mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
replace file
This commit is contained in:
parent
1e9bb87305
commit
a4be3cb3db
@ -103,6 +103,9 @@ from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
# import sentencepiece as spm
|
||||
from tokenizer import Tokenizer
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import MLSEnglishHFAsrDataModule
|
||||
@ -120,7 +123,7 @@ from beam_search import (
|
||||
modified_beam_search_lm_shallow_fusion,
|
||||
modified_beam_search_LODR,
|
||||
)
|
||||
from tokenizer import Tokenizer
|
||||
# from gigaspeech_scoring import asr_text_post_processing
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall import ContextGraph, LmScorer, NgramLm
|
||||
@ -194,18 +197,25 @@ def get_parser():
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
# parser.add_argument(
|
||||
# "--bpe-model",
|
||||
# type=str,
|
||||
# default="data/lang_bpe_500/bpe.model",
|
||||
# help="Path to the BPE model",
|
||||
# )
|
||||
|
||||
# parser.add_argument(
|
||||
# "--lang-dir",
|
||||
# type=Path,
|
||||
# default="data/lang_bpe_500",
|
||||
# help="The lang dir containing word table and LG graph",
|
||||
# )
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
type=str,
|
||||
default="data/lang_char",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
help="Path to the lang dir with the BPE model (`bpe.model`)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -370,23 +380,24 @@ def get_parser():
|
||||
modified_beam_search_LODR.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--blank-penalty",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="""
|
||||
The penalty applied on blank symbol during decoding.
|
||||
Note: It is a positive value that would be applied to logits like
|
||||
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
|
||||
[batch_size, vocab] and blank id is 0).
|
||||
""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
def asr_text_post_processing(inp):
|
||||
return inp
|
||||
|
||||
|
||||
def post_processing(
|
||||
results: List[Tuple[str, List[str], List[str]]],
|
||||
) -> List[Tuple[str, List[str], List[str]]]:
|
||||
new_results = []
|
||||
for key, ref, hyp in results:
|
||||
new_ref = asr_text_post_processing(" ".join(ref)).split()
|
||||
new_hyp = asr_text_post_processing(" ".join(hyp)).split()
|
||||
new_results.append((key, new_ref, new_hyp))
|
||||
return new_results
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
@ -470,10 +481,9 @@ def decode_one_batch(
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(sp.text2word(hyp))
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
hyp_tokens = fast_beam_search_nbest_LG(
|
||||
model=model,
|
||||
@ -485,7 +495,6 @@ def decode_one_batch(
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append([word_table[i] for i in hyp])
|
||||
@ -500,10 +509,9 @@ def decode_one_batch(
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(sp.text2word(hyp))
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||
model=model,
|
||||
@ -516,19 +524,17 @@ def decode_one_batch(
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=sp.encode(supervisions["text"]),
|
||||
nbest_scale=params.nbest_scale,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(sp.text2word(hyp))
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(sp.text2word(hyp))
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
@ -536,10 +542,9 @@ def decode_one_batch(
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
context_graph=context_graph,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(sp.text2word(hyp))
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_lm_shallow_fusion":
|
||||
hyp_tokens = modified_beam_search_lm_shallow_fusion(
|
||||
model=model,
|
||||
@ -549,7 +554,7 @@ def decode_one_batch(
|
||||
LM=LM,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(sp.text2word(hyp))
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_LODR":
|
||||
hyp_tokens = modified_beam_search_LODR(
|
||||
model=model,
|
||||
@ -562,7 +567,7 @@ def decode_one_batch(
|
||||
context_graph=context_graph,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(sp.text2word(hyp))
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_lm_rescore":
|
||||
lm_scale_list = [0.01 * i for i in range(10, 50)]
|
||||
ans_dict = modified_beam_search_lm_rescore(
|
||||
@ -608,9 +613,8 @@ def decode_one_batch(
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.text2word(sp.decode(hyp)))
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
key = f"blank_penalty_{params.blank_penalty}"
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif "fast_beam_search" in params.decoding_method:
|
||||
@ -714,7 +718,7 @@ def decode_dataset(
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = sp.text2word(ref_text)
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
@ -738,6 +742,7 @@ def save_results(
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = post_processing(results)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
@ -776,7 +781,7 @@ def save_results(
|
||||
def main():
|
||||
parser = get_parser()
|
||||
MLSEnglishHFAsrDataModule.add_arguments(parser)
|
||||
Tokenizer.add_arguments(parser)
|
||||
LmScorer.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
@ -847,8 +852,6 @@ def main():
|
||||
f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}"
|
||||
)
|
||||
|
||||
params.suffix += f"-blank-penalty-{params.blank_penalty}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
@ -861,9 +864,13 @@ def main():
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = Tokenizer.load(Path(args.lang_dir), "bpe")
|
||||
# sp = spm.SentencePieceProcessor()
|
||||
# sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> are defined in local/prepare_lang_char.py
|
||||
sp = Tokenizer.load(Path(args.lang_dir), "bpe") # force bpe model
|
||||
|
||||
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
@ -1022,9 +1029,9 @@ def main():
|
||||
if os.path.exists(params.context_file):
|
||||
contexts = []
|
||||
for line in open(params.context_file).readlines():
|
||||
contexts.append((sp.encode(line.strip()), 0.0))
|
||||
contexts.append(line.strip())
|
||||
context_graph = ContextGraph(params.context_score)
|
||||
context_graph.build(contexts)
|
||||
context_graph.build(sp.encode(contexts))
|
||||
else:
|
||||
context_graph = None
|
||||
else:
|
||||
@ -1038,16 +1045,21 @@ def main():
|
||||
mls_english_corpus = MLSEnglishHFAsrDataModule(args)
|
||||
mls_english_corpus.load_hf_dataset("/root/datasets/parler-tts--mls_eng")
|
||||
|
||||
# dev_cuts = mls_english_corpus.dev_cuts()
|
||||
test_cuts = mls_english_corpus.test_cuts()
|
||||
|
||||
for subdir in ["valid"]:
|
||||
# dev_dl = mls_english_corpus.test_dataloaders(dev_cuts)
|
||||
test_dl = mls_english_corpus.test_dataloaders(test_cuts)
|
||||
|
||||
test_sets = ["test"]
|
||||
test_dls = [test_dl]
|
||||
|
||||
# test_sets = ["dev", "test"]
|
||||
# test_dls = [dev_dl, test_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dls):
|
||||
results_dict = decode_dataset(
|
||||
dl = mls_english_corpus.test_dataloaders(
|
||||
test_cuts,
|
||||
),
|
||||
# dl=mls_english_corpus.test_dataloaders(
|
||||
# getattr(mls_english_corpus, f"{subdir}_cuts")()
|
||||
# ),
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
@ -1058,22 +1070,12 @@ def main():
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
)
|
||||
tot_err = save_results(
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=subdir,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
# with (
|
||||
# params.res_dir
|
||||
# / (
|
||||
# f"{subdir}-{params.decode_chunk_len}_{params.beam_size}"
|
||||
# f"_{params.avg}_{params.epoch}.cer"
|
||||
# )
|
||||
# ).open("w") as fout:
|
||||
# if len(tot_err) == 1:
|
||||
# fout.write(f"{tot_err[0][1]}")
|
||||
# else:
|
||||
# fout.write("\n".join(f"{k}\t{v}") for k, v in tot_err)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user