update result

This commit is contained in:
Yuekai Zhang 2022-07-11 14:35:39 +00:00
parent dc40220951
commit a2b54cca10
5 changed files with 181 additions and 232 deletions

View File

@ -0,0 +1,19 @@
# Introduction
This recipe includes some different ASR models trained with Aishell2.
[./RESULTS.md](./RESULTS.md) contains the latest results.
# Transducers
There are various folders containing the name `transducer` in this folder.
The following table lists the differences among them.
| | Encoder | Decoder | Comment |
|---------------------------------------|---------------------|--------------------|-----------------------------|
| `pruned_transducer_stateless5` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + more layers + random combiner |
The decoder in `transducer_stateless` is modified from the paper
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/).
We place an additional Conv1d layer right after the input embedding layer.

View File

@ -0,0 +1,72 @@
## Results
### Aishell2 char-based training results (Pruned Transducer 5)
#### 2022-07-11
Using the codes from this commit https://github.com/k2-fsa/icefall/pull/461.
When training with context size equals to 1, the WERs are
| | dev-ios | test-ios | comment |
|------------------------------------|-------|----------|----------------------------------|
| greedy search | | | --epoch 10, --avg 2, --max-duration 100 |
| modified beam search (beam size 4) | | | --epoch 10, --avg 2, --max-duration 100 |
| fast beam search (set as default) | | | --epoch 10, --avg 2, --max-duration 1500 |
The training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless5/train.py \
--world-size 4 \
--lang-dir data/lang_char \
--num-epochs 40 \
--start-epoch 1 \
--exp-dir /result \
--max-duration 300 \
--use-fp16 0 \
--num-encoder-layers 24 \
--dim-feedforward 1536 \
--nhead 8 \
--encoder-dim 384 \
--decoder-dim 512 \
--joiner-dim 512
```
The decoding command is:
```
for method in greedy_search modified_beam_search fast_beam_search; do
./pruned_transducer_stateless5/decode.py \
--epoch 25 \
--avg 5 \
--exp-dir /result \
--max-duration 600 \
--decoding-method $method \
--max-sym-per-frame 1 \
--num-encoder-layers 24 \
--dim-feedforward 1536 \
--nhead 8 \
--encoder-dim 384 \
--decoder-dim 512 \
--joiner-dim 512 \
--context-size 1 \
--use-averaged-model True
done
```
The tensorboard training log can be found at
https:
A pre-trained model and decoding logs can be found at <https:>
When training with context size equals to 2, the WERs are
| | dev-ios | test-ios | comment |
|------------------------------------|-------|----------|----------------------------------|
| greedy search | 5.47 | 5.81 | --epoch 25, --avg 5, --max-duration 600 |
| modified beam search (beam size 4) | 5.38 | 5.61 | --epoch 25, --avg 5, --max-duration 600 |
| fast beam search (set as default) | 5.36 | 5.61 | --epoch 25, --avg 5, --max-duration 600 |
The tensorboard training log can be found at
https://tensorboard.dev/experiment/5AxJ8LHoSre8kDAuLp4L7Q/#scalars

View File

@ -20,77 +20,32 @@
Usage:
(1) greedy search
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--epoch 25 \
--avg 5 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 600 \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method greedy_search
(2) beam search (not recommended)
(2) modified beam search
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--epoch 25 \
--avg 5 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 600 \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search (one best)
(3) fast beam search
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--epoch 25 \
--avg 5 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 600 \
--lang-dir data/lang_char \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
(5) fast beam search (nbest)
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
(6) fast beam search (nbest oracle WER)
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_oracle \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
(7) fast beam search (with LG)
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_LG \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
--beam 4 \
--max-contexts 4 \
--max-states 8
"""
@ -101,15 +56,11 @@ from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from asr_datamodule import AiShell2AsrDataModule
from beam_search import (
beam_search,
fast_beam_search_nbest,
fast_beam_search_nbest_LG,
fast_beam_search_nbest_oracle,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
@ -184,17 +135,10 @@ def get_parser():
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--lang-dir",
type=Path,
default="data/lang_bpe_500",
default="data/lang_char",
help="The lang dir containing word table and LG graph",
)
@ -268,7 +212,7 @@ def get_parser():
parser.add_argument(
"--context-size",
type=int,
default=2,
default=1,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
@ -306,9 +250,8 @@ def get_parser():
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
lexicon: Lexicon,
batch: dict,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
@ -326,8 +269,6 @@ def decode_one_batch(
It's the return value of :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
@ -367,51 +308,8 @@ def decode_one_batch(
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_nbest_LG":
hyp_tokens = fast_beam_search_nbest_LG(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
)
for hyp in hyp_tokens:
hyps.append([word_table[i] for i in hyp])
elif params.decoding_method == "fast_beam_search_nbest":
hyp_tokens = fast_beam_search_nbest(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_nbest_oracle":
hyp_tokens = fast_beam_search_nbest_oracle(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
ref_texts=sp.encode(supervisions["text"]),
nbest_scale=params.nbest_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif (
params.decoding_method == "greedy_search"
and params.max_sym_per_frame == 1
@ -421,8 +319,8 @@ def decode_one_batch(
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
@ -430,8 +328,8 @@ def decode_one_batch(
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
else:
batch_size = encoder_out.size(0)
@ -455,7 +353,7 @@ def decode_one_batch(
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append(sp.decode(hyp).split())
hyps.append([lexicon.token_table[idx] for idx in hyp])
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
@ -478,8 +376,7 @@ def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
word_table: Optional[k2.SymbolTable] = None,
lexicon: Lexicon,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
@ -491,10 +388,6 @@ def decode_dataset(
It is returned by :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
@ -525,9 +418,8 @@ def decode_dataset(
hyps_dict = decode_one_batch(
params=params,
model=model,
sp=sp,
lexicon=lexicon,
decoding_graph=decoding_graph,
word_table=word_table,
batch=batch,
)
@ -535,8 +427,7 @@ def decode_dataset(
this_batch = []
assert len(hyps) == len(texts)
for hyp_words, ref_text in zip(hyps, texts):
ref_words = ref_text.split()
this_batch.append((ref_words, hyp_words))
this_batch.append((ref_text, hyp_words))
results[name].extend(this_batch)
@ -598,7 +489,7 @@ def save_results(
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
AiShell2AsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
@ -607,11 +498,7 @@ def main():
assert params.decoding_method in (
"greedy_search",
"beam_search",
"fast_beam_search",
"fast_beam_search_nbest",
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
)
params.res_dir = params.exp_dir / params.decoding_method
@ -650,13 +537,10 @@ def main():
logging.info(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
lexicon = Lexicon(params.lang_dir)
params.blank_id = lexicon.token_table["<blk>"]
params.unk_id = lexicon.token_table["<unk>"]
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
@ -744,45 +628,31 @@ def main():
model.eval()
if "fast_beam_search" in params.decoding_method:
if params.decoding_method == "fast_beam_search_nbest_LG":
lexicon = Lexicon(params.lang_dir)
word_table = lexicon.word_table
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
)
decoding_graph.scores *= params.ngram_lm_scale
else:
word_table = None
decoding_graph = k2.trivial_graph(
params.vocab_size - 1, device=device
)
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
word_table = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
librispeech = LibriSpeechAsrDataModule(args)
aishell2 = AiShell2AsrDataModule(args)
test_clean_cuts = librispeech.test_clean_cuts()
test_other_cuts = librispeech.test_other_cuts()
valid_cuts = aishell2.valid_cuts()
test_cuts = aishell2.test_cuts()
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
# use ios sets for dev and test
dev_dl = aishell2.valid_dataloaders(valid_cuts)
test_dl = aishell2.test_dataloaders(test_cuts)
test_sets = ["test-clean", "test-other"]
test_dl = [test_clean_dl, test_other_dl]
test_sets = ["dev", "test"]
test_dl = [dev_dl, test_dl]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
sp=sp,
word_table=word_table,
lexicon=lexicon,
decoding_graph=decoding_graph,
)

View File

@ -22,9 +22,9 @@
Usage:
./pruned_transducer_stateless5/export.py \
--exp-dir ./pruned_transducer_stateless5/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10
--lang-dir data/lang_char
--epoch 25 \
--avg 5
It will generate a file exp_dir/pretrained.pt
@ -34,21 +34,20 @@ you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/librispeech/ASR
cd /path/to/egs/aishell2/ASR
./pruned_transducer_stateless5/decode.py \
--exp-dir ./pruned_transducer_stateless5/exp \
--epoch 9999 \
--avg 1 \
--max-duration 600 \
--decoding-method greedy_search \
--bpe-model data/lang_bpe_500/bpe.model
--lang-dir data/lang_char
"""
import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import torch
from train import add_model_arguments, get_params, get_transducer_model
@ -58,6 +57,7 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import str2bool
@ -115,10 +115,10 @@ def get_parser():
)
parser.add_argument(
"--bpe-model",
"--lang-dir",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
default="data/lang_char",
help="The lang dir",
)
parser.add_argument(
@ -132,7 +132,7 @@ def get_parser():
parser.add_argument(
"--context-size",
type=int,
default=2,
default=1,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
@ -155,12 +155,10 @@ def main():
logging.info(f"device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
lexicon = Lexicon(params.lang_dir)
params.blank_id = lexicon.token_table["<blk>"]
params.unk_id = lexicon.token_table["<unk>"]
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)

View File

@ -20,33 +20,24 @@ Usage:
(1) greedy search
./pruned_transducer_stateless5/pretrained.py \
--checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--lang-dir ./data/lang_char \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
(2) beam search
(2) modified beam search
./pruned_transducer_stateless5/pretrained.py \
--checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(3) modified beam search
./pruned_transducer_stateless5/pretrained.py \
--checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--lang-dir ./data/lang_char \
--method modified_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(4) fast beam search
(3) fast beam search
./pruned_transducer_stateless5/pretrained.py \
--checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--lang-dir ./data/lang_char \
--method fast_beam_search \
--beam-size 4 \
/path/to/foo.wav \
@ -66,7 +57,6 @@ from typing import List
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from beam_search import (
@ -79,6 +69,8 @@ from beam_search import (
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_params, get_transducer_model
from icefall.lexicon import Lexicon
def get_parser():
parser = argparse.ArgumentParser(
@ -95,9 +87,10 @@ def get_parser():
)
parser.add_argument(
"--bpe-model",
"--lang-dir",
type=str,
help="""Path to bpe.model.""",
help="""Path to lang.
""",
)
parser.add_argument(
@ -165,7 +158,7 @@ def get_parser():
parser.add_argument(
"--context-size",
type=int,
default=2,
default=1,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
@ -216,13 +209,10 @@ def main():
params.update(vars(args))
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
lexicon = Lexicon(params.lang_dir)
params.blank_id = lexicon.token_table["<blk>"]
params.unk_id = lexicon.token_table["<unk>"]
params.vocab_size = max(lexicon.tokens) + 1
logging.info(f"{params}")
@ -292,8 +282,8 @@ def main():
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif params.method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
@ -302,16 +292,16 @@ def main():
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
else:
for i in range(num_waves):
# fmt: off
@ -332,11 +322,11 @@ def main():
else:
raise ValueError(f"Unsupported method: {params.method}")
hyps.append(sp.decode(hyp).split())
hyps.append([lexicon.token_table[idx] for idx in hyp])
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
words = "".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)