mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
minor updates
This commit is contained in:
parent
d5da6abb49
commit
a1177c979a
47
.github/scripts/run-multi-corpora-zipformer.sh
vendored
47
.github/scripts/run-multi-corpora-zipformer.sh
vendored
@ -98,6 +98,53 @@ done
|
|||||||
|
|
||||||
rm -rf $repo
|
rm -rf $repo
|
||||||
|
|
||||||
|
log "==== Test icefall-asr-multi-zh-hans-zipformer-ctc-streaming-2023-11-05 ===="
|
||||||
|
repo_url=https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-ctc-streaming-2023-11-05/
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
git lfs install
|
||||||
|
git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
ln -s epoch-20.pt epoch-99.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
|
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--checkpoint $repo/exp/epoch-99.pt \
|
||||||
|
--tokens $repo/data/lang_bpe_2000/tokens.txt \
|
||||||
|
--use-ctc 1 \
|
||||||
|
--causal 1 \
|
||||||
|
--method greedy_search \
|
||||||
|
$repo/test_wavs/DEV_T0000000000.wav \
|
||||||
|
$repo/test_wavs/DEV_T0000000001.wav \
|
||||||
|
$repo/test_wavs/DEV_T0000000002.wav
|
||||||
|
|
||||||
|
for method in modified_beam_search fast_beam_search; do
|
||||||
|
log "$method"
|
||||||
|
|
||||||
|
./zipformer/pretrained.py \
|
||||||
|
--method $method \
|
||||||
|
--beam-size 4 \
|
||||||
|
--use-ctc 1 \
|
||||||
|
--causal 1 \
|
||||||
|
--checkpoint $repo/exp/epoch-99.pt \
|
||||||
|
--tokens $repo/data/lang_bpe_2000/tokens.txt \
|
||||||
|
$repo/test_wavs/DEV_T0000000000.wav \
|
||||||
|
$repo/test_wavs/DEV_T0000000001.wav \
|
||||||
|
$repo/test_wavs/DEV_T0000000002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
rm -rf $repo
|
||||||
|
|
||||||
cd ../../../egs/multi_zh_en/ASR
|
cd ../../../egs/multi_zh_en/ASR
|
||||||
log "==== Test icefall-asr-zipformer-multi-zh-en-2023-11-22 ===="
|
log "==== Test icefall-asr-zipformer-multi-zh-en-2023-11-22 ===="
|
||||||
repo_url=https://huggingface.co/zrjin/icefall-asr-zipformer-multi-zh-en-2023-11-22/
|
repo_url=https://huggingface.co/zrjin/icefall-asr-zipformer-multi-zh-en-2023-11-22/
|
||||||
|
|||||||
@ -1,129 +0,0 @@
|
|||||||
# Copyright 2022 Xiaomi Corp. (authors: Wei Kang,
|
|
||||||
# Zengwei Yao)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import math
|
|
||||||
from typing import List, Optional, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
|
||||||
from beam_search import Hypothesis, HypothesisList
|
|
||||||
|
|
||||||
from icefall.utils import AttributeDict
|
|
||||||
|
|
||||||
|
|
||||||
class DecodeStream(object):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
params: AttributeDict,
|
|
||||||
cut_id: str,
|
|
||||||
initial_states: List[torch.Tensor],
|
|
||||||
decode_state: k2.DecodeStateInfo,
|
|
||||||
device: torch.device = torch.device("cpu"),
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
initial_states:
|
|
||||||
Initial decode states of the model, e.g. the return value of
|
|
||||||
`get_init_state` in conformer.py
|
|
||||||
decoding_graph:
|
|
||||||
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
|
||||||
Used only when decoding_method is fast_beam_search.
|
|
||||||
device:
|
|
||||||
The device to run this stream.
|
|
||||||
"""
|
|
||||||
|
|
||||||
self.params = params
|
|
||||||
self.cut_id = cut_id
|
|
||||||
self.LOG_EPS = math.log(1e-10)
|
|
||||||
|
|
||||||
self.states = initial_states
|
|
||||||
self.decode_state = decode_state
|
|
||||||
|
|
||||||
# It contains a 2-D tensors representing the feature frames.
|
|
||||||
self.features: torch.Tensor = None
|
|
||||||
|
|
||||||
self.num_frames: int = 0
|
|
||||||
# how many frames have been processed. (before subsampling).
|
|
||||||
# we only modify this value in `func:get_feature_frames`.
|
|
||||||
self.num_processed_frames: int = 0
|
|
||||||
|
|
||||||
self._done: bool = False
|
|
||||||
|
|
||||||
# The transcript of current utterance.
|
|
||||||
self.ground_truth: str = ""
|
|
||||||
|
|
||||||
# The decoding result (partial or final) of current utterance.
|
|
||||||
self.hyp: List = []
|
|
||||||
|
|
||||||
# how many frames have been processed, at encoder output
|
|
||||||
self.done_frames: int = 0
|
|
||||||
|
|
||||||
# The encoder_embed subsample features (T - 7) // 2
|
|
||||||
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
|
||||||
self.pad_length = 7 + 2 * 3
|
|
||||||
|
|
||||||
self.hyps = HypothesisList()
|
|
||||||
self.hyps.add(
|
|
||||||
Hypothesis(
|
|
||||||
ys=[params.blank_id],
|
|
||||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def done(self) -> bool:
|
|
||||||
"""Return True if all the features are processed."""
|
|
||||||
return self._done
|
|
||||||
|
|
||||||
@property
|
|
||||||
def id(self) -> str:
|
|
||||||
return self.cut_id
|
|
||||||
|
|
||||||
def set_features(
|
|
||||||
self,
|
|
||||||
features: torch.Tensor,
|
|
||||||
tail_pad_len: int = 0,
|
|
||||||
) -> None:
|
|
||||||
"""Set features tensor of current utterance."""
|
|
||||||
assert features.dim() == 2, features.dim()
|
|
||||||
self.features = torch.nn.functional.pad(
|
|
||||||
features,
|
|
||||||
(0, 0, 0, self.pad_length + tail_pad_len),
|
|
||||||
mode="constant",
|
|
||||||
value=self.LOG_EPS,
|
|
||||||
)
|
|
||||||
self.num_frames = self.features.size(0)
|
|
||||||
|
|
||||||
def get_feature_frames(self, chunk_size: int) -> Tuple[torch.Tensor, int]:
|
|
||||||
"""Consume chunk_size frames of features"""
|
|
||||||
chunk_length = chunk_size + self.pad_length
|
|
||||||
|
|
||||||
ret_length = min(self.num_frames - self.num_processed_frames, chunk_length)
|
|
||||||
|
|
||||||
ret_features = self.features[
|
|
||||||
self.num_processed_frames : self.num_processed_frames + ret_length # noqa
|
|
||||||
]
|
|
||||||
|
|
||||||
self.num_processed_frames += chunk_size
|
|
||||||
if self.num_processed_frames >= self.num_frames:
|
|
||||||
self._done = True
|
|
||||||
|
|
||||||
return ret_features, ret_length
|
|
||||||
|
|
||||||
def decoding_result(self) -> List[int]:
|
|
||||||
"""Obtain current decoding result."""
|
|
||||||
return self.hyp
|
|
||||||
@ -1,699 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
|
|
||||||
# Fangjun Kuang,
|
|
||||||
# Zengwei Yao,
|
|
||||||
# Zengrui Jin,)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
"""
|
|
||||||
Usage:
|
|
||||||
./zipformer/streaming_decode.py \
|
|
||||||
--epoch 28 \
|
|
||||||
--avg 15 \
|
|
||||||
--causal 1 \
|
|
||||||
--chunk-size 32 \
|
|
||||||
--left-context-frames 256 \
|
|
||||||
--exp-dir ./zipformer/exp \
|
|
||||||
--decoding-method greedy_search \
|
|
||||||
--num-decode-streams 2000
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
import math
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import numpy as np
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
|
||||||
from ctc_decode_stream import DecodeStream
|
|
||||||
from kaldifeat import Fbank, FbankOptions
|
|
||||||
from lhotse import CutSet
|
|
||||||
from streaming_decode import (
|
|
||||||
get_init_states,
|
|
||||||
stack_states,
|
|
||||||
streaming_forward,
|
|
||||||
unstack_states,
|
|
||||||
)
|
|
||||||
from torch import nn
|
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
|
||||||
from train import add_model_arguments, get_model, get_params
|
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
|
||||||
average_checkpoints,
|
|
||||||
average_checkpoints_with_averaged_model,
|
|
||||||
find_checkpoints,
|
|
||||||
load_checkpoint,
|
|
||||||
)
|
|
||||||
from icefall.decode import get_lattice, one_best_decoding
|
|
||||||
from icefall.utils import (
|
|
||||||
AttributeDict,
|
|
||||||
get_texts,
|
|
||||||
setup_logger,
|
|
||||||
store_transcripts,
|
|
||||||
str2bool,
|
|
||||||
write_error_stats,
|
|
||||||
)
|
|
||||||
|
|
||||||
LOG_EPS = math.log(1e-10)
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--epoch",
|
|
||||||
type=int,
|
|
||||||
default=20,
|
|
||||||
help="""It specifies the checkpoint to use for decoding.
|
|
||||||
Note: Epoch counts from 1.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--iter",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="""If positive, --epoch is ignored and it
|
|
||||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--avg",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="Number of checkpoints to average. Automatically select "
|
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
|
||||||
"'--epoch' and '--iter'",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--use-averaged-model",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
|
||||||
"`epoch` are loaded for averaging. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--exp-dir",
|
|
||||||
type=str,
|
|
||||||
default="zipformer/exp",
|
|
||||||
help="The experiment dir",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=str,
|
|
||||||
default="data/lang_bpe_500/bpe.model",
|
|
||||||
help="Path to the BPE model",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--decoding-method",
|
|
||||||
type=str,
|
|
||||||
default="greedy_search",
|
|
||||||
help="""Supported decoding methods are:
|
|
||||||
greedy_search
|
|
||||||
modified_beam_search
|
|
||||||
fast_beam_search
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--num_active_paths",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""An interger indicating how many candidates we will keep for each
|
|
||||||
frame. Used only when --decoding-method is modified_beam_search.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam",
|
|
||||||
type=float,
|
|
||||||
default=4,
|
|
||||||
help="""A floating point value to calculate the cutoff score during beam
|
|
||||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
||||||
`beam` in Kaldi.
|
|
||||||
Used only when --decoding-method is fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-contexts",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""Used only when --decoding-method is
|
|
||||||
fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-states",
|
|
||||||
type=int,
|
|
||||||
default=32,
|
|
||||||
help="""Used only when --decoding-method is
|
|
||||||
fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--num-decode-streams",
|
|
||||||
type=int,
|
|
||||||
default=2000,
|
|
||||||
help="The number of streams that can be decoded parallel.",
|
|
||||||
)
|
|
||||||
|
|
||||||
add_model_arguments(parser)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def get_decoding_params() -> AttributeDict:
|
|
||||||
"""Parameters for decoding."""
|
|
||||||
params = AttributeDict(
|
|
||||||
{
|
|
||||||
"feature_dim": 80,
|
|
||||||
"subsampling_factor": 4,
|
|
||||||
"frame_shift_ms": 10,
|
|
||||||
"search_beam": 20,
|
|
||||||
"output_beam": 8,
|
|
||||||
"min_active_states": 30,
|
|
||||||
"max_active_states": 10000,
|
|
||||||
"use_double_scores": True,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return params
|
|
||||||
|
|
||||||
|
|
||||||
def decode_one_chunk(
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
H: Optional[k2.Fsa],
|
|
||||||
intersector: k2.OnlineDenseIntersecter,
|
|
||||||
decode_streams: List[DecodeStream],
|
|
||||||
streams_to_pad: int = None,
|
|
||||||
) -> List[int]:
|
|
||||||
"""Decode one chunk frames of features for each decode_streams and
|
|
||||||
return the indexes of finished streams in a List.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
params:
|
|
||||||
It's the return value of :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The neural model.
|
|
||||||
decode_streams:
|
|
||||||
A List of DecodeStream, each belonging to a utterance.
|
|
||||||
Returns:
|
|
||||||
Return a List containing which DecodeStreams are finished.
|
|
||||||
"""
|
|
||||||
device = model.device
|
|
||||||
chunk_size = int(params.chunk_size)
|
|
||||||
left_context_len = int(params.left_context_frames)
|
|
||||||
|
|
||||||
features = []
|
|
||||||
feature_lens = []
|
|
||||||
states = []
|
|
||||||
processed_lens = [] # Used in fast-beam-search
|
|
||||||
|
|
||||||
for stream in decode_streams:
|
|
||||||
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
|
||||||
features.append(feat)
|
|
||||||
feature_lens.append(feat_len)
|
|
||||||
states.append(stream.states)
|
|
||||||
processed_lens.append(stream.done_frames)
|
|
||||||
|
|
||||||
feature_lens = torch.tensor(feature_lens, device=device)
|
|
||||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
|
||||||
|
|
||||||
# Make sure the length after encoder_embed is at least 1.
|
|
||||||
# The encoder_embed subsample features (T - 7) // 2
|
|
||||||
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
|
||||||
tail_length = chunk_size * 2 + 7 + 2 * 3
|
|
||||||
if features.size(1) < tail_length:
|
|
||||||
pad_length = tail_length - features.size(1)
|
|
||||||
feature_lens += pad_length
|
|
||||||
features = torch.nn.functional.pad(
|
|
||||||
features,
|
|
||||||
(0, 0, 0, pad_length),
|
|
||||||
mode="constant",
|
|
||||||
value=LOG_EPS,
|
|
||||||
)
|
|
||||||
|
|
||||||
states = stack_states(states)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
|
||||||
features=features,
|
|
||||||
feature_lens=feature_lens,
|
|
||||||
model=model,
|
|
||||||
states=states,
|
|
||||||
chunk_size=chunk_size,
|
|
||||||
left_context_len=left_context_len,
|
|
||||||
)
|
|
||||||
ctc_output = model.ctc_output(encoder_out) # (N, T, C)
|
|
||||||
|
|
||||||
if streams_to_pad:
|
|
||||||
ctc_output = torch.cat(
|
|
||||||
[
|
|
||||||
ctc_output,
|
|
||||||
torch.zeros(
|
|
||||||
(streams_to_pad, ctc_output.size(-2), ctc_output.size(-1)),
|
|
||||||
device=device,
|
|
||||||
),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
supervision_segments = torch.tensor(
|
|
||||||
[[i, 0, 8] for i in range(params.num_decode_streams)],
|
|
||||||
dtype=torch.int32,
|
|
||||||
)
|
|
||||||
|
|
||||||
# decoding_graph = H
|
|
||||||
|
|
||||||
# lattice = get_lattice(
|
|
||||||
# nnet_output=ctc_output,
|
|
||||||
# decoding_graph=decoding_graph,
|
|
||||||
# supervision_segments=supervision_segments,
|
|
||||||
# search_beam=params.search_beam,
|
|
||||||
# output_beam=params.output_beam,
|
|
||||||
# min_active_states=params.min_active_states,
|
|
||||||
# max_active_states=params.max_active_states,
|
|
||||||
# subsampling_factor=params.subsampling_factor,
|
|
||||||
# )
|
|
||||||
dense_fsa_vec = k2.DenseFsaVec(ctc_output, supervision_segments)
|
|
||||||
|
|
||||||
current_decode_states = [
|
|
||||||
decode_stream.decode_state for decode_stream in decode_streams
|
|
||||||
]
|
|
||||||
if streams_to_pad:
|
|
||||||
current_decode_states += [k2.DecodeStateInfo()] * streams_to_pad
|
|
||||||
lattice, current_decode_states = intersector.decode(
|
|
||||||
dense_fsa_vec, current_decode_states
|
|
||||||
)
|
|
||||||
|
|
||||||
best_path = one_best_decoding(
|
|
||||||
lattice=lattice, use_double_scores=params.use_double_scores
|
|
||||||
)
|
|
||||||
|
|
||||||
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
|
||||||
# since we are using H, not HLG here.
|
|
||||||
#
|
|
||||||
# token_ids is a lit-of-list of IDs
|
|
||||||
token_ids = get_texts(best_path)
|
|
||||||
|
|
||||||
states = unstack_states(new_states)
|
|
||||||
|
|
||||||
num_streams = (
|
|
||||||
len(decode_streams) - streams_to_pad if streams_to_pad else len(decode_streams)
|
|
||||||
)
|
|
||||||
|
|
||||||
finished_streams = []
|
|
||||||
for i in range(num_streams):
|
|
||||||
decode_streams[i].hyp += token_ids[i]
|
|
||||||
decode_streams[i].states = states[i]
|
|
||||||
decode_streams[i].decode_state = current_decode_states[i]
|
|
||||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
|
||||||
if decode_streams[i].done:
|
|
||||||
finished_streams.append(i)
|
|
||||||
|
|
||||||
return finished_streams
|
|
||||||
|
|
||||||
|
|
||||||
def decode_dataset(
|
|
||||||
cuts: CutSet,
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
sp: spm.SentencePieceProcessor,
|
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
|
||||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
|
||||||
"""Decode dataset.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
cuts:
|
|
||||||
Lhotse Cutset containing the dataset to decode.
|
|
||||||
params:
|
|
||||||
It is returned by :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The neural model.
|
|
||||||
sp:
|
|
||||||
The BPE model.
|
|
||||||
decoding_graph:
|
|
||||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
|
||||||
only when --decoding_method is fast_beam_search.
|
|
||||||
Returns:
|
|
||||||
Return a dict, whose key may be "greedy_search" if greedy search
|
|
||||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
|
||||||
Its value is a list of tuples. Each tuple contains two elements:
|
|
||||||
The first is the reference transcript, and the second is the
|
|
||||||
predicted result.
|
|
||||||
"""
|
|
||||||
device = model.device
|
|
||||||
|
|
||||||
opts = FbankOptions()
|
|
||||||
opts.device = device
|
|
||||||
opts.frame_opts.dither = 0
|
|
||||||
opts.frame_opts.snip_edges = False
|
|
||||||
opts.frame_opts.samp_freq = 16000
|
|
||||||
opts.mel_opts.num_bins = 80
|
|
||||||
|
|
||||||
log_interval = 100
|
|
||||||
|
|
||||||
intersector = k2.OnlineDenseIntersecter(
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
num_streams=params.num_decode_streams,
|
|
||||||
search_beam=params.search_beam,
|
|
||||||
output_beam=params.output_beam,
|
|
||||||
min_active_states=params.min_active_states,
|
|
||||||
max_active_states=params.max_active_states,
|
|
||||||
)
|
|
||||||
|
|
||||||
decode_results = []
|
|
||||||
# Contain decode streams currently running.
|
|
||||||
decode_streams = []
|
|
||||||
for num, cut in enumerate(cuts):
|
|
||||||
# each utterance has a DecodeStream.
|
|
||||||
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
|
||||||
decode_stream = DecodeStream(
|
|
||||||
params=params,
|
|
||||||
cut_id=cut.id,
|
|
||||||
initial_states=initial_states,
|
|
||||||
decode_state=k2.DecodeStateInfo(),
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
|
|
||||||
audio: np.ndarray = cut.load_audio()
|
|
||||||
# audio.shape: (1, num_samples)
|
|
||||||
assert len(audio.shape) == 2
|
|
||||||
assert audio.shape[0] == 1, "Should be single channel"
|
|
||||||
assert audio.dtype == np.float32, audio.dtype
|
|
||||||
|
|
||||||
# The trained model is using normalized samples
|
|
||||||
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
|
||||||
|
|
||||||
samples = torch.from_numpy(audio).squeeze(0)
|
|
||||||
|
|
||||||
fbank = Fbank(opts)
|
|
||||||
feature = fbank(samples.to(device))
|
|
||||||
decode_stream.set_features(feature, tail_pad_len=30)
|
|
||||||
decode_stream.ground_truth = cut.supervisions[0].text
|
|
||||||
|
|
||||||
decode_streams.append(decode_stream)
|
|
||||||
|
|
||||||
while len(decode_streams) >= params.num_decode_streams:
|
|
||||||
finished_streams = decode_one_chunk(
|
|
||||||
params=params,
|
|
||||||
model=model,
|
|
||||||
H=decoding_graph,
|
|
||||||
intersector=intersector,
|
|
||||||
decode_streams=decode_streams,
|
|
||||||
)
|
|
||||||
for i in sorted(finished_streams, reverse=True):
|
|
||||||
decode_results.append(
|
|
||||||
(
|
|
||||||
decode_streams[i].id,
|
|
||||||
decode_streams[i].ground_truth.split(),
|
|
||||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
del decode_streams[i]
|
|
||||||
|
|
||||||
if num % log_interval == 0:
|
|
||||||
logging.info(f"Cuts processed until now is {num}.")
|
|
||||||
|
|
||||||
num_remained_decode_streams = len(decode_streams)
|
|
||||||
# decode final chunks of last sequences
|
|
||||||
while num_remained_decode_streams:
|
|
||||||
finished_streams = decode_one_chunk(
|
|
||||||
params=params,
|
|
||||||
model=model,
|
|
||||||
H=decoding_graph,
|
|
||||||
intersector=intersector,
|
|
||||||
decode_streams=decode_streams,
|
|
||||||
streams_to_pad=params.num_decode_streams - num_remained_decode_streams,
|
|
||||||
)
|
|
||||||
for i in sorted(finished_streams, reverse=True):
|
|
||||||
decode_results.append(
|
|
||||||
(
|
|
||||||
decode_streams[i].id,
|
|
||||||
decode_streams[i].ground_truth.split(),
|
|
||||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
del decode_streams[i]
|
|
||||||
num_remained_decode_streams -= 1
|
|
||||||
|
|
||||||
key = "ctc-decoding"
|
|
||||||
return {key: decode_results}
|
|
||||||
|
|
||||||
|
|
||||||
def save_results(
|
|
||||||
params: AttributeDict,
|
|
||||||
test_set_name: str,
|
|
||||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
|
||||||
):
|
|
||||||
test_set_wers = dict()
|
|
||||||
for key, results in results_dict.items():
|
|
||||||
recog_path = (
|
|
||||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
results = sorted(results)
|
|
||||||
store_transcripts(filename=recog_path, texts=results)
|
|
||||||
logging.info(f"The transcripts are stored in {recog_path}")
|
|
||||||
|
|
||||||
# The following prints out WERs, per-word error statistics and aligned
|
|
||||||
# ref/hyp pairs.
|
|
||||||
errs_filename = (
|
|
||||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
|
||||||
wer = write_error_stats(
|
|
||||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
|
||||||
)
|
|
||||||
test_set_wers[key] = wer
|
|
||||||
|
|
||||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
||||||
errs_info = (
|
|
||||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
with open(errs_info, "w") as f:
|
|
||||||
print("settings\tWER", file=f)
|
|
||||||
for key, val in test_set_wers:
|
|
||||||
print("{}\t{}".format(key, val), file=f)
|
|
||||||
|
|
||||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
||||||
note = "\tbest for {}".format(test_set_name)
|
|
||||||
for key, val in test_set_wers:
|
|
||||||
s += "{}\t{}{}\n".format(key, val, note)
|
|
||||||
note = ""
|
|
||||||
logging.info(s)
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
|
||||||
args = parser.parse_args()
|
|
||||||
args.exp_dir = Path(args.exp_dir)
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
params = get_decoding_params()
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
|
||||||
|
|
||||||
if params.iter > 0:
|
|
||||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
|
||||||
else:
|
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
||||||
|
|
||||||
assert params.causal, params.causal
|
|
||||||
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
|
||||||
assert (
|
|
||||||
"," not in params.left_context_frames
|
|
||||||
), "left_context_frames should be one value in decoding."
|
|
||||||
params.suffix += f"-chunk-{params.chunk_size}"
|
|
||||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
|
||||||
|
|
||||||
# for fast_beam_search
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
|
||||||
params.suffix += f"-beam-{params.beam}"
|
|
||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
|
||||||
params.suffix += f"-max-states-{params.max_states}"
|
|
||||||
|
|
||||||
if params.use_averaged_model:
|
|
||||||
params.suffix += "-use-averaged-model"
|
|
||||||
|
|
||||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
|
||||||
logging.info("Decoding started")
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"Device: {device}")
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(params.bpe_model)
|
|
||||||
|
|
||||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
|
||||||
params.blank_id = sp.piece_to_id("<blk>")
|
|
||||||
params.unk_id = sp.piece_to_id("<unk>")
|
|
||||||
params.vocab_size = sp.get_piece_size()
|
|
||||||
max_token_id = sp.get_piece_size() - 1
|
|
||||||
|
|
||||||
logging.info(params)
|
|
||||||
|
|
||||||
logging.info("About to create model")
|
|
||||||
model = get_model(params)
|
|
||||||
|
|
||||||
if not params.use_averaged_model:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
||||||
: params.avg
|
|
||||||
]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
elif params.avg == 1:
|
|
||||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
||||||
else:
|
|
||||||
start = params.epoch - params.avg + 1
|
|
||||||
filenames = []
|
|
||||||
for i in range(start, params.epoch + 1):
|
|
||||||
if start >= 0:
|
|
||||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
else:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
||||||
: params.avg + 1
|
|
||||||
]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg + 1:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
filename_start = filenames[-1]
|
|
||||||
filename_end = filenames[0]
|
|
||||||
logging.info(
|
|
||||||
"Calculating the averaged model over iteration checkpoints"
|
|
||||||
f" from {filename_start} (excluded) to {filename_end}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
assert params.avg > 0, params.avg
|
|
||||||
start = params.epoch - params.avg
|
|
||||||
assert start >= 1, start
|
|
||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
||||||
logging.info(
|
|
||||||
f"Calculating the averaged model over epoch range from "
|
|
||||||
f"{start} (excluded) to {params.epoch}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
model.to(device)
|
|
||||||
model.eval()
|
|
||||||
model.device = device
|
|
||||||
|
|
||||||
H = k2.ctc_topo(
|
|
||||||
max_token=max_token_id,
|
|
||||||
modified=True,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
H = k2.Fsa.from_fsas([H])
|
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
|
||||||
|
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
|
||||||
|
|
||||||
test_clean_cuts = librispeech.test_clean_cuts()
|
|
||||||
test_other_cuts = librispeech.test_other_cuts()
|
|
||||||
test_sets = {
|
|
||||||
"test-clean": test_clean_cuts,
|
|
||||||
"test-other": test_other_cuts,
|
|
||||||
}
|
|
||||||
|
|
||||||
for test_set, test_cut in test_sets.items():
|
|
||||||
results_dict = decode_dataset(
|
|
||||||
cuts=test_cut,
|
|
||||||
params=params,
|
|
||||||
model=model,
|
|
||||||
sp=sp,
|
|
||||||
decoding_graph=H,
|
|
||||||
)
|
|
||||||
|
|
||||||
save_results(
|
|
||||||
params=params,
|
|
||||||
test_set_name=test_set,
|
|
||||||
results_dict=results_dict,
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.info("Done!")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
Loading…
x
Reference in New Issue
Block a user