add attention_decoder

This commit is contained in:
yaozengwei 2023-01-10 22:57:41 +08:00
parent 9096408f4d
commit a413ccfcec
3 changed files with 738 additions and 0 deletions

View File

@ -0,0 +1,736 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import logging
import math
import random
from typing import List, Tuple
import k2
import torch
import torch.nn as nn
from label_smoothing import LabelSmoothingLoss
from scaling import (
ActivationBalancer,
BasicNorm,
DoubleSwish,
Identity,
MaxEig,
ScaledConv1d,
ScaledLinear,
Whiten,
_diag,
penalize_abs_values_gt,
random_clamp,
softmax,
)
from zipformer import FeedforwardModule
from icefall.utils import add_eos, add_sos, make_pad_mask
class AttentionDecoderModel(nn.Module):
"""
Args:
vocab_size (int): Number of classes.
encoder_dim (int):
d_model: (int,int): embedding dimension of 2 encoder stacks
attention_dim: (int,int): attention dimension of 2 encoder stacks
nhead (int, int): number of heads
dim_feedforward (int, int): feedforward dimension in 2 encoder stacks
num_encoder_layers (int): number of encoder layers
dropout (float): dropout rate
cnn_module_kernel (int): Kernel size of convolution module
vgg_frontend (bool): whether to use vgg frontend.
warmup_batches (float): number of batches to warm up over
"""
def __init__(
self,
vocab_size: int,
d_model: int,
unmasked_dim: int,
num_decoder_layers: int,
attention_dim: int,
nhead: int,
feedforward_dim: int,
dropout: float,
sos_id: int,
eos_id: int,
ignore_id: int = -1,
warmup_batches: float = 4000.0,
label_smoothing: float = 0.1,
):
super().__init__()
self.eos_id = eos_id
self.sos_id = sos_id
self.ignore_id = ignore_id
# For the segment of the warmup period, we let the Embedding
# layer learn something. Then we start to warm up the other encoders.
self.decoder = TransformerDecoder(
vocab_size,
d_model,
unmasked_dim,
num_decoder_layers,
attention_dim,
nhead,
feedforward_dim,
dropout,
warmup_begin=warmup_batches * 0.5,
warmup_end=warmup_batches * 1.0,
)
# Used to calculate attention-decoder loss
self.loss_fun = LabelSmoothingLoss(
ignore_index=ignore_id, label_smoothing=label_smoothing, reduction="sum"
)
def _pre_ys_in_out(self, token_ids: List[List[int]], device: torch.device):
"""Prepare ys_in_pad and ys_out_pad."""
ys = k2.RaggedTensor(token_ids).to(device=device)
row_splits = ys.shape.row_splits(1)
ys_lens = row_splits[1:] - row_splits[:-1]
ys_in = add_sos(ys, sos_id=self.sos_id)
# [B, S+1], start with SOS
ys_in_pad = ys_in.pad(mode="constant", padding_value=self.eos_id)
ys_in_lens = ys_lens + 1
ys_out = add_eos(ys, eos_id=self.eos_id)
# [B, S+1], end with EOS
ys_out_pad = ys_out.pad(mode="constant", padding_value=self.ignore_id)
return ys_in_pad.to(torch.int64), ys_in_lens, ys_out_pad.to(torch.int64)
def calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
token_ids: List[List[int]],
) -> torch.Tensor:
"""Calculate attention-decoder loss.
Args:
encoder_out: (batch, num_frames, encoder_dim)
encoder_out_lens: (batch,)
token_ids: A list of token id list.
Return: The attention-decoder loss.
"""
ys_in_pad, ys_in_lens, ys_out_pad = self._pre_ys_in_out(
token_ids, encoder_out.device
)
# decoder forward
decoder_out = self.decoder(encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens)
loss = self.loss_fun(x=decoder_out, target=ys_out_pad)
return loss
def nll(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
token_ids: List[List[int]],
) -> torch.Tensor:
"""Compute negative log likelihood(nll) from attention-decoder.
Args:
encoder_out: (batch, num_frames, encoder_dim)
encoder_out_lens: (batch,)
token_ids: A list of token id list.
Return: A tensor of shape (batch,).
"""
ys_in_pad, ys_in_lens, ys_out_pad = self._pre_ys_in_out(
token_ids, encoder_out.device
)
# decoder forward
decoder_out = self.decoder(encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens)
batch_size, _, num_classes = decoder_out.size()
nll = nn.functional.cross_entropy(
decoder_out.view(-1, num_classes),
ys_out_pad.view(-1),
ignore_index=self.ignore_id,
reduction="None",
)
nll = nll.view(batch_size, -1)
nll = nll.sum(1)
return nll
class TransformerDecoder(nn.Module):
"""Transfomer decoder module.
It is modified from https://github.com/espnet/espnet/blob/master/espnet2/asr/decoder/transformer_decoder.py.
Args:
vocab_size: output dim
d_model: equal to encoder_dim
num_decoder_layers: number of decoder layers
attention_dim: total dimension of multi head attention
n_head: number of attention heads
feedforward_dim: hidden dimension of feed_forward module
dropout: dropout rate
"""
def __init__(
self,
vocab_size: int,
d_model: int,
unmasked_dim: int,
num_decoder_layers: int,
attention_dim: int,
nhead: int,
feedforward_dim: int,
dropout: float,
warmup_begin: float,
warmup_end: float,
):
super().__init__()
self.unmasked_dim = unmasked_dim
self.embed = nn.Embedding(num_embeddings=vocab_size, embedding_dim=d_model)
# Using absolute positional encoding
self.pos = PositionalEncoding(d_model, dropout_rate=0.1)
self.num_layers = num_decoder_layers
self.layers = nn.ModuleList(
[
DecoderLayer(d_model, attention_dim, nhead, feedforward_dim, dropout)
for _ in range(num_decoder_layers)
]
)
self.output_layer = nn.Linear(d_model, vocab_size)
# will be written to, see set_batch_count() Note: in inference time this
# may be zero but should be treated as large, we can check if
# self.training is true.
self.batch_count = 0
assert 0 <= warmup_begin <= warmup_end, (warmup_begin, warmup_end)
self.warmup_begin = warmup_begin
self.warmup_end = warmup_end
# module_seed is for when we need a random number that is unique to the module but
# shared across jobs. It's used to randomly select how many layers to drop,
# so that we can keep this consistent across worker tasks (for efficiency).
self.module_seed = torch.randint(0, 1000, ()).item()
delta = (1.0 / num_decoder_layers) * (warmup_end - warmup_begin)
cur_begin = warmup_begin
for i in range(num_decoder_layers):
self.layers[i].warmup_begin = cur_begin
cur_begin += delta
self.layers[i].warmup_end = cur_begin
def get_layers_to_drop(self, rnd_seed: int):
ans = set()
if not self.training:
return ans
batch_count = self.batch_count
num_layers = len(self.layers)
def get_layerdrop_prob(layer: int) -> float:
layer_warmup_begin = self.layers[layer].warmup_begin
layer_warmup_end = self.layers[layer].warmup_end
initial_layerdrop_prob = 0.5
final_layerdrop_prob = 0.05
if batch_count == 0:
# As a special case, if batch_count == 0, return 0 (drop no
# layers). This is rather ugly, I'm afraid; it is intended to
# enable our scan_pessimistic_batches_for_oom() code to work correctly
# so if we are going to get OOM it will happen early.
# also search for 'batch_count' with quotes in this file to see
# how we initialize the warmup count to a random number between
# 0 and 10.
return 0.0
elif batch_count < layer_warmup_begin:
return initial_layerdrop_prob
elif batch_count > layer_warmup_end:
return final_layerdrop_prob
else:
# linearly interpolate
t = (batch_count - layer_warmup_begin) / layer_warmup_end
assert 0.0 <= t < 1.001, t
return initial_layerdrop_prob + t * (
final_layerdrop_prob - initial_layerdrop_prob
)
shared_rng = random.Random(batch_count + self.module_seed)
independent_rng = random.Random(rnd_seed)
layerdrop_probs = [get_layerdrop_prob(i) for i in range(num_layers)]
tot = sum(layerdrop_probs)
# Instead of drawing the samples independently, we first randomly decide
# how many layers to drop out, using the same random number generator between
# jobs so that all jobs drop out the same number (this is for speed).
# Then we use an approximate approach to drop out the individual layers
# with their specified probs while reaching this exact target.
num_to_drop = int(tot) + int(shared_rng.random() < (tot - int(tot)))
layers = list(range(num_layers))
independent_rng.shuffle(layers)
# go through the shuffled layers until we get the required number of samples.
if num_to_drop > 0:
for layer in itertools.cycle(layers):
if independent_rng.random() < layerdrop_probs[layer]:
ans.add(layer)
if len(ans) == num_to_drop:
break
if shared_rng.random() < 0.005 or __name__ == "__main__":
logging.info(
f"warmup_begin={self.warmup_begin:.1f}, warmup_end={self.warmup_end:.1f}, "
f"batch_count={batch_count:.1f}, num_to_drop={num_to_drop}, layers_to_drop={ans}"
)
return ans
def get_feature_mask(self, x: torch.Tensor) -> float:
# Note: The actual return type is Union[List[float], List[Tensor]],
# but to make torch.jit.script() work, we use List[float]
"""
In eval mode, returns [1.0] * num_encoders; in training mode, returns a number of
randomized feature masks, one per encoder.
On e.g. 15% of frames, these masks will zero out all enocder dims larger than
some supplied number, e.g. >256, so in effect on those frames we are using
a smaller encoer dim.
We generate the random masks at this level because we want the 2 masks to 'agree'
all the way up the encoder stack. This will mean that the 1st mask will have
mask values repeated self.zipformer_subsampling_factor times.
Args:
x: the embeddings (needed for the shape and dtype and device), of shape
(num_frames, batch_size, encoder_dims0)
"""
if torch.jit.is_scripting() or not self.training or torch.jit.is_tracing():
return 1.0
batch_size, num_frames, d_model = x.size()
feature_mask_dropout_prob = 0.15
frame_mask = (
torch.rand(batch_size, num_frames, 1, device=x.device)
> feature_mask_dropout_prob
).to(x.dtype)
feature_mask = torch.ones(
batch_size, num_frames, d_model, dtype=x.dtype, device=x.device
)
feature_mask[:, :, self.unmasked_dim :] *= frame_mask
return feature_mask
def forward(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward decoder.
Args:
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
hlens: (batch)
ys_in_pad:
input token ids, int64 (batch, maxlen_out)
if input_layer == "embed"
input tensor (batch, maxlen_out, #mels) in the other cases
ys_in_lens: (batch)
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, token)
if use_output_layer is True,
olens: (batch, )
"""
tgt = ys_in_pad
# tgt_mask: (B, 1, L)
tgt_mask = (~make_pad_mask(ys_in_lens)[:, None, :]).to(tgt.device)
# m: (1, L, L)
m = subsequent_mask(tgt_mask.size(-1), device=tgt_mask.device).unsqueeze(0)
# tgt_mask: (B, L, L)
tgt_mask = tgt_mask & m
memory = hs_pad
memory_mask = (~make_pad_mask(hlens))[:, None, :].to(memory.device)
tgt = self.embed(tgt)
tgt = self.pos(tgt)
rnd_seed = tgt.numel() + random.randint(0, 1000)
layers_to_drop = self.get_layers_to_drop(rnd_seed)
feature_mask = self.get_feature_mask(tgt)
for i, mod in enumerate(self.layers):
if i in layers_to_drop:
continue
tgt = mod(tgt, tgt_mask, memory, memory_mask)
tgt = tgt * feature_mask
tgt = self.output_layer(tgt)
return tgt
class DecoderLayer(nn.Module):
"""Single decoder layer module.
Args:
d_model: equal to encoder_dim
attention_dim: total dimension of multi head attention
n_head: number of attention heads
feedforward_dim: hidden dimension of feed_forward module
dropout: dropout rate
"""
def __init__(
self,
d_model: int,
attention_dim: int,
nhead: int,
feedforward_dim: int = 2048,
dropout: float = 0.1,
):
"""Construct an DecoderLayer object."""
super(DecoderLayer, self).__init__()
# will be written to, see set_batch_count()
self.batch_count = 0
self.self_attn = MultiHeadedAttention(
d_model, attention_dim, nhead, dropout=0.0
)
self.src_attn = MultiHeadedAttention(d_model, attention_dim, nhead, dropout=0.0)
self.feed_forward = FeedforwardModule(d_model, feedforward_dim, dropout)
self.norm_final = BasicNorm(d_model)
self.bypass_scale = nn.Parameter(torch.tensor(0.5))
# try to ensure the output is close to zero-mean (or at least, zero-median).
self.balancer = ActivationBalancer(
d_model,
channel_dim=-1,
min_positive=0.45,
max_positive=0.55,
max_abs=6.0,
)
self.whiten = Whiten(
num_groups=1, whitening_limit=5.0, prob=(0.025, 0.25), grad_scale=0.01
)
def get_bypass_scale(self):
if torch.jit.is_scripting() or not self.training or torch.jit.is_tracing():
return self.bypass_scale
if random.random() < 0.1:
# ensure we get grads if self.bypass_scale becomes out of range
return self.bypass_scale
# hardcode warmup period for bypass scale
warmup_period = 20000.0
initial_clamp_min = 0.75
final_clamp_min = 0.25
if self.batch_count > warmup_period:
clamp_min = final_clamp_min
else:
clamp_min = initial_clamp_min - (self.batch_count / warmup_period) * (
initial_clamp_min - final_clamp_min
)
return self.bypass_scale.clamp(min=clamp_min, max=1.0)
def get_dynamic_dropout_rate(self):
# return dropout rate for the dynamic modules (self_attn, src_attn, feed_forward); this
# starts at 0.2 and rapidly decreases to 0. Its purpose is to keep the training stable
# at the beginning, by making the network focus on the feedforward modules.
if torch.jit.is_scripting() or not self.training or torch.jit.is_tracing():
return 0.0
warmup_period = 2000.0
initial_dropout_rate = 0.2
final_dropout_rate = 0.0
if self.batch_count > warmup_period:
return final_dropout_rate
else:
return initial_dropout_rate - (
initial_dropout_rate * final_dropout_rate
) * (self.batch_count / warmup_period)
def forward(self, tgt, tgt_mask, memory, memory_mask):
"""Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
Returns:
torch.Tensor: Output tensor(#batch, maxlen_out, size).
"""
tgt_orig = tgt
# dropout rate for submodules that interact with time.
dynamic_dropout = self.get_dynamic_dropout_rate()
# self-attn module
if random.random() >= dynamic_dropout:
tgt = tgt + self.self_attn(tgt, tgt, tgt, tgt_mask)
# cross-attn module
if random.random() >= dynamic_dropout:
tgt = tgt + self.src_attn(tgt, memory, memory, memory_mask)
# feed-forward module
tgt = tgt + self.feed_forward(tgt)
tgt = self.norm_final(self.balancer(tgt))
delta = tgt - tgt_orig
tgt = tgt_orig + delta * self.get_bypass_scale()
return self.whiten(tgt)
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer.
Args:
embed_dim: total dimension of the model.
attention_dim: dimension in the attention module, may be less or more than embed_dim
but must be a multiple of num_heads.
num_heads: parallel attention heads.
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
"""
def __init__(
self, embed_dim: int, attention_dim: int, num_heads: int, dropout: float = 0.0
):
"""Construct an MultiHeadedAttention object."""
super(MultiHeadedAttention, self).__init__()
self.embed_dim = embed_dim
self.attention_dim = attention_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = attention_dim // num_heads
assert self.head_dim % 2 == 0, self.head_dim
assert self.head_dim * num_heads == attention_dim, (
self.head_dim,
num_heads,
attention_dim,
)
# the initial_scale is supposed to take over the "scaling" factor of
# head_dim ** -0.5, dividing it between the query and key.
self.linear_q = ScaledLinear(
embed_dim, attention_dim, bias=True, initial_scale=self.head_dim**-0.25
)
self.linear_k = ScaledLinear(
embed_dim, attention_dim, bias=True, initial_scale=self.head_dim**-0.25
)
self.linear_v = ScaledLinear(
embed_dim,
attention_dim // 2,
bias=True,
initial_scale=self.head_dim**-0.25,
)
# self.whiten_v is applied on the values in forward();
# it just copies the keys but prevents low-rank distribution by modifying grads.
self.whiten_v = Whiten(
num_groups=num_heads,
whitening_limit=2.0,
prob=(0.025, 0.25),
grad_scale=0.025,
)
self.whiten_k = Whiten(
num_groups=num_heads,
whitening_limit=2.0,
prob=(0.025, 0.25),
grad_scale=0.025,
)
# the following are for diagnosics only, see --print-diagnostics option.
# they only copy their inputs.
self.copy_pos_query = Identity()
self.copy_query = Identity()
self.out_proj = ScaledLinear(
attention_dim // 2, embed_dim, bias=True, initial_scale=0.05
)
def forward(self, query, key, value, mask):
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
bsz, tgt_len, _ = query.size()
src_len = key.size(1)
num_heads = self.num_heads
head_dim = self.head_dim
q = self.linear_q(query)
k = self.linear_k(key)
v = self.linear_v(value)
q = self.copy_query(q) # for diagnostics only, does nothing.
k = self.whiten_k(k) # does nothing in the forward pass.
v = self.whiten_v(v) # does nothing in the forward pass.
q = q.reshape(bsz, tgt_len, num_heads, head_dim)
q = q.transpose(1, 2) # (batch, head, time1, head_dim)
k = k.reshape(bsz, src_len, num_heads, head_dim)
k = k.permute(0, 2, 3, 1) # (batch, head, head_dim, time2)
v = v.reshape(bsz, src_len, num_heads, head_dim // 2)
v = v.transpose(1, 2).reshape(bsz * num_heads, src_len, head_dim // 2)
# (batch, head, time1, time2)
attn_output_weights = torch.matmul(q, k)
if mask is not None:
attn_output_weights = attn_output_weights.masked_fill(
mask.unsqueeze(1), float("-inf")
)
attn_output_weights = attn_output_weights.view(
bsz * num_heads, tgt_len, src_len
)
# Using this version of softmax, defined in scaling.py,
# should save a little of the memory used in backprop by, if
# we are in automatic mixed precision mode (amp) == autocast,
# only storing the half-precision output for backprop purposes.
attn_output_weights = softmax(attn_output_weights, dim=-1)
attn_output_weights = nn.functional.dropout(
attn_output_weights, p=self.dropout, training=self.training
)
# (bsz * head, time1, head_dim_v)
attn_output = torch.bmm(attn_output_weights, v)
assert attn_output.shape == (bsz * num_heads, tgt_len, head_dim // 2)
attn_output = (
attn_output.reshape(bsz, num_heads, tgt_len, head_dim // 2)
.transpose(1, 2)
.reshape(bsz, tgt_len, self.attention_dim // 2)
)
attn_output = self.out_proj(attn_output)
return attn_output
class PositionalEncoding(nn.Module):
"""Positional encoding.
Copied from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py#L35.
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
"""
def __init__(self, d_model, dropout_rate, max_len=5000):
"""Construct an PositionalEncoding object."""
super(PositionalEncoding, self).__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x)
x = x * self.xscale + self.pe[:, : x.size(1)]
return self.dropout(x)
def subsequent_mask(size, device="cpu", dtype=torch.bool):
"""Create mask for subsequent steps (size, size).
:param int size: size of mask
:param str device: "cpu" or "cuda" or torch.Tensor.device
:param torch.dtype dtype: result dtype
:rtype: torch.Tensor
>>> subsequent_mask(3)
[[1, 0, 0],
[1, 1, 0],
[1, 1, 1]]
"""
ret = torch.ones(size, size, device=device, dtype=dtype)
return torch.tril(ret, out=ret)
def _test_attention_decoder_model():
m = AttentionDecoderModel(
vocab_size=500,
d_model=384,
unmasked_dim=256,
num_decoder_layers=6,
attention_dim=192,
nhead=8,
feedforward_dim=2048,
dropout=0,
sos_id=1,
eos_id=1,
ignore_id=-1,
)
encoder_out = torch.randn(2, 100, 384)
encoder_out_lens = torch.full((2,), 100)
token_ids = [[1, 2], [2, 3, 10]]
loss = m.calc_att_loss(encoder_out, encoder_out_lens, token_ids)
if __name__ == "__main__":
_test_attention_decoder_model()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/encoder_interface.py

View File

@ -0,0 +1 @@
../conformer_ctc/label_smoothing.py