) + ) + denominator = torch.sum(mask) + return numerator.float() / denominator.float() + + +def topk_sampling( + logits, + top_k=50, + top_p=0.95, + temperature=0.8, +): + if temperature != 1.0: + logits = logits / temperature + # Top-p/top-k filtering + logits_filtered = top_k_top_p_filtering( + logits.clone(), top_k=top_k, top_p=top_p, min_tokens_to_keep=2 + ) + # Sample + probs = torch.nn.functional.softmax(logits_filtered, dim=-1) + tokens = torch.multinomial(probs, num_samples=1) + + return tokens + + +# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py +def top_k_top_p_filtering( + logits, top_k=20, top_p=0.5, filter_value=-float("Inf"), min_tokens_to_keep=1 +): + """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering + Args: + logits: logits distribution shape (batch size, vocabulary size) + if top_k > 0: keep only top k tokens with highest probability (top-k filtering). + if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). + Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) + Make sure we keep at least min_tokens_to_keep per batch example in the output + From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 + """ + if top_k > 0: + top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check + # Remove all tokens with a probability less than the last token of the top-k + indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] + logits[indices_to_remove] = filter_value + + if top_p < 1.0: + sorted_logits, sorted_indices = torch.sort(logits, descending=True) + cumulative_probs = torch.cumsum( + torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1 + ) + + # Remove tokens with cumulative probability above the threshold (token with 0 are kept) + sorted_indices_to_remove = cumulative_probs > top_p + if min_tokens_to_keep > 1: + # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) + sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 + # Shift the indices to the right to keep also the first token above the threshold + sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() + sorted_indices_to_remove[..., 0] = 0 + + # scatter sorted tensors to original indexing + indices_to_remove = sorted_indices_to_remove.scatter( + 1, sorted_indices, sorted_indices_to_remove + ) + logits[indices_to_remove] = filter_value + return logits diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/requirements-cosyvoice.txt b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/requirements-cosyvoice.txt new file mode 100644 index 000000000..8962f76e3 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/requirements-cosyvoice.txt @@ -0,0 +1,23 @@ +conformer==0.3.2 +diffusers==0.29.0 +gdown==5.1.0 +gradio +hydra-core==1.3.2 +HyperPyYAML==1.2.2 +inflect==7.3.1 +librosa==0.10.2 +lightning==2.2.4 +matplotlib==3.7.5 +#modelscope==1.15.0 +networkx==3.1 +omegaconf==2.3.0 +onnx==1.16.0 +onnxruntime-gpu==1.18.0 +protobuf==4.25 +pydantic==2.7.0 +pyworld==0.3.4 +rich==13.7.1 +soundfile==0.12.1 +tensorboard==2.14.0 +wget==3.2 +WeTextProcessing==1.0.3 diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/requirements.txt b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/requirements.txt new file mode 100644 index 000000000..ce14647fc --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/requirements.txt @@ -0,0 +1,15 @@ +openai-whisper +kaldialign +lhotse +sentencepiece +pypinyin +tensorboard +librosa +deepspeed +transformers>=4.37.0 +flash-attn +peft +torchmetrics +# triton==3.3.0 # may be violate with openai-whisper +gradio +sherpa-onnx \ No newline at end of file diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/server.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/server.py new file mode 100644 index 000000000..f0da7f905 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/server.py @@ -0,0 +1,131 @@ +# server.py +import argparse +import os +from typing import List + +import torch +import uvicorn +import whisper +from fastapi import FastAPI, HTTPException +from pydantic import BaseModel +from train import DEFAULT_SPEECH_TOKEN, add_model_arguments +from transformers import AutoTokenizer +from web_demo import get_model + + +def get_args(): + parser = argparse.ArgumentParser(description="extract speech code") + parser.add_argument( + "--checkpoint-path", + type=str, + default=None, + help="Checkpoint name or path, default to %(default)r", + ) + parser.add_argument( + "--prompt-template", + type=str, + default=None, + help="Prompt template", + ) + parser.add_argument( + "--port", + type=int, + default=8001, + help="Port number", + ) + add_model_arguments(parser) + args = parser.parse_args() + return args + + +class SpeechRequest(BaseModel): + audio: List[float] # Expecting audio as a list of floats (raw waveform) + sampling_rate: int = 16000 + + +class TextResponse(BaseModel): + text: str + + +def preprocess_prompt(tokenizer): + """Preprocesses the prompt template.""" + texts = [ + tokenizer.apply_chat_template( + message, # Using the hardcoded message + tokenize=True, + add_generation_prompt=False, # Important for generation + chat_template=TEMPLATE, + padding=False, # No padding needed for single prompt + truncation=False, + ) + ] + input_ids = torch.tensor(texts, dtype=torch.long) + attention_mask = torch.ones_like( + input_ids, dtype=torch.bool + ) # Mask is all True for the prompt + return input_ids, attention_mask + + +args = get_args() +print(f"Using port: {args.port}") +model, tokenizer = get_model(args) +app = FastAPI() + +device = torch.device("cuda") +if args.prompt_template is None: + template = f"{DEFAULT_SPEECH_TOKEN}" +elif args.prompt_template == "qa": + template = f"Answer the following question:\n\n{DEFAULT_SPEECH_TOKEN}" +elif args.prompt_template == "continuation": + template = f"Continue the following text using less than 50 words:\n\n{DEFAULT_SPEECH_TOKEN}" +elif args.prompt_template == "asr": + template = ( + f"Repeat the following text, without any explanation: {DEFAULT_SPEECH_TOKEN}" + ) +elif args.prompt_template == "mt": + template = f"Please translate the text to Chinese. Your response should only include the Chinese translation, without any additional words:\n\n{DEFAULT_SPEECH_TOKEN}" +else: + raise ValueError(f"Invalid prompt template: {args.prompt_template}") +print("Using template:", template) +message = [ + {"role": "user", "content": template}, + {"role": "assistant", "content": ""}, +] +TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{''}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}" +prompt_input_ids, prompt_attention_mask = preprocess_prompt(tokenizer) +prompt_input_ids = prompt_input_ids.to(device) +prompt_attention_mask = prompt_attention_mask.to(device) + + +@app.post("/decode", response_model=TextResponse) +async def decode_speech(request: SpeechRequest): + """ + Receives audio waveform, processes it, and returns the decoded text. + """ + if request.sampling_rate != 16000: + raise HTTPException( + status_code=400, detail="Only 16kHz sampling rate is supported." + ) + + try: + audio_tensor = torch.tensor(request.audio, dtype=torch.float32).to(device) + fbank = whisper.log_mel_spectrogram(audio_tensor, device=device, n_mels=80) + fbank = fbank.unsqueeze(0) + + with torch.no_grad(): + generated_ids = model.decode(fbank, prompt_input_ids, prompt_attention_mask) + + hyps = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) + + response_text = hyps[0] if hyps else "" + + return TextResponse(text=response_text) + + except Exception as e: + print(f"Error during processing: {e}") + raise HTTPException(status_code=500, detail=f"Internal server error: {e}") + + +if __name__ == "__main__": + print("Starting server...") + uvicorn.run(app, host="0.0.0.0", port=args.port) diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/train.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/train.py new file mode 100755 index 000000000..5b5628f74 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/train.py @@ -0,0 +1,1160 @@ +#!/usr/bin/env python3 +# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang) +# 2024 Yuekai Zhang +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +# For Chinese dataset, you can use the following command to download the Chinese fine-tuned whisper model. +huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper +# Qwen Pretrained model +huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct + +torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \ + --max-duration 50 \ + --enable-musan False \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \ + --llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \ + --manifest-dir data/fbank \ + --deepspeed \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True \ + --use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True +""" + +import argparse +import copy +import logging +import os +import random +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple, Union + +import deepspeed +import torch +import torch.multiprocessing as mp +import torch.nn as nn +import transformers +import whisper +from data_module import AsrDataModule +from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict +from label_smoothing import LabelSmoothingLoss +from lhotse import CutSet, load_manifest +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import IGNORE_TOKEN_ID, SPEECH_LLM, EncoderProjector +from peft import LoraConfig, get_peft_model +from torch import Tensor +from torch.utils.tensorboard import SummaryWriter +from transformers import ( + AutoModelForCausalLM, + AutoTokenizer, + Qwen2Config, + Qwen2ForCausalLM, +) +from utils import ( # filter_uneven_sized_batch, + AttributeDict, + MetricsTracker, + get_local_rank, + get_rank, + get_world_size, + setup_logger, + str2bool, +) +from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward + +DEFAULT_SPEECH_TOKEN = "" +try: + torch.multiprocessing.set_start_method("spawn") +except RuntimeError: + pass + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--remove-whisper-encoder-input-length-restriction", + type=str2bool, + default=True, + help="replace whisper encoder forward method to remove input length restriction", + ) + parser.add_argument( + "--llm-path-or-name", + type=str, + default="/workspace/asr/Qwen1.5-0.5B-Chat", + help="Path or name of the large language model.", + ) + + parser.add_argument( + "--speech-encoder-path-or-name", + type=str, + default="whisper-large-v2", + help="Path or name of the speech encoder.", + ) + + parser.add_argument( + "--encoder-projector-ds-rate", + type=int, + default=8, + help="Downsample rate for the encoder projector.", + ) + parser.add_argument( + "--use-flash-attn", + type=str2bool, + default=True, + help="Whether to use flash attention.", + ) + + parser.add_argument( + "--use-lora", + type=str2bool, + default=False, + help="Whether to use lora to fine-tune llm.", + ) + + parser.add_argument( + "--enable-speech-output", + type=str2bool, + default=False, + help="Whether to enable speech codec output.", + ) + + parser.add_argument( + "--enable-speech-input", + type=str2bool, + default=True, + help="Whether to enable speech fbank input.", + ) + + parser.add_argument( + "--speech-tokenizer-type", + type=str, + default="cosyvoice2", + help="The type of the speech tokenizer. cosyvoice2: 6561, cosyvoice1: 4096", + ) + + +def add_training_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=10, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="whisper_qwen/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--pretrained-model-path", + type=str, + default=None, + help="""The path to the pretrained model if it is not None. Training will + start from this model. e.g. ./wenetspeech/ASR/whisper/exp_large_v2/epoch-4-avg-3.pt + """, + ) + + parser.add_argument( + "--last-stage-model-path", + type=str, + default=None, + help="""The path to the last stage model if it is not None. Training will start from this model. + """, + ) + parser.add_argument( + "--sampler-state-dict-path", + type=str, + default=None, + help="""The path to the sampler state dict if it is not None. Training will start from this sampler state dict. + """, + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=True, + help="Whether to use half precision training.", + ) + + parser.add_argument( + "--unfreeze-llm", + type=str2bool, + default=False, + help="Whether to unfreeze llm during training.", + ) + + parser.add_argument( + "--unfreeze-speech-projector", + type=str2bool, + default=False, + help="Whether to unfreeze speech adaptor during training.", + ) + + parser.add_argument( + "--dataset", + type=str, + default="multi_en", + help="The name of the dataset.", + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--loss-type", + type=str, + default="ce", + help="The type of loss to use.", + ) + + parser = deepspeed.add_config_arguments(parser) + add_model_arguments(parser) + add_training_arguments(parser) + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - frame_shift_ms: The frame shift in milliseconds. + - allowed_excess_duration_ratio: The allowed excess duration ratio. + - best_train_loss: The best training loss so far. + - best_valid_loss: The best validation loss so far. + - best_train_epoch: The epoch where the best training loss is achieved. + - best_valid_epoch: The epoch where the best validation loss is achieved. + - batch_idx_train: The batch index of the current batch. + - log_interval: Log training stats every `log_interval` batches. + - reset_interval: Reset the stats every `reset_interval` batches. + - valid_interval: Run validation every `valid_interval` batches. + - env_info: The environment information. + """ + params = AttributeDict( + { + "allowed_excess_duration_ratio": 0.1, + "subsampling_factor": 2, + "frame_shift_ms": 10, + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 1000, + } + ) + + return params + + +def extract_text_and_speech_token( + batch: dict, enable_speech_output: bool +) -> Tuple[List[Dict[str, str]], Optional[List[Any]]]: + """ + Extracts messages and speech tokens from a batch based on the dataset format. + Uses the global DEFAULT_SPEECH_TOKEN. + """ + messages = [] + speech_tokens = None # Initialize as None + if enable_speech_output: + if "answer_cosyvoice_speech_token" in batch["supervisions"]["cut"][0].custom: + assert "speech_token" not in batch["supervisions"]["cut"][0].custom + speech_tokens = [ + cut.custom["answer_cosyvoice_speech_token"] + for cut in batch["supervisions"]["cut"] + ] + elif "speech_token" in batch["supervisions"]["cut"][0].custom: + speech_tokens = [ + cut.custom["speech_token"] for cut in batch["supervisions"]["cut"] + ] + else: + raise ValueError("Unknown speech token type") + answers = batch["supervisions"]["text"] + batch_size = len(answers) + + prompt_template_dict = { + "speech_qa": f"{DEFAULT_SPEECH_TOKEN}", + "speech_continuation": f"Continue the following text using less than 50 words:\\n\\n{DEFAULT_SPEECH_TOKEN}", + "asr": f"Transcribe the following audio into text:\\n\\n{DEFAULT_SPEECH_TOKEN}", + } + + for i in range(batch_size): + # Initialize prompt_template with the original default. + # The 'prompt_template' argument to the function seems unused if we determine it here. + # For now, I will proceed assuming the internal logic dictates the template. + # If the function argument `prompt_template` was meant to be the default, this logic would need adjustment. + current_prompt_template = ( + "speech_qa" # Default value for prompt_template for the current item + ) + target = answers[i] + message_list_item = [] + + custom_data = batch["supervisions"]["cut"][i].custom + + if "round" in custom_data: + # slam_omni format dataset + # For 'round' type, the current interaction's user prompt will use current_prompt_template ("speech_qa") + current_question_with_history = custom_data["question"] + total_round = custom_data["round"] + history_context = current_question_with_history.rsplit(":", 1)[ + 0 + ].strip() + if total_round > 1: + history_question_answer = history_context.split("USER:") + history_question_answer = [ + item for item in history_question_answer if item + ] + for j in range(total_round - 1): + question_answer = history_question_answer[j].split("ASSISTANT:") + message_list_item += [ + {"role": "user", "content": question_answer[0].strip()}, + {"role": "assistant", "content": question_answer[1].strip()}, + ] + elif "continuation" in custom_data: + # see https://huggingface.co/datasets/fixie-ai/librispeech_asr + ASR_PROBABILITY = 0.3 + if random.random() < ASR_PROBABILITY: + current_prompt_template = "asr" + else: + current_prompt_template = "speech_continuation" + target = custom_data["continuation"] + else: + # single-round, speech2speech conversation data + pass + message_list_item += [ + {"role": "user", "content": prompt_template_dict[current_prompt_template]}, + {"role": "assistant", "content": target}, + ] + messages.append(message_list_item) + + return messages, speech_tokens + + +def preprocess( + messages, + tokenizer: transformers.PreTrainedTokenizer, +) -> Dict: + """Preprocesses the data for supervised fine-tuning.""" + texts = [] + TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}" + for i, msg in enumerate(messages): + texts.append( + tokenizer.apply_chat_template( + msg, + tokenize=True, + chat_template=TEMPLATE, + add_generation_prompt=False, + padding="longest", # FIX me change padding to longest + truncation=False, + ) + ) + if len(texts) != len(messages): + logging.warning(f"Remove too long text, {messages} ") + max_len_texts = max([len(text) for text in texts]) + if tokenizer.padding_side == "right": + texts = [ + text + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + for text in texts + ] + else: + texts = [ + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + text + for text in texts + ] + input_ids = torch.tensor(texts, dtype=torch.int) + + target_ids = input_ids.clone() + target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID + # mask all tokens before token_id 151646 with IGNORE_TOKEN_ID + # first get the indices of the tokens + mask_prompt = True + if mask_prompt: + default_speech_token_id = tokenizer.convert_tokens_to_ids(DEFAULT_SPEECH_TOKEN) + mask_indices = torch.where(input_ids == default_speech_token_id) + for i in range(mask_indices[0].size(0)): + row = mask_indices[0][i] + col = mask_indices[1][i] + # + 6 to skip: 'assistant', '\n' 151665, 151645, 198, 151644, 77091, 198 + # WAR: TODO FIXME check qwen3 + target_ids[row, : col + 6] = IGNORE_TOKEN_ID + attention_mask = input_ids.ne(tokenizer.pad_token_id) + return input_ids, attention_mask, target_ids + + +def process_batch_text_continuation(batch: dict): + messages = [] + transcripts = batch["supervisions"]["text"] + continuations = [cut.custom["continuation"] for cut in batch["supervisions"]["cut"]] + for i in range(len(transcripts)): + message = [ + { + "role": "user", + "content": f"Continue the following text using less than 50 words:\n\n{transcripts[i]}{DEFAULT_SPEECH_TOKEN}", + }, + {"role": "assistant", "content": continuations[i]}, + ] + messages.append(message) + return messages + + +def preprocess_teacher( + messages, + tokenizer: transformers.PreTrainedTokenizer, +) -> Dict: + """Preprocesses the data for supervised fine-tuning.""" + texts = [] + TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}" + for i, msg in enumerate(messages): + texts.append( + tokenizer.apply_chat_template( + msg, + tokenize=True, + chat_template=TEMPLATE, + add_generation_prompt=False, + padding="longest", # FIX me change padding to longest + truncation=False, + ) + ) + if len(texts) != len(messages): + logging.warning(f"Remove too long text, {messages} ") + max_len_texts = max([len(text) for text in texts]) + if tokenizer.padding_side == "right": + texts = [ + text + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + for text in texts + ] + else: + texts = [ + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + text + for text in texts + ] + input_ids = torch.tensor(texts, dtype=torch.int) + + target_ids = input_ids.clone() + target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID + # mask all tokens before token_id with IGNORE_TOKEN_ID + # first get the indices of the tokens + mask_prompt = True + if mask_prompt: + default_speech_token_id = tokenizer.convert_tokens_to_ids(DEFAULT_SPEECH_TOKEN) + mask_indices = torch.where(input_ids == default_speech_token_id) + for i in range(mask_indices[0].size(0)): + row = mask_indices[0][i] + col = mask_indices[1][i] + # + 2 to skip: 'assistant', '\n' + # WAR: TODO FIXME check qwen3 + # THIS IS THE ONLY DIFFERENCE FROM preprocess + target_ids[row, : col + 6] = IGNORE_TOKEN_ID + target_ids[row, col] = default_speech_token_id + # remove default_speech_token_id from target_ids and input_ids + batch_size = target_ids.size(0) + + target_ids = target_ids[target_ids != default_speech_token_id].view(batch_size, -1) + input_ids = input_ids[input_ids != default_speech_token_id].view(batch_size, -1) + + attention_mask = input_ids.ne(tokenizer.pad_token_id) + return input_ids, attention_mask, target_ids + + +def compute_loss( + params: AttributeDict, + tokenizer: AutoTokenizer, + model: nn.Module, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute the loss for the given batch. + Args: + params: + It is returned by :func:`get_params`. + tokenizer: + The tokenizer used to encode the text. + model: + The model for training. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + Whether it is training. + Returns: + Return a tuple of two elements. The first element is the loss tensor. + """ + device = next(model.parameters()).device + feature = batch["inputs"] + + assert feature.ndim == 3 + feature = feature.to(device) + feature = feature.transpose(1, 2) # (N, C, T) + + messages, answer_cosyvoice_speech_token = extract_text_and_speech_token( + batch, params.enable_speech_output + ) + + input_ids, attention_mask, target_ids = preprocess(messages, tokenizer) + + target_ids = target_ids.type(torch.LongTensor) + input_ids = input_ids.type(torch.LongTensor) + + with torch.set_grad_enabled(is_training): + if not params.enable_speech_output: + if params.loss_type == "ce": + loss, acc = model( + fbank=feature, + input_ids=input_ids.to(device), + attention_mask=attention_mask.to(device), + labels=target_ids.to(device), + ) + elif params.loss_type == "kl_div": + messages_text = process_batch_text_continuation(batch) + ( + teacher_input_ids, + teacher_attention_mask, + teacher_target_ids, + ) = preprocess_teacher(messages_text, tokenizer) + loss, acc, acc_teacher = model.forward_kl_div( + fbank=feature, + input_ids=input_ids.to(device), + attention_mask=attention_mask.to(device), + labels=target_ids.to(device), + teacher_input_ids=teacher_input_ids.to(device), + teacher_attention_mask=teacher_attention_mask.to(device), + teacher_labels=teacher_target_ids.to(device), + ) + else: + raise ValueError(f"Unknown loss type: {params.loss_type}") + else: + assert params.loss_type == "ce" + ( + text_loss, + acc, + codec_loss, + codec_acc, + codec_topk_acc, + ) = model.forward_with_speech_output( + fbank=feature, + input_ids=input_ids.to(device), + attention_mask=attention_mask.to(device), + labels=target_ids.to(device), + speech_codec_ids=answer_cosyvoice_speech_token, + ) + loss = text_loss + codec_loss + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + feature_lens = batch["supervisions"]["num_frames"] + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["acc"] = ( + acc * info["frames"] + ) # WAR: to avoid normalization by the number of frames + if params.loss_type == "kl_div": + info["acc_teacher"] = acc_teacher * info["frames"] + if params.enable_speech_output: + info["codec_acc"] = codec_acc * info["frames"] + info["codec_topk_acc"] = codec_topk_acc * info["frames"] + info["codec_loss"] = codec_loss.detach().cpu().item() + info["text_loss"] = text_loss.detach().cpu().item() + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + tokenizer: whisper.tokenizer.Tokenizer, + model: nn.Module, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + with torch.amp.autocast("cuda", enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + tokenizer=tokenizer, + model=model, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + tokenizer: AutoTokenizer, + model: nn.Module, + optimizer: torch.optim.Optimizer, + scheduler: torch.optim.lr_scheduler, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + if params.enable_speech_input: + model.encoder.eval() + if not params.unfreeze_llm: + model.llm.eval() + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(train_dl): + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + if batch_idx % params.valid_interval == 0: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + tokenizer=tokenizer, + model=model, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + if params.enable_speech_input: + model.encoder.eval() + if not params.unfreeze_llm: + model.llm.eval() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + if batch_idx != 0: + model.save_checkpoint( + save_dir=params.exp_dir, + tag=f"zero-checkpoint-{params.batch_idx_train}", + client_state={}, + exclude_frozen_parameters=True, + ) + + if rank == 0: + convert_zero_checkpoint_to_fp32_state_dict( + params.exp_dir, + f"{params.exp_dir}/checkpoint-{params.batch_idx_train}", + tag=f"zero-checkpoint-{params.batch_idx_train}", + exclude_frozen_parameters=True, + ) + # save sampler state dict into checkpoint + sampler_state_dict = train_dl.sampler.state_dict() + torch.save( + sampler_state_dict, + f"{params.exp_dir}/checkpoint-{params.batch_idx_train}/sampler.pt", + ) + os.system( + f"rm -rf {params.exp_dir}/zero-checkpoint-{params.batch_idx_train}" + ) + try: + with torch.amp.autocast("cuda", enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + tokenizer=tokenizer, + model=model, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + + # deepspeed's backward() is different from torch's backward() + # in that it does not accept a loss tensor as input. + # It computes the loss internally. + model.backward(loss) + model.step() + + except: # noqa + display_and_save_batch(batch, params=params) + raise + + if batch_idx % params.log_interval == 0: + try: + cur_lr = scheduler.get_last_lr()[0] + except: # noqa + cur_lr = 0.0 + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def get_model(params): + """Load and prepare the speech-to-speech model.""" + tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name) + special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]} + tokenizer.add_special_tokens(special_tokens_dict) + + if params.use_flash_attn: + attn_implementation = "flash_attention_2" + torch_dtype = torch.float16 + tokenizer.padding_side = "left" + + else: + attn_implementation = "eager" + torch_dtype = torch.float16 + tokenizer.padding_side = "right" + + llm = AutoModelForCausalLM.from_pretrained( + params.llm_path_or_name, + attn_implementation=attn_implementation, + torch_dtype=torch_dtype, + ) + if not params.unfreeze_llm: + for name, param in llm.named_parameters(): + param.requires_grad = False + if params.use_lora: + lora_config = LoraConfig( + r=64, + lora_alpha=16, + target_modules=[ + "q_proj", + "k_proj", + "v_proj", + "o_proj", + "up_proj", + "gate_proj", + "down_proj", + ], + lora_dropout=0.05, + task_type="CAUSAL_LM", + ) + llm = get_peft_model(llm, lora_config) + llm.print_trainable_parameters() + + llm.config.pad_token_id = tokenizer.pad_token_id + llm.config.pad_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>") + llm.config.bos_token_id = tokenizer.convert_tokens_to_ids("<|im_start|>") + llm.config.eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>") + llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids( + DEFAULT_SPEECH_TOKEN + ) + + if params.enable_speech_input: + if params.remove_whisper_encoder_input_length_restriction: + replace_whisper_encoder_forward() + whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu") + speech_encoder = whisper_model.encoder + speech_encoder_dim = whisper_model.dims.n_audio_state + for name, param in speech_encoder.named_parameters(): + param.requires_grad = False + encoder_projector = EncoderProjector( + speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate + ) + if not params.unfreeze_speech_projector: + for name, param in encoder_projector.named_parameters(): + param.requires_grad = False + encoder_projector.eval() + else: + speech_encoder = None + encoder_projector = None + + if params.enable_speech_output: + # Determine attn_implementation and torch_dtype based on use_flash_attn + if params.use_flash_attn: + attn_implementation = "flash_attention_2" + torch_dtype = torch.float16 # Or torch.bfloat16 if needed/supported + else: + attn_implementation = "eager" + torch_dtype = torch.float16 + if params.speech_tokenizer_type == "cosyvoice2": + codec_vocab_size = 6561 + 4 + elif params.speech_tokenizer_type == "cosyvoice1": + codec_vocab_size = 4096 + 4 + else: + raise ValueError( + f"Unknown speech tokenizer type: {params.speech_tokenizer_type}" + ) + + config = Qwen2Config( + vocab_size=codec_vocab_size, + hidden_size=1024, + num_hidden_layers=12, + num_attention_heads=16, + num_key_value_heads=16, + intermediate_size=2048, + max_position_embeddings=4096, + ) + + codec_lm = AutoModelForCausalLM.from_config( + config=config, + attn_implementation=attn_implementation, + torch_dtype=torch_dtype, + ) + + codec_lm.resize_token_embeddings(codec_vocab_size) + codec_lm.vocab_size = codec_vocab_size + codec_lm.config.pad_token_id = codec_vocab_size - 1 + codec_lm.config.eos_token_id = codec_vocab_size - 2 + codec_lm.config.bos_token_id = codec_vocab_size - 3 + codec_lm.config.mask_token_id = codec_vocab_size - 4 + else: + codec_lm = None + + model = SPEECH_LLM( + speech_encoder, + llm, + encoder_projector, + codec_lm, + codec_lm_padding_side="left" if params.use_flash_attn else "right", + ) + if params.pretrained_model_path or params.last_stage_model_path: + if params.pretrained_model_path is None: + checkpoint = torch.load(params.last_stage_model_path, map_location="cpu") + missing_keys, unexpected_keys = model.load_state_dict( + checkpoint, strict=False + ) + else: + checkpoint = torch.load(params.pretrained_model_path, map_location="cpu") + missing_keys, unexpected_keys = model.load_state_dict( + checkpoint, strict=False + ) + # set params.batch_idx_train according to the checkpoint name + if "checkpoint-" in params.pretrained_model_path: + params.batch_idx_train = int( + params.pretrained_model_path.split("-")[-1].split("/")[0] + ) + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + logging.info("Trainable parameters (excluding model.eval modules):") + for name, param in model.named_parameters(): + if param.requires_grad: + logging.info(f"{name}: {param.shape}") + + return model, tokenizer + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(params.seed) + + if rank == 0: + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info(params) + logging.info("About to create model") + + model, tokenizer = get_model(params) + + if torch.cuda.is_available(): + device = torch.device("cuda", get_local_rank()) + else: + device = torch.device("cpu") + logging.info(f"Device: {device}") + model.to(device) + + assert params.deepspeed and world_size > 1 + logging.info("Using DeepSpeed") + model, optimizer, _, scheduler = deepspeed.initialize( + args=params, model=model, model_parameters=model.parameters() + ) + + data_module = AsrDataModule(args) + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + if c.duration < 0.8 or c.duration > 20.0: + # logging.warning( + # f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" + # ) + return False + if "speech_token" in c.custom or "answer_cosyvoice_speech_token" in c.custom: + codec_len = ( + len(c.custom["answer_cosyvoice_speech_token"]) + if "answer_cosyvoice_speech_token" in c.custom + else len(c.custom["speech_token"]) + ) + if codec_len > 2200: + logging.warning( + f"Exclude cut with ID {c.id} from training. Duration: {c.duration}, lenth: {codec_len}" + ) + return False + if "question" in c.custom: + if len(c.custom["question"]) > 1200: + # logging.warning( + # f"Exclude cut with ID {c.id} from training. question length: {len(c.custom['question'])}" + # ) + return False + return True + + if params.dataset == "slam_omni_belle": + train_cuts = data_module.train_cuts_belle() + valid_cuts = data_module.dev_cuts_belle() + elif params.dataset == "vocalnet_ultrachat_voiceassistant": + train_cuts = data_module.train_cuts_en_vocalnet() + valid_cuts = data_module.valid_cuts_en_vocalnet() + elif params.dataset == "vocalnet_ultrachat_voiceassistant_instruct_s2s": + train_cuts = data_module.train_cuts_en_speech2speech() + valid_cuts = data_module.valid_cuts_en_vocalnet() + elif params.dataset == "vocalnet_ultrachat_voiceassistant_instruct_s2s_librispeech": + train_cuts = data_module.train_cuts_en_speech2speech_librispeech() + valid_cuts = data_module.valid_cuts_en_vocalnet() + elif params.dataset == "ultravox_multi_en": + train_cuts = data_module.train_cuts_ultravox() + valid_cuts = data_module.valid_cuts_ultravox() + elif params.dataset == "librispeech": + train_cuts = data_module.train_cuts_librispeech() + valid_cuts = data_module.valid_cuts_ultravox() + elif params.dataset == "gigaspeech": + train_cuts = data_module.train_cuts_gigaspeech() + valid_cuts = data_module.valid_cuts_ultravox() + else: + raise ValueError(f"Unknown dataset: {params.dataset}") + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + valid_cuts = valid_cuts.filter(remove_short_and_long_utt) + + sampler_state_dict = None + if params.sampler_state_dict_path: + sampler_state_dict = torch.load(params.sampler_state_dict_path) + sampler_state_dict["max_duration"] = params.max_duration + + train_dl = data_module.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + valid_dl = data_module.valid_dataloaders(valid_cuts) + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + logging.info(f"start training from epoch {params.start_epoch}") + for epoch in range(params.start_epoch, params.num_epochs + 1): + + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + tokenizer=tokenizer, + model=model, + optimizer=optimizer, + scheduler=scheduler, + train_dl=train_dl, + valid_dl=valid_dl, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + model.save_checkpoint( + save_dir=params.exp_dir, + tag=f"zero-epoch-{params.cur_epoch}", + client_state={}, + exclude_frozen_parameters=True, + ) + if rank == 0: + convert_zero_checkpoint_to_fp32_state_dict( + params.exp_dir, + f"{params.exp_dir}/epoch-{params.cur_epoch}", + tag=f"zero-epoch-{params.cur_epoch}", + exclude_frozen_parameters=True, + ) + # save sampler state dict into checkpoint + sampler_state_dict = train_dl.sampler.state_dict() + torch.save( + sampler_state_dict, + f"{params.exp_dir}/epoch-{params.cur_epoch}/sampler.pt", + ) + + os.system(f"rm -rf {params.exp_dir}/zero-epoch-{params.cur_epoch}") + + logging.info("Done!") + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, +) -> None: + """Display the batch statistics and save the batch into disk. + + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + +def main(): + parser = get_parser() + AsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = get_world_size() + rank = get_rank() + + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + warnings.filterwarnings("ignore", category=FutureWarning) + run(rank=rank, world_size=world_size, args=args) + + +if __name__ == "__main__": + main() diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/train_tts.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/train_tts.py new file mode 100755 index 000000000..e505c0700 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/train_tts.py @@ -0,0 +1,604 @@ +#!/usr/bin/env python3 +# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang) +# 2024 Yuekai Zhang +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +# For Chinese dataset, you can use the following command to download the Chinese fine-tuned whisper model. +huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper +# Qwen Pretrained model +huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct + +torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \ + --max-duration 50 \ + --enable-musan False \ + --exp-dir $exp_dir \ + --speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \ + --llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \ + --manifest-dir data/fbank \ + --deepspeed \ + --deepspeed_config ./qwen_omni/ds_config_zero1.json \ + --use-flash-attn True \ + --use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True +""" + +import argparse +import copy +import logging +import os +import random +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple, Union + +import deepspeed +import torch +import torch.multiprocessing as mp +import torch.nn as nn +import transformers +from datasets import load_dataset + +from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict +from label_smoothing import LabelSmoothingLoss + +from lhotse.utils import fix_random_seed +from model import IGNORE_TOKEN_ID, SPEECH_LLM +from peft import LoraConfig, get_peft_model +from torch import Tensor +from torch.utils.tensorboard import SummaryWriter +from transformers import ( + AutoModelForCausalLM, + AutoTokenizer, + Qwen2Config, + Qwen2ForCausalLM, +) +from torchdata.stateful_dataloader import StatefulDataLoader +from torch.utils.data import DistributedSampler, DataLoader +from pathlib import Path + +from train import add_model_arguments, add_training_arguments, get_params, get_model +from utils import ( # filter_uneven_sized_batch, + AttributeDict, + MetricsTracker, + get_local_rank, + get_rank, + get_world_size, + setup_logger, + str2bool, +) + +DEFAULT_SPEECH_TOKEN = "" +try: + torch.multiprocessing.set_start_method("spawn") +except RuntimeError: + pass + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--batch-size", + type=int, + default=16, + help="The batch size to use.", + ) + + parser = deepspeed.add_config_arguments(parser) + add_model_arguments(parser) + add_training_arguments(parser) + return parser + +def preprocess( + messages, + tokenizer: transformers.PreTrainedTokenizer, +) -> Dict: + """Preprocesses the data for supervised fine-tuning.""" + texts = [] + TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}" + for i, msg in enumerate(messages): + texts.append( + tokenizer.apply_chat_template( + msg, + tokenize=True, + chat_template=TEMPLATE, + add_generation_prompt=False, + padding="longest", # FIX me change padding to longest + truncation=False, + ) + ) + if len(texts) != len(messages): + logging.warning(f"Remove too long text, {messages} ") + max_len_texts = max([len(text) for text in texts]) + if tokenizer.padding_side == "right": + texts = [ + text + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + for text in texts + ] + else: + texts = [ + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + text + for text in texts + ] + input_ids = torch.tensor(texts, dtype=torch.int) + + target_ids = input_ids.clone() + target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID + # mask all tokens before token_id with IGNORE_TOKEN_ID + # first get the indices of the tokens + mask_prompt = True + if mask_prompt: + default_speech_token_id = tokenizer.convert_tokens_to_ids(DEFAULT_SPEECH_TOKEN) + mask_indices = torch.where(input_ids == default_speech_token_id) + for i in range(mask_indices[0].size(0)): + row = mask_indices[0][i] + col = mask_indices[1][i] + # + 2 to skip: 'assistant', '\n' + # WAR: TODO FIXME check qwen3 + # THIS IS THE ONLY DIFFERENCE FROM preprocess + target_ids[row, : col + 6] = IGNORE_TOKEN_ID + target_ids[row, col] = default_speech_token_id + # remove default_speech_token_id from target_ids and input_ids + batch_size = target_ids.size(0) + + target_ids = target_ids[target_ids != default_speech_token_id].view(batch_size, -1) + input_ids = input_ids[input_ids != default_speech_token_id].view(batch_size, -1) + + attention_mask = input_ids.ne(tokenizer.pad_token_id) + return input_ids, attention_mask, target_ids + +def data_collator(batch): + speech_tokens, messages, durations, ids, lang, dnsmos = [], [], [], [], [], [] + for i, item in enumerate(batch): + speech_tokens.append(item["code"]) + message_list_item = [] + message_list_item += [ + {"role": "user", "content": f"Generate a speech from the following text:\n\n{item['text']}{DEFAULT_SPEECH_TOKEN}"}, + {"role": "assistant", "content": item["text"]}, + ] + # message_list_item += [ + # {"role": "user", "content": f"TTS{DEFAULT_SPEECH_TOKEN}"}, + # {"role": "assistant", "content": item["text"]}, + # ] + messages.append(message_list_item) + durations.append(item["duration"]) + ids.append(item["index"] if "index" in item else item["id"]) + lang.append(item["language"]) + + return { + "speech_tokens": speech_tokens, + "messages": messages, + "durations": durations, + "ids": ids, + "lang": lang, + } + +def data_collator_ultra_chat(batch): + speech_tokens, messages, durations, ids, lang, dnsmos = [], [], [], [], [], [] + for i, item in enumerate(batch): + speech_tokens.append(item["custom"]["speech_token"]) + text = item["supervisions"][0]["text"] + message_list_item = [] + message_list_item += [ + {"role": "user", "content": f"Generate a speech from the following text:\n\n{text}{DEFAULT_SPEECH_TOKEN}"}, + {"role": "assistant", "content": text}, + ] + messages.append(message_list_item) + durations.append(item["duration"]) + ids.append(item["id"]) + + return { + "speech_tokens": speech_tokens, + "messages": messages, + "durations": durations, + "ids": ids, + } + +def compute_loss( + params: AttributeDict, + tokenizer: AutoTokenizer, + model: nn.Module, + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute the loss for the given batch. + Args: + params: + It is returned by :func:`get_params`. + tokenizer: + The tokenizer used to encode the text. + model: + The model for training. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + Whether it is training. + Returns: + Return a tuple of two elements. The first element is the loss tensor. + """ + device = next(model.parameters()).device + messages, answer_cosyvoice_speech_token = batch["messages"], batch["speech_tokens"] + input_ids, attention_mask, target_ids = preprocess(messages, tokenizer) + target_ids = target_ids.type(torch.LongTensor) + input_ids = input_ids.type(torch.LongTensor) + + with torch.set_grad_enabled(is_training): + ( + text_loss, + acc, + codec_loss, + codec_acc, + codec_topk_acc, + ) = model.forward_with_speech_output( + input_ids=input_ids.to(device), + attention_mask=attention_mask.to(device), + labels=target_ids.to(device), + speech_codec_ids=answer_cosyvoice_speech_token, + ) + loss = text_loss + codec_loss + assert loss.requires_grad == is_training + + info = MetricsTracker() + info["frames"] = len(messages) + # Note: We use reduction=sum while computing the loss. + info["acc"] = acc * len(messages) + info["codec_acc"] = codec_acc * len(messages) + info["codec_topk_acc"] = codec_topk_acc * len(messages) + info["loss"] = loss.detach().cpu().item() + info["codec_loss"] = codec_loss.detach().cpu().item() + info["text_loss"] = text_loss.detach().cpu().item() + return loss, info + +def compute_validation_loss( + params: AttributeDict, + tokenizer: AutoTokenizer, + model: nn.Module, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + with torch.amp.autocast("cuda", enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + tokenizer=tokenizer, + model=model, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + # FIX ME + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + +def train_one_epoch( + params: AttributeDict, + tokenizer: AutoTokenizer, + model: nn.Module, + optimizer: torch.optim.Optimizer, + scheduler: torch.optim.lr_scheduler, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + # model.encoder.eval() + if not params.unfreeze_llm: + model.llm.eval() + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(train_dl): + params.batch_idx_train += 1 + batch_size = len(batch["durations"]) + if batch_idx % params.valid_interval == 0: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + tokenizer=tokenizer, + model=model, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + # model.encoder.eval() + if not params.unfreeze_llm: + model.llm.eval() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + if batch_idx != 0: + model.save_checkpoint( + save_dir=params.exp_dir, + tag=f"zero-checkpoint-{params.batch_idx_train}", + client_state={}, + exclude_frozen_parameters=True, + ) + + if rank == 0: + convert_zero_checkpoint_to_fp32_state_dict( + params.exp_dir, + f"{params.exp_dir}/checkpoint-{params.batch_idx_train}", + tag=f"zero-checkpoint-{params.batch_idx_train}", + exclude_frozen_parameters=True, + ) + # save sampler state dict into checkpoint + # sampler_state_dict = train_dl.sampler.state_dict() + sampler_state_dict = train_dl.state_dict() + torch.save( + sampler_state_dict, + f"{params.exp_dir}/checkpoint-{params.batch_idx_train}/sampler.pt", + ) + os.system( + f"rm -rf {params.exp_dir}/zero-checkpoint-{params.batch_idx_train}" + ) + try: + with torch.amp.autocast("cuda", enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + tokenizer=tokenizer, + model=model, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + + # deepspeed's backward() is different from torch's backward() + # in that it does not accept a loss tensor as input. + # It computes the loss internally. + model.backward(loss) + model.step() + + except: # noqa + raise + + if batch_idx % params.log_interval == 0: + try: + cur_lr = scheduler.get_last_lr()[0] + except: # noqa + cur_lr = 0.0 + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + + loss_value = tot_loss["loss"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + params.valid_interval = 2000 + + fix_random_seed(params.seed) + + if rank == 0: + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info(params) + logging.info("About to create model") + model, tokenizer = get_model(params) + if torch.cuda.is_available(): + device = torch.device("cuda", get_local_rank()) + else: + device = torch.device("cpu") + logging.info(f"Device: {device}") + model.to(device) + + # assert params.deepspeed and world_size > 1 + logging.info("Using DeepSpeed") + model, optimizer, _, scheduler = deepspeed.initialize( + args=params, model=model, model_parameters=model.parameters() + ) + + sampler_state_dict = None + if params.sampler_state_dict_path: + sampler_state_dict = torch.load(params.sampler_state_dict_path) + if params.dataset == "ultra_chat_voice_assistant": + data_dir = "data/fbank" + json_file_lists = ["data/fbank/cuts_voice_assistant_00001-00049.jsonl", "data/fbank/cuts_ultrachat_train.jsonl.gz"] + ds = load_dataset("json", data_files=json_file_lists, split="train") + # shuffle the dataset + train_dataset = ds.shuffle(seed=42) + eval_dataset = load_dataset("json", data_files=["data/fbank/cuts_voice_assistant.00000.jsonl"], split="train") + else: + data_dir = Path(params.dataset) + json_file_lists = [str(file) for file in data_dir.glob("*.jsonl")] + ds = load_dataset("json", data_files=json_file_lists, split="train") + # shuffle the dataset + ds = ds.shuffle(seed=42) + train_test_split = ds.train_test_split(test_size=1000, seed=42) + train_dataset, eval_dataset = train_test_split["train"], train_test_split["test"] + + sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=rank) + train_dl = StatefulDataLoader( + train_dataset, + batch_size=params.batch_size, + sampler=sampler, + shuffle=False, + num_workers=4, + prefetch_factor=2, + collate_fn=data_collator_ultra_chat if params.dataset == "ultra_chat_voice_assistant" else data_collator + ) + train_dl.load_state_dict(sampler_state_dict) + valid_sampler = DistributedSampler(eval_dataset, num_replicas=world_size, rank=rank) + valid_dl = DataLoader( + eval_dataset, + batch_size=params.batch_size, + sampler=valid_sampler, + shuffle=False, + num_workers=1, + prefetch_factor=1, + collate_fn=data_collator_ultra_chat if params.dataset == "ultra_chat_voice_assistant" else data_collator + ) + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + logging.info(f"start training from epoch {params.start_epoch}") + for epoch in range(params.start_epoch, params.num_epochs + 1): + + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + tokenizer=tokenizer, + model=model, + optimizer=optimizer, + scheduler=scheduler, + train_dl=train_dl, + valid_dl=valid_dl, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + model.save_checkpoint( + save_dir=params.exp_dir, + tag=f"zero-epoch-{params.cur_epoch}", + client_state={}, + exclude_frozen_parameters=True, + ) + if rank == 0: + convert_zero_checkpoint_to_fp32_state_dict( + params.exp_dir, + f"{params.exp_dir}/epoch-{params.cur_epoch}", + tag=f"zero-epoch-{params.cur_epoch}", + exclude_frozen_parameters=True, + ) + # save sampler state dict into checkpoint + # sampler_state_dict = train_dl.sampler.state_dict() + sampler_state_dict = train_dl.state_dict() + torch.save( + sampler_state_dict, + f"{params.exp_dir}/epoch-{params.cur_epoch}/sampler.pt", + ) + + os.system(f"rm -rf {params.exp_dir}/zero-epoch-{params.cur_epoch}") + + logging.info("Done!") + +def main(): + parser = get_parser() + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = get_world_size() + rank = get_rank() + + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + warnings.filterwarnings("ignore", category=FutureWarning) + run(rank=rank, world_size=world_size, args=args) + + +if __name__ == "__main__": + main() diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/utils.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/utils.py new file mode 100644 index 000000000..fad7f272c --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/utils.py @@ -0,0 +1,433 @@ +import argparse +import collections +import json +import logging +import os +import pathlib +import random +import re +import subprocess +from collections import defaultdict +from dataclasses import dataclass +from datetime import datetime +from pathlib import Path +from typing import Dict, Iterable, List, Optional, TextIO, Tuple, Union +from tqdm import tqdm +import kaldialign +import torch +import torch.distributed as dist +from torch.utils.tensorboard import SummaryWriter +import numpy as np +Pathlike = Union[str, Path] + + +def get_world_size(): + if "WORLD_SIZE" in os.environ: + return int(os.environ["WORLD_SIZE"]) + if dist.is_available() and dist.is_initialized(): + return dist.get_world_size() + else: + return 1 + + +def get_rank(): + if "RANK" in os.environ: + return int(os.environ["RANK"]) + elif dist.is_available() and dist.is_initialized(): + return dist.get_rank() + else: + return 0 + + +def get_local_rank(): + if "LOCAL_RANK" in os.environ: + return int(os.environ["LOCAL_RANK"]) + elif dist.is_available() and dist.is_initialized(): + return dist.get_local_rank() + else: + return 0 + + +def str2bool(v): + """Used in argparse.ArgumentParser.add_argument to indicate + that a type is a bool type and user can enter + + - yes, true, t, y, 1, to represent True + - no, false, f, n, 0, to represent False + + See https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse # noqa + """ + if isinstance(v, bool): + return v + if v.lower() in ("yes", "true", "t", "y", "1"): + return True + elif v.lower() in ("no", "false", "f", "n", "0"): + return False + else: + raise argparse.ArgumentTypeError("Boolean value expected.") + + +class AttributeDict(dict): + def __getattr__(self, key): + if key in self: + return self[key] + raise AttributeError(f"No such attribute '{key}'") + + def __setattr__(self, key, value): + self[key] = value + + def __delattr__(self, key): + if key in self: + del self[key] + return + raise AttributeError(f"No such attribute '{key}'") + + def __str__(self, indent: int = 2): + tmp = {} + for k, v in self.items(): + # PosixPath is ont JSON serializable + if isinstance(v, pathlib.Path) or isinstance(v, torch.device): + v = str(v) + tmp[k] = v + return json.dumps(tmp, indent=indent, sort_keys=True) + + +def setup_logger( + log_filename: Pathlike, + log_level: str = "info", + use_console: bool = True, +) -> None: + """Setup log level. + + Args: + log_filename: + The filename to save the log. + log_level: + The log level to use, e.g., "debug", "info", "warning", "error", + "critical" + use_console: + True to also print logs to console. + """ + now = datetime.now() + date_time = now.strftime("%Y-%m-%d-%H-%M-%S") + if dist.is_available() and dist.is_initialized(): + world_size = dist.get_world_size() + rank = dist.get_rank() + formatter = f"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] ({rank}/{world_size}) %(message)s" # noqa + log_filename = f"{log_filename}-{date_time}-{rank}" + else: + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + log_filename = f"{log_filename}-{date_time}" + + os.makedirs(os.path.dirname(log_filename), exist_ok=True) + + level = logging.ERROR + if log_level == "debug": + level = logging.DEBUG + elif log_level == "info": + level = logging.INFO + elif log_level == "warning": + level = logging.WARNING + elif log_level == "critical": + level = logging.CRITICAL + + logging.basicConfig( + filename=log_filename, + format=formatter, + level=level, + filemode="w", + force=True, + ) + if use_console: + console = logging.StreamHandler() + console.setLevel(level) + console.setFormatter(logging.Formatter(formatter)) + logging.getLogger("").addHandler(console) + + +class MetricsTracker(collections.defaultdict): + def __init__(self): + # Passing the type 'int' to the base-class constructor + # makes undefined items default to int() which is zero. + # This class will play a role as metrics tracker. + # It can record many metrics, including but not limited to loss. + super(MetricsTracker, self).__init__(int) + + def __add__(self, other: "MetricsTracker") -> "MetricsTracker": + ans = MetricsTracker() + for k, v in self.items(): + ans[k] = v + for k, v in other.items(): + if v - v == 0: + ans[k] = ans[k] + v + return ans + + def __mul__(self, alpha: float) -> "MetricsTracker": + ans = MetricsTracker() + for k, v in self.items(): + ans[k] = v * alpha + return ans + + def __str__(self) -> str: + ans_frames = "" + ans_utterances = "" + for k, v in self.norm_items(): + norm_value = "%.4g" % v + if "utt_" not in k: + ans_frames += str(k) + "=" + str(norm_value) + ", " + else: + ans_utterances += str(k) + "=" + str(norm_value) + if k == "utt_duration": + ans_utterances += " frames, " + elif k == "utt_pad_proportion": + ans_utterances += ", " + else: + raise ValueError(f"Unexpected key: {k}") + frames = "%.2f" % self["frames"] + ans_frames += "over " + str(frames) + " frames. " + if ans_utterances != "": + utterances = "%.2f" % self["utterances"] + ans_utterances += "over " + str(utterances) + " utterances." + + return ans_frames + ans_utterances + + def norm_items(self) -> List[Tuple[str, float]]: + """ + Returns a list of pairs, like: + [('ctc_loss', 0.1), ('att_loss', 0.07)] + """ + num_frames = self["frames"] if "frames" in self else 1 + num_utterances = self["utterances"] if "utterances" in self else 1 + ans = [] + for k, v in self.items(): + if k == "frames" or k == "utterances": + continue + norm_value = ( + float(v) / num_frames if "utt_" not in k else float(v) / num_utterances + ) + ans.append((k, norm_value)) + return ans + + def reduce(self, device): + """ + Reduce using torch.distributed, which I believe ensures that + all processes get the total. + """ + keys = sorted(self.keys()) + s = torch.tensor([float(self[k]) for k in keys], device=device) + dist.all_reduce(s, op=dist.ReduceOp.SUM) + for k, v in zip(keys, s.cpu().tolist()): + self[k] = v + + def write_summary( + self, + tb_writer: SummaryWriter, + prefix: str, + batch_idx: int, + ) -> None: + """Add logging information to a TensorBoard writer. + + Args: + tb_writer: a TensorBoard writer + prefix: a prefix for the name of the loss, e.g. "train/valid_", + or "train/current_" + batch_idx: The current batch index, used as the x-axis of the plot. + """ + for k, v in self.norm_items(): + tb_writer.add_scalar(prefix + k, v, batch_idx) + + +def store_transcripts( + filename: Pathlike, texts: Iterable[Tuple[str, str, str]], char_level: bool = False +) -> None: + """Save predicted results and reference transcripts to a file. + + Args: + filename: + File to save the results to. + texts: + An iterable of tuples. The first element is the cur_id, the second is + the reference transcript and the third element is the predicted result. + If it is a multi-talker ASR system, the ref and hyp may also be lists of + strings. + Returns: + Return None. + """ + with open(filename, "w", encoding="utf8") as f: + for cut_id, ref, hyp in texts: + if char_level: + ref = list("".join(ref)) + hyp = list("".join(hyp)) + print(f"{cut_id}:\tref={ref}", file=f) + print(f"{cut_id}:\thyp={hyp}", file=f) + + +def write_error_stats( + f: TextIO, + test_set_name: str, + results: List[Tuple[str, str]], + enable_log: bool = True, + compute_CER: bool = False, + sclite_mode: bool = False, +) -> float: + """Write statistics based on predicted results and reference transcripts. + + It will write the following to the given file: + + - WER + - number of insertions, deletions, substitutions, corrects and total + reference words. For example:: + + Errors: 23 insertions, 57 deletions, 212 substitutions, over 2606 + reference words (2337 correct) + + - The difference between the reference transcript and predicted result. + An instance is given below:: + + THE ASSOCIATION OF (EDISON->ADDISON) ILLUMINATING COMPANIES + + The above example shows that the reference word is `EDISON`, + but it is predicted to `ADDISON` (a substitution error). + + Another example is:: + + FOR THE FIRST DAY (SIR->*) I THINK + + The reference word `SIR` is missing in the predicted + results (a deletion error). + results: + An iterable of tuples. The first element is the cut_id, the second is + the reference transcript and the third element is the predicted result. + enable_log: + If True, also print detailed WER to the console. + Otherwise, it is written only to the given file. + Returns: + Return None. + """ + subs: Dict[Tuple[str, str], int] = defaultdict(int) + ins: Dict[str, int] = defaultdict(int) + dels: Dict[str, int] = defaultdict(int) + + # `words` stores counts per word, as follows: + # corr, ref_sub, hyp_sub, ins, dels + words: Dict[str, List[int]] = defaultdict(lambda: [0, 0, 0, 0, 0]) + num_corr = 0 + ERR = "*" + + if compute_CER: + for i, res in enumerate(results): + cut_id, ref, hyp = res + ref = list("".join(ref)) + hyp = list("".join(hyp)) + results[i] = (cut_id, ref, hyp) + + for cut_id, ref, hyp in results: + ali = kaldialign.align(ref, hyp, ERR, sclite_mode=sclite_mode) + for ref_word, hyp_word in ali: + if ref_word == ERR: + ins[hyp_word] += 1 + words[hyp_word][3] += 1 + elif hyp_word == ERR: + dels[ref_word] += 1 + words[ref_word][4] += 1 + elif hyp_word != ref_word: + subs[(ref_word, hyp_word)] += 1 + words[ref_word][1] += 1 + words[hyp_word][2] += 1 + else: + words[ref_word][0] += 1 + num_corr += 1 + ref_len = sum([len(r) for _, r, _ in results]) + sub_errs = sum(subs.values()) + ins_errs = sum(ins.values()) + del_errs = sum(dels.values()) + tot_errs = sub_errs + ins_errs + del_errs + tot_err_rate = "%.2f" % (100.0 * tot_errs / ref_len) + + if enable_log: + logging.info( + f"[{test_set_name}] %WER {tot_errs / ref_len:.2%} " + f"[{tot_errs} / {ref_len}, {ins_errs} ins, " + f"{del_errs} del, {sub_errs} sub ]" + ) + + print(f"%WER = {tot_err_rate}", file=f) + print( + f"Errors: {ins_errs} insertions, {del_errs} deletions, " + f"{sub_errs} substitutions, over {ref_len} reference " + f"words ({num_corr} correct)", + file=f, + ) + print( + "Search below for sections starting with PER-UTT DETAILS:, " + "SUBSTITUTIONS:, DELETIONS:, INSERTIONS:, PER-WORD STATS:", + file=f, + ) + + print("", file=f) + print("PER-UTT DETAILS: corr or (ref->hyp) ", file=f) + for cut_id, ref, hyp in results: + ali = kaldialign.align(ref, hyp, ERR) + combine_successive_errors = True + if combine_successive_errors: + ali = [[[x], [y]] for x, y in ali] + for i in range(len(ali) - 1): + if ali[i][0] != ali[i][1] and ali[i + 1][0] != ali[i + 1][1]: + ali[i + 1][0] = ali[i][0] + ali[i + 1][0] + ali[i + 1][1] = ali[i][1] + ali[i + 1][1] + ali[i] = [[], []] + ali = [ + [ + list(filter(lambda a: a != ERR, x)), + list(filter(lambda a: a != ERR, y)), + ] + for x, y in ali + ] + ali = list(filter(lambda x: x != [[], []], ali)) + ali = [ + [ + ERR if x == [] else " ".join(x), + ERR if y == [] else " ".join(y), + ] + for x, y in ali + ] + + print( + f"{cut_id}:\t" + + " ".join( + ( + ref_word if ref_word == hyp_word else f"({ref_word}->{hyp_word})" + for ref_word, hyp_word in ali + ) + ), + file=f, + ) + + print("", file=f) + print("SUBSTITUTIONS: count ref -> hyp", file=f) + + for count, (ref, hyp) in sorted([(v, k) for k, v in subs.items()], reverse=True): + print(f"{count} {ref} -> {hyp}", file=f) + + print("", file=f) + print("DELETIONS: count ref", file=f) + for count, ref in sorted([(v, k) for k, v in dels.items()], reverse=True): + print(f"{count} {ref}", file=f) + + print("", file=f) + print("INSERTIONS: count hyp", file=f) + for count, hyp in sorted([(v, k) for k, v in ins.items()], reverse=True): + print(f"{count} {hyp}", file=f) + + print("", file=f) + print("PER-WORD STATS: word corr tot_errs count_in_ref count_in_hyp", file=f) + for _, word, counts in sorted( + [(sum(v[1:]), k, v) for k, v in words.items()], reverse=True + ): + (corr, ref_sub, hyp_sub, ins, dels) = counts + tot_errs = ref_sub + hyp_sub + ins + dels + ref_count = corr + ref_sub + dels + hyp_count = corr + hyp_sub + ins + + print(f"{word} {corr} {tot_errs} {ref_count} {hyp_count}", file=f) + return float(tot_err_rate) \ No newline at end of file diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/web_demo.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/web_demo.py new file mode 100644 index 000000000..562079044 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/web_demo.py @@ -0,0 +1,434 @@ +# Modified from https://github.com/QwenLM/Qwen2.5-Omni/blob/main/web_demo.py +import io +import sys +from argparse import ArgumentParser + +import gradio as gr +import gradio.processing_utils as processing_utils +import numpy as np +import sherpa_onnx +import soundfile as sf +import torch +import whisper +#from cosyvoice.cli.cosyvoice import CosyVoice +from gradio_client import utils as client_utils +from model import SPEECH_LLM, EncoderProjector +from peft import LoraConfig, get_peft_model +from train import DEFAULT_SPEECH_TOKEN, add_model_arguments +from transformers import AutoModelForCausalLM, AutoTokenizer, Qwen2Config +from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward + +# https://github.com/FunAudioLLM/CosyVoice/tree/main/third_party +sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS") + + +def get_model(params, device="cuda"): + """Load and prepare the speech-to-speech model.""" + if params.remove_whisper_encoder_input_length_restriction: + replace_whisper_encoder_forward() + + whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu") + speech_encoder = whisper_model.encoder + speech_encoder_dim = whisper_model.dims.n_audio_state + tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name) + + if params.use_flash_attn: + attn_implementation = "flash_attention_2" + else: + attn_implementation = "eager" + + llm = AutoModelForCausalLM.from_pretrained( + params.llm_path_or_name, + attn_implementation=attn_implementation, + torch_dtype=torch.float16, + ) + if params.use_lora: + lora_config = LoraConfig( + r=64, + lora_alpha=16, + target_modules=[ + "q_proj", + "k_proj", + "v_proj", + "o_proj", + "up_proj", + "gate_proj", + "down_proj", + ], + task_type="CAUSAL_LM", + ) + llm = get_peft_model(llm, lora_config) + llm.print_trainable_parameters() + + special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]} + tokenizer.add_special_tokens(special_tokens_dict) + llm.config.pad_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>") + llm.config.bos_token_id = tokenizer.convert_tokens_to_ids("<|im_start|>") + llm.config.eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>") + + llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids( + DEFAULT_SPEECH_TOKEN + ) + + encoder_projector = EncoderProjector( + speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate + ) + + # codec_vocab_size = 4096 + 4 + codec_vocab_size = 6561 + 4 + config = Qwen2Config( + vocab_size=codec_vocab_size, + hidden_size=1024, + num_hidden_layers=12, + num_attention_heads=16, + num_key_value_heads=16, + intermediate_size=2048, + max_position_embeddings=4096, + ) + codec_lm = AutoModelForCausalLM.from_config( + config=config, + attn_implementation=attn_implementation, + torch_dtype=torch.float16, + ) + codec_lm.resize_token_embeddings(codec_vocab_size) + codec_lm.vocab_size = codec_vocab_size + codec_lm.config.pad_token_id = codec_vocab_size - 1 + codec_lm.config.eos_token_id = codec_vocab_size - 2 + codec_lm.config.bos_token_id = codec_vocab_size - 3 + codec_lm.config.mask_token_id = codec_vocab_size - 4 + + model = SPEECH_LLM( + speech_encoder, + llm, + encoder_projector, + codec_lm, + codec_lm_padding_side="left" if params.use_flash_attn else "right", + ) + + checkpoint = torch.load(f"{params.checkpoint_path}", map_location="cpu") + model.load_state_dict(checkpoint, strict=False) + + model.to(device) + model.eval() + return model, tokenizer + + +def audio_decode_cosyvoice(audio_tokens, codec_decoder): + """ + Generate audio from tokens with optional tone and prompt embedding. + + Args: + audio_tokens (list): List of audio tokens to be processed. + codec_decoder: Codec decoder for generating audio. + + Returns: + torch.Tensor: Generated audio waveform. + """ + flow_embedding = codec_decoder.frontend.spk2info["中文女"]["embedding"] + flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32) + prompt_speech_feat = torch.zeros(1, 0, 80) + tts_mel, _ = codec_decoder.model.flow.inference( + token=audio_tokens.to(codec_decoder.model.device), + token_len=torch.tensor([audio_tokens.shape[1]], dtype=torch.int32).to( + codec_decoder.model.device + ), + prompt_token=flow_prompt_speech_token.to(codec_decoder.model.device), + prompt_token_len=torch.tensor( + [flow_prompt_speech_token.shape[1]], dtype=torch.int32 + ).to(codec_decoder.model.device), + prompt_feat=prompt_speech_feat.to(codec_decoder.model.device), + prompt_feat_len=torch.tensor( + [prompt_speech_feat.shape[1]], dtype=torch.int32 + ).to(codec_decoder.model.device), + embedding=flow_embedding.to(codec_decoder.model.device), + flow_cache=torch.zeros(1, 80, 0, 2).to(codec_decoder.model.device), + ) + + audio_hat, _ = codec_decoder.model.hift.inference( + speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0) + ) + + return audio_hat + + +def preprocess( + messages, + tokenizer, +): + """Preprocesses the data for supervised fine-tuning.""" + texts = [] + TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{''}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}" + for i, msg in enumerate(messages): + texts.append( + tokenizer.apply_chat_template( + msg, + tokenize=True, + add_generation_prompt=False, + chat_template=TEMPLATE, + padding="longest", + truncation=False, + ) + ) + max_len_texts = max([len(text) for text in texts]) + if tokenizer.padding_side == "right": + texts = [ + text + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + for text in texts + ] + else: + texts = [ + [tokenizer.pad_token_id] * (max_len_texts - len(text)) + text + for text in texts + ] + + input_ids = torch.tensor(texts, dtype=torch.int) + + attention_mask = input_ids.ne(tokenizer.pad_token_id) + + return input_ids, attention_mask + + +def _launch_demo(args, model, tokenizer, token2wav_model, asr_model): + def format_history(history: list): + messages = [] + for item in history: + if isinstance(item["content"], str): + messages.append({"role": item["role"], "content": item["content"]}) + return messages + + def decode( + model, + token2wav_model, + tokenizer, + feature, + messages, + ): + """Decode one + Returns: + pass + """ + + dtype = torch.float32 + device = model.llm.device + + feature = feature.to(device, dtype=dtype) + + input_ids, attention_mask = preprocess([messages], tokenizer) + + generated_ids, audio_tokens = model.decode_with_speech_output( + feature, input_ids.to(device, dtype=torch.long), attention_mask.to(device) + ) + + hyps = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) + + yield {"type": "text", "data": hyps[0]} + + audio_tokens = [token for token in audio_tokens if token < 4096] + audio_tokens = torch.tensor(audio_tokens, dtype=torch.int32).unsqueeze(0) + audio_hat = audio_decode_cosyvoice(audio_tokens, token2wav_model) + audio = audio_hat.squeeze(0).cpu().numpy() + audio = np.array(audio * 32767).astype(np.int16) + wav_io = io.BytesIO() + sf.write(wav_io, audio, samplerate=22050, format="WAV") + wav_io.seek(0) + wav_bytes = wav_io.getvalue() + audio_path = processing_utils.save_bytes_to_cache( + wav_bytes, "audio.wav", cache_dir=demo.GRADIO_CACHE + ) + + yield {"type": "audio", "data": audio_path} + + def media_predict(audio, history): + # First yield + yield ( + None, # microphone + history, # media_chatbot + gr.update(visible=False), # submit_btn + gr.update(visible=True), # stop_btn + ) + print(2333, history, audio) + history.append({"role": "user", "content": (audio,)}) + history.append({"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"}) + history.append({"role": "assistant", "content": ""}) + formatted_history = format_history( + history=history + ) # only keep string text format + + assert audio is not None + audio_transcript = get_transcript( + audio, + asr_model, + ) + history[-2]["content"] = audio_transcript + + fbank = whisper.log_mel_spectrogram(audio, device=model.llm.device) + fbank = fbank.unsqueeze(0) + assert fbank.ndim == 3 + + for chunk in decode( + model, token2wav_model, tokenizer, fbank, formatted_history + ): + if chunk["type"] == "text": + history[-1]["content"] = chunk["data"] + yield ( + None, # microphone + history, # media_chatbot + gr.update(visible=False), # submit_btn + gr.update(visible=True), # stop_btn + ) + if chunk["type"] == "audio": + history.append( + {"role": "assistant", "content": gr.Audio(chunk["data"])} + ) + + # Final yield + yield ( + None, # microphone + history, # media_chatbot + gr.update(visible=True), # submit_btn + gr.update(visible=False), # stop_btn + ) + + with gr.Blocks() as demo: + with gr.Tab("Online"): + with gr.Row(): + with gr.Column(scale=1): + microphone = gr.Audio(sources=["microphone"], type="filepath") + submit_btn = gr.Button("Submit", variant="primary") + stop_btn = gr.Button("Stop", visible=False) + clear_btn = gr.Button("Clear History") + with gr.Column(scale=2): + media_chatbot = gr.Chatbot(height=650, type="messages") + + def clear_history(): + return [], gr.update(value=None) + + submit_event = submit_btn.click( + fn=media_predict, + inputs=[ + microphone, + media_chatbot, + ], + outputs=[microphone, media_chatbot, submit_btn, stop_btn], + ) + stop_btn.click( + fn=lambda: (gr.update(visible=True), gr.update(visible=False)), + inputs=None, + outputs=[submit_btn, stop_btn], + cancels=[submit_event], + queue=False, + ) + clear_btn.click( + fn=clear_history, inputs=None, outputs=[media_chatbot, microphone] + ) + + demo.queue(default_concurrency_limit=100, max_size=100).launch( + max_threads=100, + ssr_mode=False, + share=args.share, + inbrowser=args.inbrowser, + server_port=args.server_port, + server_name=args.server_name, + ) + + +def _get_args(): + parser = ArgumentParser() + + parser.add_argument( + "--checkpoint-path", + type=str, + default=None, + help="Checkpoint name or path, default to %(default)r", + ) + parser.add_argument( + "--token2wav-path", + type=str, + default=None, + help="Token2Wav path, default to %(default)r", + ) + parser.add_argument( + "--asr-model-dir", + type=str, + default=None, + help="ASR model dir, default to %(default)r", + ) + parser.add_argument( + "--flash-attn2", + action="store_true", + default=False, + help="Enable flash_attention_2 when loading the model.", + ) + parser.add_argument( + "--share", + action="store_true", + default=False, + help="Create a publicly shareable link for the interface.", + ) + parser.add_argument( + "--inbrowser", + action="store_true", + default=False, + help="Automatically launch the interface in a new tab on the default browser.", + ) + parser.add_argument( + "--server-port", type=int, default=8001, help="Demo server port." + ) + parser.add_argument( + "--server-name", type=str, default="127.0.0.1", help="Demo server name." + ) + add_model_arguments(parser) + args = parser.parse_args() + return args + + +def read_wave(wave_filename: str): + """ + Args: + wave_filename: + Path to a wave file. It should be single channel and can be of type + 32-bit floating point PCM. Its sample rate does not need to be 24kHz. + + Returns: + Return a tuple containing: + - A 1-D array of dtype np.float32 containing the samples, + which are normalized to the range [-1, 1]. + - Sample rate of the wave file. + """ + + samples, sample_rate = sf.read(wave_filename, dtype="float32") + assert ( + samples.ndim == 1 + ), f"Expected single channel, but got {samples.ndim} channels." + + samples_float32 = samples.astype(np.float32) + + return samples_float32, sample_rate + + +def get_transcript(audio_path, recognizer): + samples, sample_rate = read_wave(audio_path) + s = recognizer.create_stream() + s.accept_waveform(sample_rate, samples) + recognizer.decode_streams([s]) + return s.result.text + + +if __name__ == "__main__": + args = _get_args() + model, tokenizer = get_model(args) + token2wav = CosyVoice( + args.token2wav_path, load_jit=False, load_trt=False, fp16=False + ) + + asr_model = sherpa_onnx.OfflineRecognizer.from_paraformer( + paraformer=f"{args.asr_model_dir}/model.int8.onnx", + tokens=f"{args.asr_model_dir}/tokens.txt", + num_threads=2, + sample_rate=16000, + feature_dim=80, + decoding_method="greedy_search", + debug=False, + ) + + _launch_demo(args, model, tokenizer, token2wav, asr_model) diff --git a/egs/speech_llm/SPEECH2SPEECH/qwen_omni/whisper_encoder_forward_monkey_patch.py b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/whisper_encoder_forward_monkey_patch.py new file mode 120000 index 000000000..2a7808921 --- /dev/null +++ b/egs/speech_llm/SPEECH2SPEECH/qwen_omni/whisper_encoder_forward_monkey_patch.py @@ -0,0 +1 @@ +../../../aishell/ASR/whisper/whisper_encoder_forward_monkey_patch.py \ No newline at end of file