mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-12 18:44:20 +00:00
merge upstream
This commit is contained in:
parent
500792d0f1
commit
a07ddffe63
194
egs/ami/ASR/local/compute_fbank_ami.py
Executable file
194
egs/ami/ASR/local/compute_fbank_ami.py
Executable file
@ -0,0 +1,194 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the AMI dataset.
|
||||
For the training data, we pool together IHM, reverberated IHM, and GSS-enhanced
|
||||
audios. For the test data, we separately prepare IHM, SDM, and GSS-enhanced
|
||||
parts (which are the 3 evaluation settings).
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.multiprocessing
|
||||
from lhotse import CutSet, LilcomChunkyWriter
|
||||
from lhotse.features.kaldifeat import (
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
KaldifeatFrameOptions,
|
||||
KaldifeatMelOptions,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
torch.multiprocessing.set_sharing_strategy("file_system")
|
||||
|
||||
|
||||
def compute_fbank_ami():
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
|
||||
sampling_rate = 16000
|
||||
num_mel_bins = 80
|
||||
|
||||
extractor = KaldifeatFbank(
|
||||
KaldifeatFbankConfig(
|
||||
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
|
||||
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
|
||||
device="cuda",
|
||||
)
|
||||
)
|
||||
|
||||
logging.info("Reading manifests")
|
||||
manifests_ihm = read_manifests_if_cached(
|
||||
dataset_parts=["train", "dev", "test"],
|
||||
output_dir=src_dir,
|
||||
prefix="ami-ihm",
|
||||
suffix="jsonl.gz",
|
||||
)
|
||||
manifests_sdm = read_manifests_if_cached(
|
||||
dataset_parts=["train", "dev", "test"],
|
||||
output_dir=src_dir,
|
||||
prefix="ami-sdm",
|
||||
suffix="jsonl.gz",
|
||||
)
|
||||
# For GSS we already have cuts so we read them directly.
|
||||
manifests_gss = read_manifests_if_cached(
|
||||
dataset_parts=["train", "dev", "test"],
|
||||
output_dir=src_dir,
|
||||
prefix="ami-gss",
|
||||
suffix="jsonl.gz",
|
||||
)
|
||||
|
||||
def _extract_feats(cuts: CutSet, storage_path: Path, manifest_path: Path) -> None:
|
||||
cuts = cuts + cuts.perturb_speed(0.9) + cuts.perturb_speed(1.1)
|
||||
_ = cuts.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=storage_path,
|
||||
manifest_path=manifest_path,
|
||||
batch_duration=5000,
|
||||
num_workers=8,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
|
||||
logging.info(
|
||||
"Preparing training cuts: IHM + reverberated IHM + SDM + GSS (optional)"
|
||||
)
|
||||
|
||||
logging.info("Processing train split IHM")
|
||||
cuts_ihm = (
|
||||
CutSet.from_manifests(**manifests_ihm["train"])
|
||||
.trim_to_supervisions(keep_overlapping=False, keep_all_channels=False)
|
||||
.modify_ids(lambda x: x + "-ihm")
|
||||
)
|
||||
_extract_feats(
|
||||
cuts_ihm,
|
||||
output_dir / "feats_train_ihm",
|
||||
src_dir / "cuts_train_ihm.jsonl.gz",
|
||||
)
|
||||
|
||||
logging.info("Processing train split IHM + reverberated IHM")
|
||||
cuts_ihm_rvb = cuts_ihm.reverb_rir()
|
||||
_extract_feats(
|
||||
cuts_ihm_rvb,
|
||||
output_dir / "feats_train_ihm_rvb",
|
||||
src_dir / "cuts_train_ihm_rvb.jsonl.gz",
|
||||
)
|
||||
|
||||
logging.info("Processing train split SDM")
|
||||
cuts_sdm = (
|
||||
CutSet.from_manifests(**manifests_sdm["train"])
|
||||
.trim_to_supervisions(keep_overlapping=False)
|
||||
.modify_ids(lambda x: x + "-sdm")
|
||||
)
|
||||
_extract_feats(
|
||||
cuts_sdm,
|
||||
output_dir / "feats_train_sdm",
|
||||
src_dir / "cuts_train_sdm.jsonl.gz",
|
||||
)
|
||||
|
||||
logging.info("Processing train split GSS")
|
||||
cuts_gss = (
|
||||
CutSet.from_manifests(**manifests_gss["train"])
|
||||
.trim_to_supervisions(keep_overlapping=False)
|
||||
.modify_ids(lambda x: x + "-gss")
|
||||
)
|
||||
_extract_feats(
|
||||
cuts_gss,
|
||||
output_dir / "feats_train_gss",
|
||||
src_dir / "cuts_train_gss.jsonl.gz",
|
||||
)
|
||||
|
||||
logging.info("Preparing test cuts: IHM, SDM, GSS (optional)")
|
||||
for split in ["dev", "test"]:
|
||||
logging.info(f"Processing {split} IHM")
|
||||
cuts_ihm = (
|
||||
CutSet.from_manifests(**manifests_ihm[split])
|
||||
.trim_to_supervisions(keep_overlapping=False, keep_all_channels=False)
|
||||
.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=output_dir / f"feats_{split}_ihm",
|
||||
manifest_path=src_dir / f"cuts_{split}_ihm.jsonl.gz",
|
||||
batch_duration=5000,
|
||||
num_workers=8,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
)
|
||||
logging.info(f"Processing {split} SDM")
|
||||
cuts_sdm = (
|
||||
CutSet.from_manifests(**manifests_sdm[split])
|
||||
.trim_to_supervisions(keep_overlapping=False)
|
||||
.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=output_dir / f"feats_{split}_sdm",
|
||||
manifest_path=src_dir / f"cuts_{split}_sdm.jsonl.gz",
|
||||
batch_duration=500,
|
||||
num_workers=4,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
)
|
||||
logging.info(f"Processing {split} GSS")
|
||||
cuts_gss = (
|
||||
CutSet.from_manifests(**manifests_gss[split])
|
||||
.trim_to_supervisions(keep_overlapping=False)
|
||||
.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=output_dir / f"feats_{split}_gss",
|
||||
manifest_path=src_dir / f"cuts_{split}_gss.jsonl.gz",
|
||||
batch_duration=500,
|
||||
num_workers=4,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
compute_fbank_ami()
|
144
egs/ami/ASR/prepare.sh
Executable file
144
egs/ami/ASR/prepare.sh
Executable file
@ -0,0 +1,144 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
use_gss=true # Use GSS-based enhancement with MDM setting
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
#
|
||||
# - $dl_dir/amicorpus
|
||||
# You can find audio and transcripts in this path.
|
||||
#
|
||||
# - $dl_dir/musan
|
||||
# This directory contains the following directories downloaded from
|
||||
# http://www.openslr.org/17/
|
||||
#
|
||||
# - music
|
||||
# - noise
|
||||
# - speech
|
||||
#
|
||||
# - $dl_dir/{LDC2004S13,LDC2005S13,LDC2004T19,LDC2005T19}
|
||||
# These contain the Fisher English audio and transcripts. We will
|
||||
# only use the transcripts as extra LM training data (similar to Kaldi).
|
||||
#
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
vocab_size=500
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Download data"
|
||||
|
||||
# If you have pre-downloaded it to /path/to/amicorpus,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/amicorpus $dl_dir/amicorpus
|
||||
#
|
||||
if [ ! -d $dl_dir/amicorpus ]; then
|
||||
lhotse download ami --mic ihm $dl_dir/amicorpus
|
||||
lhotse download ami --mic mdm $dl_dir/amicorpus
|
||||
fi
|
||||
|
||||
# If you have pre-downloaded it to /path/to/musan,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/musan $dl_dir/
|
||||
#
|
||||
if [ ! -d $dl_dir/musan ]; then
|
||||
lhotse download musan $dl_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare AMI manifests"
|
||||
# We assume that you have downloaded the AMI corpus
|
||||
# to $dl_dir/amicorpus. We perform text normalization for the transcripts.
|
||||
mkdir -p data/manifests
|
||||
for mic in ihm sdm mdm; do
|
||||
lhotse prepare ami --mic $mic --partition full-corpus-asr --normalize-text kaldi \
|
||||
--max-words-per-segment 30 $dl_dir/amicorpus data/manifests/
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Prepare musan manifest"
|
||||
# We assume that you have downloaded the musan corpus
|
||||
# to $dl_dir/musan
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare musan $dl_dir/musan data/manifests
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ] && [ $use_gss = true ]; then
|
||||
log "Stage 3: Apply GSS enhancement on MDM data (this stage requires a GPU)"
|
||||
# We assume that you have installed the GSS package: https://github.com/desh2608/gss
|
||||
local/prepare_ami_gss.sh data/manifests exp/ami_gss
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compute fbank features for AMI"
|
||||
mkdir -p data/fbank
|
||||
python local/compute_fbank_ami.py
|
||||
log "Combine features from train splits"
|
||||
lhotse combine data/manifests/cuts_train_{ihm,ihm_rvb,sdm,gss}.jsonl.gz - | shuf |\
|
||||
gzip -c > data/manifests/cuts_train_all.jsonl.gz
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Compute fbank features for musan"
|
||||
mkdir -p data/fbank
|
||||
python local/compute_fbank_musan.py
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "Stage 6: Dump transcripts for BPE model training."
|
||||
mkdir -p data/lm
|
||||
cat <(gunzip -c data/manifests/ami-sdm_supervisions_train.jsonl.gz | jq '.text' | sed 's:"::g')> data/lm/transcript_words.txt
|
||||
fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
log "Stage 7: Prepare BPE based lang"
|
||||
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
mkdir -p $lang_dir
|
||||
|
||||
# Add special words to words.txt
|
||||
echo "<eps> 0" > $lang_dir/words.txt
|
||||
echo "!SIL 1" >> $lang_dir/words.txt
|
||||
echo "<UNK> 2" >> $lang_dir/words.txt
|
||||
|
||||
# Add regular words to words.txt
|
||||
cat data/lm/transcript_words.txt | grep -o -E '\w+' | sort -u | awk '{print $0,NR+2}' >> $lang_dir/words.txt
|
||||
|
||||
# Add remaining special word symbols expected by LM scripts.
|
||||
num_words=$(cat $lang_dir/words.txt | wc -l)
|
||||
echo "<s> ${num_words}" >> $lang_dir/words.txt
|
||||
num_words=$(cat $lang_dir/words.txt | wc -l)
|
||||
echo "</s> ${num_words}" >> $lang_dir/words.txt
|
||||
num_words=$(cat $lang_dir/words.txt | wc -l)
|
||||
echo "#0 ${num_words}" >> $lang_dir/words.txt
|
||||
|
||||
./local/train_bpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
--vocab-size $vocab_size \
|
||||
--transcript data/lm/transcript_words.txt
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
||||
fi
|
||||
fi
|
Loading…
x
Reference in New Issue
Block a user