mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-02 21:54:18 +00:00
Add prepare pinyin
This commit is contained in:
parent
63c6dd90f5
commit
a42d87364e
275
egs/wenetspeech/ASR/local/prepare_pinyin.py
Executable file
275
egs/wenetspeech/ASR/local/prepare_pinyin.py
Executable file
@ -0,0 +1,275 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script takes as input `lang_dir`, which should contain::
|
||||
- lang_dir/words.txt
|
||||
and generates the following files in the directory `lang_dir`:
|
||||
- lexicon.txt
|
||||
- lexicon_disambig.txt
|
||||
- L.pt
|
||||
- L_disambig.pt
|
||||
- tokens.txt
|
||||
"""
|
||||
import argparse
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from prepare_lang import (
|
||||
Lexicon,
|
||||
add_disambig_symbols,
|
||||
add_self_loops,
|
||||
write_lexicon,
|
||||
write_mapping,
|
||||
)
|
||||
from icefall.utils import text_to_pinyin
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Prepare lang for pinyin",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
|
||||
parser.add_argument("--lang-dir", type=str, help="The lang directory.")
|
||||
|
||||
parser.add_argument(
|
||||
"--token-type",
|
||||
default="full_with_tone",
|
||||
type=str,
|
||||
help="""The type of pinyin, should be in:
|
||||
full_with_tone: zhōng guó
|
||||
full_no_tone: zhong guo
|
||||
partial_with_tone: zh ōng g uó
|
||||
partial_no_tone: zh ong g uo
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--pinyin-errors",
|
||||
default="split",
|
||||
type=str,
|
||||
help="""How to handle characters that has no pinyin,
|
||||
see `text_to_pinyin` in icefall/utils.py for details
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def lexicon_to_fst_no_sil(
|
||||
lexicon: Lexicon,
|
||||
token2id: Dict[str, int],
|
||||
word2id: Dict[str, int],
|
||||
need_self_loops: bool = False,
|
||||
) -> k2.Fsa:
|
||||
"""Convert a lexicon to an FST (in k2 format).
|
||||
Args:
|
||||
lexicon:
|
||||
The input lexicon. See also :func:`read_lexicon`
|
||||
token2id:
|
||||
A dict mapping tokens to IDs.
|
||||
word2id:
|
||||
A dict mapping words to IDs.
|
||||
need_self_loops:
|
||||
If True, add self-loop to states with non-epsilon output symbols
|
||||
on at least one arc out of the state. The input label for this
|
||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||
Returns:
|
||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||
"""
|
||||
loop_state = 0 # words enter and leave from here
|
||||
next_state = 1 # the next un-allocated state, will be incremented as we go
|
||||
|
||||
arcs = []
|
||||
|
||||
# The blank symbol <blk> is defined in local/train_bpe_model.py
|
||||
assert token2id["<blk>"] == 0
|
||||
assert word2id["<eps>"] == 0
|
||||
|
||||
eps = 0
|
||||
|
||||
for word, pieces in lexicon:
|
||||
assert len(pieces) > 0, f"{word} has no pronunciations"
|
||||
cur_state = loop_state
|
||||
|
||||
word = word2id[word]
|
||||
pieces = [token2id[i] if i in token2id else token2id["<unk>"] for i in pieces]
|
||||
|
||||
for i in range(len(pieces) - 1):
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, next_state, pieces[i], w, 0])
|
||||
|
||||
cur_state = next_state
|
||||
next_state += 1
|
||||
|
||||
# now for the last piece of this word
|
||||
i = len(pieces) - 1
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, loop_state, pieces[i], w, 0])
|
||||
|
||||
if need_self_loops:
|
||||
disambig_token = token2id["#0"]
|
||||
disambig_word = word2id["#0"]
|
||||
arcs = add_self_loops(
|
||||
arcs,
|
||||
disambig_token=disambig_token,
|
||||
disambig_word=disambig_word,
|
||||
)
|
||||
|
||||
final_state = next_state
|
||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||
arcs.append([final_state])
|
||||
|
||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||
arcs = [" ".join(arc) for arc in arcs]
|
||||
arcs = "\n".join(arcs)
|
||||
|
||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||
return fsa
|
||||
|
||||
|
||||
def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
|
||||
"""Check if all the given tokens are in token symbol table.
|
||||
Args:
|
||||
token_sym_table:
|
||||
Token symbol table that contains all the valid tokens.
|
||||
tokens:
|
||||
A list of tokens.
|
||||
Returns:
|
||||
Return True if there is any token not in the token_sym_table,
|
||||
otherwise False.
|
||||
"""
|
||||
for tok in tokens:
|
||||
if tok not in token_sym_table:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def generate_lexicon(
|
||||
args, token_sym_table: Dict[str, int], words: List[str]
|
||||
) -> Lexicon:
|
||||
"""Generate a lexicon from a word list and token_sym_table.
|
||||
Args:
|
||||
token_sym_table:
|
||||
Token symbol table that mapping token to token ids.
|
||||
words:
|
||||
A list of strings representing words.
|
||||
Returns:
|
||||
Return a dict whose keys are words and values are the corresponding
|
||||
tokens.
|
||||
"""
|
||||
lexicon = []
|
||||
for word in words:
|
||||
tokens = text_to_pinyin(
|
||||
word.strip(), mode=args.token_type, errors=args.pinyin_errors
|
||||
)
|
||||
if contain_oov(token_sym_table, tokens):
|
||||
print(f"Word : {word} contains OOV token, skipping.")
|
||||
continue
|
||||
lexicon.append((word, tokens))
|
||||
|
||||
# The OOV word is <UNK>
|
||||
lexicon.append(("<UNK>", ["<unk>"]))
|
||||
return lexicon
|
||||
|
||||
|
||||
def generate_tokens(args, words: List[str]) -> Dict[str, int]:
|
||||
"""Generate tokens from the given word list.
|
||||
Args:
|
||||
words:
|
||||
A list that contains words to generate tokens.
|
||||
Returns:
|
||||
Return a dict whose keys are tokens and values are token ids ranged
|
||||
from 0 to len(keys) - 1.
|
||||
"""
|
||||
tokens: Dict[str, int] = dict()
|
||||
tokens["<blk>"] = 0
|
||||
tokens["<sos/eos>"] = 1
|
||||
tokens["<unk>"] = 2
|
||||
for word in words:
|
||||
word = word.strip()
|
||||
tokens_list = text_to_pinyin(
|
||||
word, mode=args.token_type, errors=args.pinyin_errors
|
||||
)
|
||||
for token in tokens_list:
|
||||
if token not in tokens:
|
||||
tokens[token] = len(tokens)
|
||||
return tokens
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
lang_dir = Path(args.lang_dir)
|
||||
|
||||
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
|
||||
words = word_sym_table.symbols
|
||||
|
||||
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>", "#0", "<s>", "</s>"]
|
||||
for w in excluded:
|
||||
if w in words:
|
||||
words.remove(w)
|
||||
|
||||
token_sym_table = generate_tokens(args, words)
|
||||
|
||||
lexicon = generate_lexicon(args, token_sym_table, words)
|
||||
|
||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||
|
||||
next_token_id = max(token_sym_table.values()) + 1
|
||||
for i in range(max_disambig + 1):
|
||||
disambig = f"#{i}"
|
||||
assert disambig not in token_sym_table
|
||||
token_sym_table[disambig] = next_token_id
|
||||
next_token_id += 1
|
||||
|
||||
word_sym_table.add("#0")
|
||||
word_sym_table.add("<s>")
|
||||
word_sym_table.add("</s>")
|
||||
|
||||
write_mapping(lang_dir / "tokens.txt", token_sym_table)
|
||||
|
||||
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||
|
||||
L = lexicon_to_fst_no_sil(
|
||||
lexicon,
|
||||
token2id=token_sym_table,
|
||||
word2id=word_sym_table,
|
||||
)
|
||||
|
||||
L_disambig = lexicon_to_fst_no_sil(
|
||||
lexicon_disambig,
|
||||
token2id=token_sym_table,
|
||||
word2id=word_sym_table,
|
||||
need_self_loops=True,
|
||||
)
|
||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -364,4 +364,17 @@ if [ $stage -le 21 ] && [ $stop_stage -ge 21 ]; then
|
||||
--lm-data-valid data/lm_char/sorted_lm_data-valid.pt \
|
||||
--vocab-size 5537 \
|
||||
--master-port 12340
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 22 ] && [ $stop_stage -ge 22 ]; then
|
||||
log "Stage 22: Prepare pinyin based lang"
|
||||
for token in full_with_tone partial_with_tone; do
|
||||
lang_dir=data/lang_${token}
|
||||
if [ ! -f $lang_dir/tokens.txt ]; then
|
||||
cp data/lang_char/words.txt $lang_dir/words.txt
|
||||
python local/prepare_pinyin.py \
|
||||
--token-type $token \
|
||||
--lang-dir $lang_dir
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
Loading…
x
Reference in New Issue
Block a user