mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
refactor code
This commit is contained in:
parent
7a12d88d6c
commit
9fff18edec
@ -1,480 +0,0 @@
|
|||||||
# Copyright 2021 Piotr Żelasko
|
|
||||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import inspect
|
|
||||||
import logging
|
|
||||||
from functools import lru_cache
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Any, Dict, Optional
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from datasets import load_dataset
|
|
||||||
from lhotse import (
|
|
||||||
CutSet,
|
|
||||||
WhisperFbank,
|
|
||||||
WhisperFbankConfig,
|
|
||||||
load_manifest,
|
|
||||||
load_manifest_lazy,
|
|
||||||
)
|
|
||||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|
||||||
CutConcatenate,
|
|
||||||
CutMix,
|
|
||||||
DynamicBucketingSampler,
|
|
||||||
PrecomputedFeatures,
|
|
||||||
SimpleCutSampler,
|
|
||||||
SpecAugment,
|
|
||||||
)
|
|
||||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
|
||||||
AudioSamples,
|
|
||||||
OnTheFlyFeatures,
|
|
||||||
)
|
|
||||||
from lhotse.utils import fix_random_seed
|
|
||||||
from speech_dataset import K2SpeechRecognitionDataset
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
from utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
class _SeedWorkers:
|
|
||||||
def __init__(self, seed: int):
|
|
||||||
self.seed = seed
|
|
||||||
|
|
||||||
def __call__(self, worker_id: int):
|
|
||||||
fix_random_seed(self.seed + worker_id)
|
|
||||||
|
|
||||||
|
|
||||||
class AsrDataModule:
|
|
||||||
"""
|
|
||||||
DataModule for k2 ASR experiments.
|
|
||||||
It assumes there is always one train and valid dataloader,
|
|
||||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
|
||||||
and test-other).
|
|
||||||
|
|
||||||
It contains all the common data pipeline modules used in ASR
|
|
||||||
experiments, e.g.:
|
|
||||||
- dynamic batch size,
|
|
||||||
- bucketing samplers,
|
|
||||||
- cut concatenation,
|
|
||||||
- augmentation,
|
|
||||||
- on-the-fly feature extraction
|
|
||||||
|
|
||||||
This class should be derived for specific corpora used in ASR tasks.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, args: argparse.Namespace):
|
|
||||||
self.args = args
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
|
||||||
group = parser.add_argument_group(
|
|
||||||
title="ASR data related options",
|
|
||||||
description="These options are used for the preparation of "
|
|
||||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
|
||||||
"effective batch sizes, sampling strategies, applied data "
|
|
||||||
"augmentations, etc.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--manifest-dir",
|
|
||||||
type=Path,
|
|
||||||
default=Path("data/fbank"),
|
|
||||||
help="Path to directory with train/valid/test cuts.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--max-duration",
|
|
||||||
type=int,
|
|
||||||
default=300.0,
|
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--bucketing-sampler",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, the batches will come from buckets of "
|
|
||||||
"similar duration (saves padding frames).",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--num-buckets",
|
|
||||||
type=int,
|
|
||||||
default=30,
|
|
||||||
help="The number of buckets for the DynamicBucketingSampler"
|
|
||||||
"(you might want to increase it for larger datasets).",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--on-the-fly-feats",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="When enabled, use on-the-fly cut mixing and feature "
|
|
||||||
"extraction. Will drop existing precomputed feature manifests "
|
|
||||||
"if available.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--shuffle",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled (=default), the examples will be "
|
|
||||||
"shuffled for each epoch.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--drop-last",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Whether to drop last batch. Used by sampler.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--return-cuts",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, each batch will have the "
|
|
||||||
"field: batch['supervisions']['cut'] with the cuts that "
|
|
||||||
"were used to construct it.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--num-workers",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The number of training dataloader workers that "
|
|
||||||
"collect the batches.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--enable-spec-aug",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, use SpecAugment for training dataset.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--spec-aug-time-warp-factor",
|
|
||||||
type=int,
|
|
||||||
default=80,
|
|
||||||
help="Used only when --enable-spec-aug is True. "
|
|
||||||
"It specifies the factor for time warping in SpecAugment. "
|
|
||||||
"Larger values mean more warping. "
|
|
||||||
"A value less than 1 means to disable time warp.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--enable-musan",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, select noise from MUSAN and mix it"
|
|
||||||
"with training dataset. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--input-strategy",
|
|
||||||
type=str,
|
|
||||||
default="PrecomputedFeatures",
|
|
||||||
help="AudioSamples or PrecomputedFeatures",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--huggingface-dataset-path-or-name",
|
|
||||||
type=str,
|
|
||||||
default="/workspace/Belle_1.4M-SLAM-Omni",
|
|
||||||
help="The path or name of the Huggingface dataset",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--audio-key",
|
|
||||||
type=str,
|
|
||||||
default="question_audio",
|
|
||||||
help="The key in the Huggingface dataset containing the audio data",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--text-key",
|
|
||||||
type=str,
|
|
||||||
default="answer",
|
|
||||||
help="The key in the Huggingface dataset containing the text data",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--resample-to-16kHz",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Resample audio to 16kHz. Default: False.",
|
|
||||||
)
|
|
||||||
|
|
||||||
def train_dataloaders(
|
|
||||||
self,
|
|
||||||
cuts_train: CutSet,
|
|
||||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
|
||||||
) -> DataLoader:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
cuts_train:
|
|
||||||
CutSet for training.
|
|
||||||
sampler_state_dict:
|
|
||||||
The state dict for the training sampler.
|
|
||||||
"""
|
|
||||||
transforms = []
|
|
||||||
if self.args.enable_musan:
|
|
||||||
logging.info("Enable MUSAN")
|
|
||||||
logging.info("About to get Musan cuts")
|
|
||||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
|
||||||
transforms.append(
|
|
||||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logging.info("Disable MUSAN")
|
|
||||||
|
|
||||||
input_transforms = []
|
|
||||||
if self.args.enable_spec_aug:
|
|
||||||
logging.info("Enable SpecAugment")
|
|
||||||
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
|
||||||
# Set the value of num_frame_masks according to Lhotse's version.
|
|
||||||
# In different Lhotse's versions, the default of num_frame_masks is
|
|
||||||
# different.
|
|
||||||
num_frame_masks = 10
|
|
||||||
num_frame_masks_parameter = inspect.signature(
|
|
||||||
SpecAugment.__init__
|
|
||||||
).parameters["num_frame_masks"]
|
|
||||||
if num_frame_masks_parameter.default == 1:
|
|
||||||
num_frame_masks = 2
|
|
||||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
|
||||||
input_transforms.append(
|
|
||||||
SpecAugment(
|
|
||||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
|
||||||
num_frame_masks=num_frame_masks,
|
|
||||||
features_mask_size=27,
|
|
||||||
num_feature_masks=2,
|
|
||||||
frames_mask_size=100,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logging.info("Disable SpecAugment")
|
|
||||||
|
|
||||||
logging.info("About to create train dataset")
|
|
||||||
train = K2SpeechRecognitionDataset(
|
|
||||||
input_strategy=eval(self.args.input_strategy)(),
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.args.on_the_fly_feats:
|
|
||||||
# NOTE: the PerturbSpeed transform should be added only if we
|
|
||||||
# remove it from data prep stage.
|
|
||||||
# Add on-the-fly speed perturbation; since originally it would
|
|
||||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
|
||||||
# 3x more epochs.
|
|
||||||
# Speed perturbation probably should come first before
|
|
||||||
# concatenation, but in principle the transforms order doesn't have
|
|
||||||
# to be strict (e.g. could be randomized)
|
|
||||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
|
||||||
# Drop feats to be on the safe side.
|
|
||||||
train = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
WhisperFbank(WhisperFbankConfig(num_filters=80, device="cuda"))
|
|
||||||
),
|
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.args.bucketing_sampler:
|
|
||||||
logging.info("Using DynamicBucketingSampler.")
|
|
||||||
train_sampler = DynamicBucketingSampler(
|
|
||||||
cuts_train,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=self.args.shuffle,
|
|
||||||
num_buckets=self.args.num_buckets,
|
|
||||||
buffer_size=self.args.num_buckets * 2000,
|
|
||||||
shuffle_buffer_size=self.args.num_buckets * 5000,
|
|
||||||
drop_last=self.args.drop_last,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logging.info("Using SimpleCutSampler.")
|
|
||||||
train_sampler = SimpleCutSampler(
|
|
||||||
cuts_train,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=self.args.shuffle,
|
|
||||||
)
|
|
||||||
logging.info("About to create train dataloader")
|
|
||||||
|
|
||||||
if sampler_state_dict is not None:
|
|
||||||
logging.info("Loading sampler state dict")
|
|
||||||
train_sampler.load_state_dict(sampler_state_dict)
|
|
||||||
|
|
||||||
# 'seed' is derived from the current random state, which will have
|
|
||||||
# previously been set in the main process.
|
|
||||||
seed = torch.randint(0, 100000, ()).item()
|
|
||||||
worker_init_fn = _SeedWorkers(seed)
|
|
||||||
|
|
||||||
train_dl = DataLoader(
|
|
||||||
train,
|
|
||||||
sampler=train_sampler,
|
|
||||||
batch_size=None,
|
|
||||||
num_workers=self.args.num_workers,
|
|
||||||
persistent_workers=True,
|
|
||||||
pin_memory=True,
|
|
||||||
worker_init_fn=worker_init_fn,
|
|
||||||
)
|
|
||||||
|
|
||||||
return train_dl
|
|
||||||
|
|
||||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
cuts_valid:
|
|
||||||
CutSet for validation.
|
|
||||||
"""
|
|
||||||
logging.info("About to create dev dataset")
|
|
||||||
|
|
||||||
validate = K2SpeechRecognitionDataset(
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
WhisperFbank(WhisperFbankConfig(num_filters=80, device="cuda"))
|
|
||||||
)
|
|
||||||
if self.args.on_the_fly_feats
|
|
||||||
else eval(self.args.input_strategy)(),
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
if self.args.bucketing_sampler:
|
|
||||||
valid_sampler = DynamicBucketingSampler(
|
|
||||||
cuts_valid,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=False,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
valid_sampler = SimpleCutSampler(
|
|
||||||
cuts_valid,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=False,
|
|
||||||
)
|
|
||||||
logging.info("About to create dev dataloader")
|
|
||||||
valid_dl = DataLoader(
|
|
||||||
validate,
|
|
||||||
sampler=valid_sampler,
|
|
||||||
batch_size=None,
|
|
||||||
num_workers=2,
|
|
||||||
persistent_workers=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
return valid_dl
|
|
||||||
|
|
||||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
|
||||||
logging.debug("About to create test dataset")
|
|
||||||
test = K2SpeechRecognitionDataset(
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
WhisperFbank(WhisperFbankConfig(num_filters=80, device="cpu"))
|
|
||||||
)
|
|
||||||
if self.args.on_the_fly_feats
|
|
||||||
else eval(self.args.input_strategy)(),
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
sampler = DynamicBucketingSampler(
|
|
||||||
cuts,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=False,
|
|
||||||
)
|
|
||||||
logging.debug("About to create test dataloader")
|
|
||||||
test_dl = DataLoader(
|
|
||||||
test,
|
|
||||||
batch_size=None,
|
|
||||||
sampler=sampler,
|
|
||||||
num_workers=self.args.num_workers,
|
|
||||||
)
|
|
||||||
return test_dl
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def test_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get test cuts")
|
|
||||||
if self.args.on_the_fly_feats:
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
return {
|
|
||||||
"test": load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "cuts_belle_test.jsonl.gz"
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def dev_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get test cuts")
|
|
||||||
if self.args.on_the_fly_feats:
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
return load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "cuts_belle_test.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def train_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get train cuts")
|
|
||||||
slam_omni_zh_cuts = load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "cuts_belle_train.jsonl.gz"
|
|
||||||
)
|
|
||||||
return slam_omni_zh_cuts
|
|
||||||
|
|
||||||
# @lru_cache()
|
|
||||||
# def train_cuts_en_vocalnet(self) -> CutSet:
|
|
||||||
# logging.info("About to get train cuts")
|
|
||||||
# VoiceAssistant_cuts = load_manifest_lazy(
|
|
||||||
# self.args.manifest_dir / "cuts_voice_assistant_00001-00049.jsonl.gz"
|
|
||||||
# )
|
|
||||||
# ultrachat_cuts = load_manifest_lazy(
|
|
||||||
# self.args.manifest_dir / "cuts_ultrachat_train.jsonl.gz"
|
|
||||||
# )
|
|
||||||
# return CutSet.mux(
|
|
||||||
# VoiceAssistant_cuts,
|
|
||||||
# ultrachat_cuts,
|
|
||||||
# weights=[
|
|
||||||
# len(VoiceAssistant_cuts),
|
|
||||||
# len(ultrachat_cuts),
|
|
||||||
# ],
|
|
||||||
# )
|
|
||||||
|
|
||||||
# valid cuts_voice_assistant.00000.jsonl.gz
|
|
||||||
# @lru_cache()
|
|
||||||
# def valid_cuts_en_vocalnet(self) -> CutSet:
|
|
||||||
# logging.info("About to get valid cuts")
|
|
||||||
# VoiceAssistant_cuts = load_manifest_lazy(
|
|
||||||
# self.args.manifest_dir / "cuts_voice_assistant.00000.jsonl.gz"
|
|
||||||
# )
|
|
||||||
# return VoiceAssistant_cuts
|
|
||||||
|
|
||||||
# @lru_cache()
|
|
||||||
# def test_cuts_en_vocalnet(self) -> CutSet:
|
|
||||||
# logging.info("About to get test cuts")
|
|
||||||
# VoiceAssistant_cuts = load_manifest_lazy(
|
|
||||||
# self.args.manifest_dir / "cuts_voice_assistant.00000.jsonl.gz"
|
|
||||||
# )
|
|
||||||
# return VoiceAssistant_cuts
|
|
||||||
def train_cuts_en_vocalnet(self) -> CutSet:
|
|
||||||
logging.info("About to get train cuts")
|
|
||||||
VoiceAssistant_cuts = load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "cuts_debug.jsonl.gz"
|
|
||||||
)
|
|
||||||
return VoiceAssistant_cuts
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def valid_cuts_en_vocalnet(self) -> CutSet:
|
|
||||||
logging.info("About to get valid cuts")
|
|
||||||
VoiceAssistant_cuts = load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "cuts_debug.jsonl.gz"
|
|
||||||
)
|
|
||||||
return VoiceAssistant_cuts
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def test_cuts_en_vocalnet(self) -> CutSet:
|
|
||||||
logging.info("About to get test cuts")
|
|
||||||
VoiceAssistant_cuts = load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "cuts_debug.jsonl.gz"
|
|
||||||
)
|
|
||||||
return VoiceAssistant_cuts
|
|
@ -1,795 +0,0 @@
|
|||||||
from typing import List, Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import nn
|
|
||||||
from torchmetrics.classification import MulticlassAccuracy
|
|
||||||
from transformers.trainer_pt_utils import LabelSmoother
|
|
||||||
|
|
||||||
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
|
|
||||||
import logging
|
|
||||||
from utils import get_rank
|
|
||||||
|
|
||||||
class EncoderProjector(nn.Module):
|
|
||||||
"""
|
|
||||||
The encoder projector module. It is used to project the encoder outputs to the same dimension as the language model.
|
|
||||||
Modified from https://github.com/X-LANCE/SLAM-LLM/blob/main/src/slam_llm/models/projector.py.
|
|
||||||
Args:
|
|
||||||
encoder_dim (:obj:`int`): The dimension of the encoder outputs.
|
|
||||||
llm_dim (:obj:`int`): The dimension of the language model.
|
|
||||||
downsample_rate (:obj:`int`, `optional`, defaults to 5): The downsample rate to use.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, encoder_dim, llm_dim, downsample_rate=5):
|
|
||||||
super().__init__()
|
|
||||||
self.downsample_rate = downsample_rate
|
|
||||||
self.linear1 = nn.Linear(encoder_dim * self.downsample_rate, llm_dim)
|
|
||||||
self.relu = nn.ReLU()
|
|
||||||
self.linear2 = nn.Linear(llm_dim, llm_dim)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
|
|
||||||
batch_size, seq_len, feat_dim = x.size()
|
|
||||||
num_frames_to_discard = seq_len % self.downsample_rate
|
|
||||||
if num_frames_to_discard > 0:
|
|
||||||
x = x[:, :-num_frames_to_discard, :]
|
|
||||||
seq_len = x.size(1)
|
|
||||||
|
|
||||||
x = x.contiguous()
|
|
||||||
x = x.view(
|
|
||||||
batch_size, seq_len // self.downsample_rate, feat_dim * self.downsample_rate
|
|
||||||
)
|
|
||||||
|
|
||||||
x = self.linear1(x)
|
|
||||||
x = self.relu(x)
|
|
||||||
x = self.linear2(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class SPEECH_LLM(nn.Module):
|
|
||||||
"""
|
|
||||||
The Speech-to-Text model. It consists of an encoder, a language model and an encoder projector.
|
|
||||||
The encoder is used to extract speech features from the input speech signal.
|
|
||||||
The encoder projector is used to project the encoder outputs to the same dimension as the language model.
|
|
||||||
The language model is used to generate the text from the speech features.
|
|
||||||
Args:
|
|
||||||
encoder (:obj:`nn.Module`): The encoder module.
|
|
||||||
llm (:obj:`nn.Module`): The language model module.
|
|
||||||
encoder_projector (:obj:`nn.Module`): The encoder projector module.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
encoder: nn.Module,
|
|
||||||
llm: nn.Module,
|
|
||||||
encoder_projector: nn.Module,
|
|
||||||
codec_lm: nn.Module = None,
|
|
||||||
codec_lm_padding_side: str = "left",
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.encoder = encoder
|
|
||||||
self.llm = llm
|
|
||||||
self.encoder_projector = encoder_projector
|
|
||||||
self.codec_lm = codec_lm
|
|
||||||
if self.codec_lm:
|
|
||||||
self.speech_token_projector = nn.Linear(
|
|
||||||
self.llm.config.hidden_size + self.llm.config.hidden_size,
|
|
||||||
self.codec_lm.config.hidden_size,
|
|
||||||
)
|
|
||||||
self.codec_lm_head = nn.Linear(
|
|
||||||
self.codec_lm.config.hidden_size, self.codec_lm.config.vocab_size
|
|
||||||
)
|
|
||||||
self.speech_token_projector = self.speech_token_projector.to(
|
|
||||||
dtype=torch.float16
|
|
||||||
)
|
|
||||||
self.codec_lm_head = self.codec_lm_head.to(dtype=torch.float16)
|
|
||||||
self.loss_fct = torch.nn.CrossEntropyLoss()
|
|
||||||
self.codec_lm_padding_side = codec_lm_padding_side
|
|
||||||
|
|
||||||
self.audio_accuracy_metric = MulticlassAccuracy(
|
|
||||||
self.codec_lm.vocab_size,
|
|
||||||
top_k=10,
|
|
||||||
average="micro",
|
|
||||||
multidim_average="global",
|
|
||||||
ignore_index=IGNORE_TOKEN_ID,
|
|
||||||
)
|
|
||||||
|
|
||||||
def _merge_input_ids_with_speech_features(
|
|
||||||
self, speech_features, inputs_embeds, input_ids, attention_mask, labels=None
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Merge the speech features with the input_ids and attention_mask. This is done by replacing the speech tokens
|
|
||||||
with the speech features and padding the input_ids to the maximum length of the speech features.
|
|
||||||
Modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py#L277.
|
|
||||||
Args:
|
|
||||||
speech_features (:obj:`torch.Tensor`): The speech features to merge with the input_ids.
|
|
||||||
inputs_embeds (:obj:`torch.Tensor`): The embeddings of the input_ids.
|
|
||||||
input_ids (:obj:`torch.Tensor`): The input ids to merge.
|
|
||||||
attention_mask (:obj:`torch.Tensor`): The attention mask to merge.
|
|
||||||
labels (:obj:`torch.Tensor`, `optional`): The labels to merge.
|
|
||||||
Returns:
|
|
||||||
:obj:`Tuple(torch.Tensor)`: The merged embeddings, attention mask, labels and position ids.
|
|
||||||
"""
|
|
||||||
num_speechs, speech_len, embed_dim = speech_features.shape
|
|
||||||
batch_size, sequence_length = input_ids.shape
|
|
||||||
left_padding = not torch.sum(
|
|
||||||
input_ids[:, -1] == torch.tensor(self.llm.config.pad_token_id)
|
|
||||||
)
|
|
||||||
# 1. Create a mask to know where special speech tokens are
|
|
||||||
special_speech_token_mask = input_ids == self.llm.config.default_speech_token_id
|
|
||||||
num_special_speech_tokens = torch.sum(special_speech_token_mask, dim=-1)
|
|
||||||
# Compute the maximum embed dimension
|
|
||||||
max_embed_dim = (
|
|
||||||
num_special_speech_tokens.max() * (speech_len - 1)
|
|
||||||
) + sequence_length
|
|
||||||
batch_indices, non_speech_indices = torch.where(
|
|
||||||
input_ids != self.llm.config.default_speech_token_id
|
|
||||||
)
|
|
||||||
|
|
||||||
# 2. Compute the positions where text should be written
|
|
||||||
# Calculate new positions for text tokens in merged speech-text sequence.
|
|
||||||
# `special_speech_token_mask` identifies speech tokens. Each speech token will be replaced by `nb_text_tokens_per_speechs - 1` text tokens.
|
|
||||||
# `torch.cumsum` computes how each speech token shifts subsequent text token positions.
|
|
||||||
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
|
||||||
new_token_positions = (
|
|
||||||
torch.cumsum((special_speech_token_mask * (speech_len - 1) + 1), -1) - 1
|
|
||||||
)
|
|
||||||
nb_speech_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
|
||||||
if left_padding:
|
|
||||||
new_token_positions += nb_speech_pad[:, None] # offset for left padding
|
|
||||||
text_to_overwrite = new_token_positions[batch_indices, non_speech_indices]
|
|
||||||
|
|
||||||
# 3. Create the full embedding, already padded to the maximum position
|
|
||||||
final_embedding = torch.zeros(
|
|
||||||
batch_size,
|
|
||||||
max_embed_dim,
|
|
||||||
embed_dim,
|
|
||||||
dtype=inputs_embeds.dtype,
|
|
||||||
device=inputs_embeds.device,
|
|
||||||
)
|
|
||||||
final_attention_mask = torch.zeros(
|
|
||||||
batch_size,
|
|
||||||
max_embed_dim,
|
|
||||||
dtype=attention_mask.dtype,
|
|
||||||
device=inputs_embeds.device,
|
|
||||||
)
|
|
||||||
if labels is not None:
|
|
||||||
final_labels = torch.full(
|
|
||||||
(batch_size, max_embed_dim),
|
|
||||||
IGNORE_TOKEN_ID,
|
|
||||||
dtype=input_ids.dtype,
|
|
||||||
device=input_ids.device,
|
|
||||||
)
|
|
||||||
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
|
||||||
# set the corresponding tensors into their correct target device.
|
|
||||||
target_device = inputs_embeds.device
|
|
||||||
batch_indices, non_speech_indices, text_to_overwrite = (
|
|
||||||
batch_indices.to(target_device),
|
|
||||||
non_speech_indices.to(target_device),
|
|
||||||
text_to_overwrite.to(target_device),
|
|
||||||
)
|
|
||||||
attention_mask = attention_mask.to(target_device)
|
|
||||||
|
|
||||||
# 4. Fill the embeddings based on the mask. If we have ["hey" "<speech>", "how", "are"]
|
|
||||||
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the speech features
|
|
||||||
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[
|
|
||||||
batch_indices, non_speech_indices
|
|
||||||
]
|
|
||||||
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[
|
|
||||||
batch_indices, non_speech_indices
|
|
||||||
]
|
|
||||||
if labels is not None:
|
|
||||||
final_labels[batch_indices, text_to_overwrite] = labels[
|
|
||||||
batch_indices, non_speech_indices
|
|
||||||
]
|
|
||||||
|
|
||||||
# 5. Fill the embeddings corresponding to the speechs. Anything that is not `text_positions` needs filling (#29835)
|
|
||||||
speech_to_overwrite = torch.full(
|
|
||||||
(batch_size, max_embed_dim),
|
|
||||||
True,
|
|
||||||
dtype=torch.bool,
|
|
||||||
device=inputs_embeds.device,
|
|
||||||
)
|
|
||||||
speech_to_overwrite[batch_indices, text_to_overwrite] = False
|
|
||||||
speech_to_overwrite &= speech_to_overwrite.cumsum(-1) - 1 >= nb_speech_pad[
|
|
||||||
:, None
|
|
||||||
].to(target_device)
|
|
||||||
|
|
||||||
if speech_to_overwrite.sum() != speech_features.shape[:-1].numel():
|
|
||||||
raise ValueError(
|
|
||||||
f"The input provided to the model are wrong. The number of speech tokens is {torch.sum(special_speech_token_mask)} while"
|
|
||||||
f" the number of speech given to the model is {num_speechs}. This prevents correct indexing and breaks batch generation."
|
|
||||||
)
|
|
||||||
|
|
||||||
final_embedding[speech_to_overwrite] = (
|
|
||||||
speech_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
|
||||||
)
|
|
||||||
final_attention_mask |= speech_to_overwrite
|
|
||||||
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_(
|
|
||||||
(final_attention_mask == 0), 1
|
|
||||||
)
|
|
||||||
|
|
||||||
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
|
|
||||||
batch_indices, pad_indices = torch.where(
|
|
||||||
input_ids == self.llm.config.pad_token_id
|
|
||||||
)
|
|
||||||
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
|
||||||
|
|
||||||
final_embedding[batch_indices, indices_to_mask] = 0
|
|
||||||
|
|
||||||
if labels is None:
|
|
||||||
final_labels = None
|
|
||||||
|
|
||||||
return final_embedding, final_attention_mask, final_labels, position_ids
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
fbank: torch.Tensor = None,
|
|
||||||
input_ids: torch.LongTensor = None,
|
|
||||||
attention_mask: torch.Tensor = None,
|
|
||||||
labels: torch.LongTensor = None,
|
|
||||||
):
|
|
||||||
encoder_outs = self.encoder(fbank)
|
|
||||||
|
|
||||||
speech_features = self.encoder_projector(encoder_outs)
|
|
||||||
|
|
||||||
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
|
||||||
|
|
||||||
(
|
|
||||||
inputs_embeds,
|
|
||||||
attention_mask,
|
|
||||||
labels,
|
|
||||||
_,
|
|
||||||
) = self._merge_input_ids_with_speech_features(
|
|
||||||
speech_features, inputs_embeds, input_ids, attention_mask, labels
|
|
||||||
)
|
|
||||||
|
|
||||||
rank = get_rank()
|
|
||||||
print(f"Current rank: {rank}, input_ids: {input_ids.shape}, input_ids: {input_ids}")
|
|
||||||
print(f"Current rank: {rank}, input_embeds: {inputs_embeds.shape}, input_embeds: {inputs_embeds}")
|
|
||||||
print(f"Current rank: {rank}, attention_mask: {attention_mask.shape}, attention_mask: {attention_mask}")
|
|
||||||
print(f"Current rank: {rank}, labels: {labels.shape}, labels: {labels}")
|
|
||||||
model_outputs = self.llm(
|
|
||||||
inputs_embeds=inputs_embeds,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
labels=labels,
|
|
||||||
output_hidden_states=True,
|
|
||||||
)
|
|
||||||
print(f"Current rank: {rank}, model_outputs: {model_outputs}")
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
preds = torch.argmax(model_outputs.logits, -1)
|
|
||||||
acc = compute_accuracy(
|
|
||||||
preds.detach()[:, :-1],
|
|
||||||
labels.detach()[:, 1:],
|
|
||||||
ignore_label=IGNORE_TOKEN_ID,
|
|
||||||
)
|
|
||||||
return model_outputs.loss, acc
|
|
||||||
|
|
||||||
def forward_with_speech_output(
|
|
||||||
self,
|
|
||||||
fbank: torch.Tensor = None,
|
|
||||||
input_ids: torch.LongTensor = None,
|
|
||||||
attention_mask: torch.Tensor = None,
|
|
||||||
labels: torch.LongTensor = None,
|
|
||||||
speech_codec_ids: torch.LongTensor = None,
|
|
||||||
):
|
|
||||||
encoder_outs = self.encoder(fbank)
|
|
||||||
|
|
||||||
speech_features = self.encoder_projector(encoder_outs)
|
|
||||||
|
|
||||||
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
|
||||||
|
|
||||||
(
|
|
||||||
inputs_embeds,
|
|
||||||
attention_mask,
|
|
||||||
labels,
|
|
||||||
_,
|
|
||||||
) = self._merge_input_ids_with_speech_features(
|
|
||||||
speech_features, inputs_embeds, input_ids, attention_mask, labels
|
|
||||||
)
|
|
||||||
input_seq_len = attention_mask.sum(dim=1) # shape, B
|
|
||||||
(
|
|
||||||
text_label_start_index_list,
|
|
||||||
text_input_start_index_list,
|
|
||||||
input_question_len_list,
|
|
||||||
) = ([], [], [])
|
|
||||||
for i in range(labels.shape[0]):
|
|
||||||
input_embeds_valid_index = torch.where(attention_mask[i] != 0)[0]
|
|
||||||
input_embeds_start_index = input_embeds_valid_index[0]
|
|
||||||
text_labels_valid_index = torch.where(labels[i] != IGNORE_TOKEN_ID)[0]
|
|
||||||
text_labels_start_index = text_labels_valid_index[0]
|
|
||||||
|
|
||||||
assert (
|
|
||||||
input_seq_len[i]
|
|
||||||
== input_embeds_valid_index[-1] - input_embeds_start_index + 1
|
|
||||||
), f"input_seq_len: {input_seq_len[i]}, input_embeds_valid_index: {input_embeds_valid_index}, input_embeds_start_index: {input_embeds_start_index}"
|
|
||||||
assert (
|
|
||||||
input_embeds_valid_index[-1] == text_labels_valid_index[-1]
|
|
||||||
), f"input_embeds_valid_index: {input_embeds_valid_index}, text_labels_valid_index: {text_labels_valid_index}"
|
|
||||||
input_question_len = text_labels_start_index - input_embeds_start_index
|
|
||||||
assert (
|
|
||||||
input_question_len
|
|
||||||
+ text_labels_valid_index[-1]
|
|
||||||
- text_labels_start_index
|
|
||||||
+ 1
|
|
||||||
== input_seq_len[i]
|
|
||||||
)
|
|
||||||
text_label_start_index_list.append(text_labels_start_index)
|
|
||||||
text_input_start_index_list.append(input_embeds_start_index)
|
|
||||||
input_question_len_list.append(input_question_len)
|
|
||||||
|
|
||||||
rank = get_rank()
|
|
||||||
print(f"Current rank: {rank}, input_ids: {input_ids.shape}, input_ids: {input_ids}")
|
|
||||||
print(f"Current rank: {rank}, input_embeds: {inputs_embeds.shape}, input_embeds: {inputs_embeds}")
|
|
||||||
print(f"Current rank: {rank}, attention_mask: {attention_mask.shape}, attention_mask: {attention_mask}")
|
|
||||||
print(f"Current rank: {rank}, labels: {labels.shape}, labels: {labels}")
|
|
||||||
model_outputs = self.llm(
|
|
||||||
inputs_embeds=inputs_embeds,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
labels=labels,
|
|
||||||
output_hidden_states=True,
|
|
||||||
)
|
|
||||||
print(f"Current rank: {rank}, model_outputs: {model_outputs}")
|
|
||||||
text_loss = model_outputs.loss
|
|
||||||
delay_step = 1
|
|
||||||
# prepare codec lm inputs
|
|
||||||
audio_codes_lens = [
|
|
||||||
len(x) + input_question_len_list[i] + delay_step + 1
|
|
||||||
for i, x in enumerate(speech_codec_ids)
|
|
||||||
]
|
|
||||||
max_len_speech_codec = max(audio_codes_lens)
|
|
||||||
|
|
||||||
if self.codec_lm_padding_side == "right":
|
|
||||||
audio_codes = [
|
|
||||||
[self.codec_lm.config.mask_token_id]
|
|
||||||
* (input_question_len_list[i] + delay_step)
|
|
||||||
+ [self.codec_lm.config.bos_token_id]
|
|
||||||
+ x
|
|
||||||
+ [self.codec_lm.config.pad_token_id]
|
|
||||||
* (max_len_speech_codec - audio_codes_lens[i])
|
|
||||||
for i, x in enumerate(speech_codec_ids)
|
|
||||||
]
|
|
||||||
audio_labels = [
|
|
||||||
[self.codec_lm.config.pad_token_id]
|
|
||||||
* (input_question_len_list[i] + delay_step)
|
|
||||||
+ x
|
|
||||||
+ [self.codec_lm.config.eos_token_id]
|
|
||||||
+ [self.codec_lm.config.pad_token_id]
|
|
||||||
* (max_len_speech_codec - audio_codes_lens[i])
|
|
||||||
for i, x in enumerate(speech_codec_ids)
|
|
||||||
]
|
|
||||||
elif self.codec_lm_padding_side == "left":
|
|
||||||
audio_codes = [
|
|
||||||
[self.codec_lm.config.pad_token_id]
|
|
||||||
* (max_len_speech_codec - audio_codes_lens[i])
|
|
||||||
+ [self.codec_lm.config.mask_token_id]
|
|
||||||
* (input_question_len_list[i] + delay_step)
|
|
||||||
+ [self.codec_lm.config.bos_token_id]
|
|
||||||
+ x
|
|
||||||
for i, x in enumerate(speech_codec_ids)
|
|
||||||
]
|
|
||||||
audio_labels = [
|
|
||||||
[self.codec_lm.config.pad_token_id]
|
|
||||||
* (max_len_speech_codec - audio_codes_lens[i])
|
|
||||||
+ [self.codec_lm.config.pad_token_id]
|
|
||||||
* (input_question_len_list[i] + delay_step)
|
|
||||||
+ x
|
|
||||||
+ [self.codec_lm.config.eos_token_id]
|
|
||||||
for i, x in enumerate(speech_codec_ids)
|
|
||||||
]
|
|
||||||
audio_codes = torch.tensor(
|
|
||||||
audio_codes, dtype=torch.int64, device=input_ids.device
|
|
||||||
)
|
|
||||||
audio_labels = torch.tensor(
|
|
||||||
audio_labels, dtype=torch.int64, device=input_ids.device
|
|
||||||
)
|
|
||||||
|
|
||||||
audio_attention_mask = audio_codes.ne(self.codec_lm.config.pad_token_id)
|
|
||||||
audio_embeddings = self.codec_lm.get_input_embeddings()(audio_codes)
|
|
||||||
|
|
||||||
text_last_hidden_lists, text_embeds_list, text_input_embeds_list = [], [], []
|
|
||||||
for i in range(len(text_label_start_index_list)):
|
|
||||||
text_last_hidden = model_outputs.hidden_states[-1][
|
|
||||||
i,
|
|
||||||
text_input_start_index_list[i] : text_input_start_index_list[i]
|
|
||||||
+ input_seq_len[i]
|
|
||||||
- 1,
|
|
||||||
]
|
|
||||||
print(233336666666, text_last_hidden, text_last_hidden.shape)
|
|
||||||
text_last_hidden_lists.append(text_last_hidden)
|
|
||||||
text_embed = inputs_embeds[
|
|
||||||
i,
|
|
||||||
text_input_start_index_list[i]
|
|
||||||
+ 1 : text_input_start_index_list[i]
|
|
||||||
+ input_seq_len[i],
|
|
||||||
] # exclude bos
|
|
||||||
text_embeds_list.append(text_embed)
|
|
||||||
|
|
||||||
text_input_embeds = torch.cat(
|
|
||||||
[
|
|
||||||
text_last_hidden,
|
|
||||||
text_embed,
|
|
||||||
],
|
|
||||||
dim=-1,
|
|
||||||
) # shape, T, D1 + D2
|
|
||||||
text_input_embeds = self.speech_token_projector(
|
|
||||||
text_input_embeds
|
|
||||||
) # shape, T, D_codec
|
|
||||||
text_input_embeds_list.append(text_input_embeds)
|
|
||||||
|
|
||||||
for i in range(audio_embeddings.shape[0]):
|
|
||||||
text_input_embeds = text_input_embeds_list[i]
|
|
||||||
if self.codec_lm_padding_side == "right":
|
|
||||||
audio_embeddings[i, : text_input_embeds.shape[0]] += text_input_embeds
|
|
||||||
elif self.codec_lm_padding_side == "left":
|
|
||||||
start_idx = torch.where(
|
|
||||||
audio_codes[i] == self.codec_lm.config.mask_token_id
|
|
||||||
)[0][0]
|
|
||||||
start_idx_re_compute = torch.where(audio_attention_mask[i] != 0)[0][0]
|
|
||||||
assert (
|
|
||||||
start_idx == start_idx_re_compute
|
|
||||||
), f"start_idx: {start_idx}, start_idx_re_compute: {start_idx_re_compute}"
|
|
||||||
if text_input_embeds.shape[0] > audio_embeddings.shape[1] - start_idx:
|
|
||||||
text_input_embeds = text_input_embeds[
|
|
||||||
: audio_embeddings.shape[1] - start_idx
|
|
||||||
]
|
|
||||||
logging.warning(
|
|
||||||
f"Truncate text_input_embeds: {text_input_embeds.shape} to {audio_embeddings.shape[1] - start_idx}"
|
|
||||||
)
|
|
||||||
audio_embeddings[
|
|
||||||
i, start_idx : start_idx + text_input_embeds.shape[0]
|
|
||||||
] += text_input_embeds
|
|
||||||
|
|
||||||
speech_outputs = self.codec_lm(
|
|
||||||
attention_mask=audio_attention_mask,
|
|
||||||
inputs_embeds=audio_embeddings,
|
|
||||||
return_dict=True,
|
|
||||||
output_hidden_states=True,
|
|
||||||
)
|
|
||||||
last_hidden_state = speech_outputs.hidden_states[-1].clone()
|
|
||||||
|
|
||||||
audio_logits = self.codec_lm_head(last_hidden_state) # shape, B, T, vocab_size
|
|
||||||
audio_logits = audio_logits.contiguous().view(
|
|
||||||
-1, self.codec_lm.config.vocab_size
|
|
||||||
)
|
|
||||||
audio_labels = audio_labels.contiguous().view(-1)
|
|
||||||
audio_labels = audio_labels.masked_fill(
|
|
||||||
audio_labels == self.codec_lm.config.pad_token_id, IGNORE_TOKEN_ID
|
|
||||||
)
|
|
||||||
codec_loss = self.loss_fct(audio_logits, audio_labels)
|
|
||||||
audio_preds = torch.argmax(audio_logits, -1)
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
preds = torch.argmax(model_outputs.logits, -1)
|
|
||||||
print(23333444444, preds)
|
|
||||||
print(233335555555, labels)
|
|
||||||
acc = compute_accuracy(
|
|
||||||
preds.detach()[:, :-1],
|
|
||||||
labels.detach()[:, 1:],
|
|
||||||
ignore_label=IGNORE_TOKEN_ID,
|
|
||||||
)
|
|
||||||
audio_acc = compute_accuracy(
|
|
||||||
audio_preds.detach(),
|
|
||||||
audio_labels.detach(),
|
|
||||||
ignore_label=IGNORE_TOKEN_ID,
|
|
||||||
)
|
|
||||||
audio_topk_acc = self.audio_accuracy_metric(
|
|
||||||
audio_logits.detach(), audio_labels.detach()
|
|
||||||
).item()
|
|
||||||
|
|
||||||
return text_loss, acc, codec_loss, audio_acc, audio_topk_acc
|
|
||||||
|
|
||||||
def decode(
|
|
||||||
self,
|
|
||||||
fbank: torch.Tensor = None,
|
|
||||||
input_ids: torch.LongTensor = None,
|
|
||||||
attention_mask: torch.Tensor = None,
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
|
|
||||||
encoder_outs = self.encoder(fbank)
|
|
||||||
speech_features = self.encoder_projector(encoder_outs)
|
|
||||||
speech_features = speech_features.to(torch.float16)
|
|
||||||
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
|
||||||
(
|
|
||||||
inputs_embeds,
|
|
||||||
attention_mask,
|
|
||||||
_,
|
|
||||||
_,
|
|
||||||
) = self._merge_input_ids_with_speech_features(
|
|
||||||
speech_features, inputs_embeds, input_ids, attention_mask
|
|
||||||
)
|
|
||||||
generated_ids = self.llm.generate(
|
|
||||||
inputs_embeds=inputs_embeds,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
max_new_tokens=kwargs.get("max_new_tokens", 1024),
|
|
||||||
num_beams=kwargs.get("num_beams", 1),
|
|
||||||
do_sample=kwargs.get("do_sample", True),
|
|
||||||
min_length=kwargs.get("min_length", 1),
|
|
||||||
top_p=kwargs.get("top_p", 0.5),
|
|
||||||
top_k=kwargs.get("top_k", 20),
|
|
||||||
repetition_penalty=kwargs.get("repetition_penalty", 1.1),
|
|
||||||
temperature=kwargs.get("temperature", 0.7),
|
|
||||||
bos_token_id=self.llm.config.bos_token_id,
|
|
||||||
eos_token_id=self.llm.config.eos_token_id,
|
|
||||||
pad_token_id=self.llm.config.pad_token_id,
|
|
||||||
)
|
|
||||||
|
|
||||||
return generated_ids
|
|
||||||
|
|
||||||
def decode_with_speech_output(
|
|
||||||
self,
|
|
||||||
fbank: torch.Tensor = None,
|
|
||||||
input_ids: torch.LongTensor = None, # Prompt input_ids
|
|
||||||
attention_mask: torch.Tensor = None, # Prompt attention_mask
|
|
||||||
max_text_new_tokens: int = 1024,
|
|
||||||
max_speech_new_tokens: int = 2048, # Max length for speech tokens
|
|
||||||
llm_kwargs: dict = None, # Kwargs for text LLM generate
|
|
||||||
codec_lm_kwargs: dict = None, # Kwargs for codec LM (e.g., temperature for sampling) - NOT IMPLEMENTED YET
|
|
||||||
) -> Tuple[torch.LongTensor, List[List[int]]]:
|
|
||||||
"""
|
|
||||||
Generates text and corresponding speech tokens using the revised logic.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
fbank: Input audio features.
|
|
||||||
input_ids: Input token IDs for the text prompt.
|
|
||||||
attention_mask: Attention mask for the text prompt.
|
|
||||||
max_text_new_tokens: Max new tokens for text generation.
|
|
||||||
max_speech_new_tokens: Max new tokens for speech generation.
|
|
||||||
llm_kwargs: Additional arguments for self.llm.generate.
|
|
||||||
codec_lm_kwargs: Additional arguments for self.codec_lm.generate.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tuple[torch.LongTensor, List[List[int]]]:
|
|
||||||
- generated_text_ids: Tensor of generated text token IDs (including prompt).
|
|
||||||
- generated_speech_tokens: List of lists, where each inner list contains
|
|
||||||
the generated speech codec tokens for a batch item.
|
|
||||||
"""
|
|
||||||
assert fbank.shape[0] == 1, "Batch size must be 1 for speech generation."
|
|
||||||
if (
|
|
||||||
not self.codec_lm
|
|
||||||
or not self.speech_token_projector
|
|
||||||
or not self.codec_lm_head
|
|
||||||
):
|
|
||||||
raise ValueError(
|
|
||||||
"codec_lm and associated layers must be initialized to generate speech output."
|
|
||||||
)
|
|
||||||
|
|
||||||
device = next(self.parameters()).device # Use model's device
|
|
||||||
batch_size = fbank.shape[0]
|
|
||||||
|
|
||||||
# --- 1. Prepare Prompt Embeddings ---
|
|
||||||
encoder_outs = self.encoder(fbank)
|
|
||||||
speech_features = self.encoder_projector(encoder_outs)
|
|
||||||
speech_features = speech_features.to(self.llm.dtype) # Ensure matching dtype
|
|
||||||
|
|
||||||
prompt_embeds = self.llm.get_input_embeddings()(input_ids)
|
|
||||||
|
|
||||||
# Merge speech features with prompt embeddings
|
|
||||||
(
|
|
||||||
merged_prompt_inputs_embeds,
|
|
||||||
merged_prompt_attention_mask,
|
|
||||||
_,
|
|
||||||
_,
|
|
||||||
) = self._merge_input_ids_with_speech_features(
|
|
||||||
speech_features, prompt_embeds, input_ids, attention_mask
|
|
||||||
)
|
|
||||||
|
|
||||||
# --- 2. Generate Text using LLM ---
|
|
||||||
# Use merged embeds/mask as input to generate
|
|
||||||
# Ensure kwargs passed are suitable for llm.generate
|
|
||||||
# Note: Using default generation params from `decode` if not provided in kwargs
|
|
||||||
final_llm_kwargs = {
|
|
||||||
"bos_token_id": self.llm.config.bos_token_id,
|
|
||||||
"eos_token_id": self.llm.config.eos_token_id,
|
|
||||||
"pad_token_id": self.llm.config.pad_token_id,
|
|
||||||
"num_beams": 1,
|
|
||||||
"do_sample": True, # Typically false for S2ST/S2TT tasks unless exploration needed
|
|
||||||
"top_p": 0.5,
|
|
||||||
"top_k": 20,
|
|
||||||
"repetition_penalty": 1.1,
|
|
||||||
"temperature": 0.7,
|
|
||||||
**(llm_kwargs or {}), # User-provided kwargs override defaults
|
|
||||||
}
|
|
||||||
|
|
||||||
text_outputs = self.llm.generate(
|
|
||||||
inputs_embeds=merged_prompt_inputs_embeds,
|
|
||||||
attention_mask=merged_prompt_attention_mask,
|
|
||||||
max_new_tokens=max_text_new_tokens,
|
|
||||||
return_dict_in_generate=True,
|
|
||||||
output_hidden_states=True,
|
|
||||||
**final_llm_kwargs,
|
|
||||||
)
|
|
||||||
delay_step = 1
|
|
||||||
generated_text_ids = text_outputs.sequences # [B, S_full]
|
|
||||||
eos_token_id = self.llm.config.eos_token_id
|
|
||||||
eos_token_embedding = self.llm.get_input_embeddings()(
|
|
||||||
torch.tensor([[eos_token_id]], device=device)
|
|
||||||
)
|
|
||||||
assert (
|
|
||||||
generated_text_ids[0, -1] == eos_token_id
|
|
||||||
), f"Last token is not EOS: {generated_text_ids[0, -1]} != {eos_token_id}"
|
|
||||||
thinker_token_embeds_org = [
|
|
||||||
token_hidden_states[0].to(self.llm.device)
|
|
||||||
for token_hidden_states in text_outputs.hidden_states
|
|
||||||
]
|
|
||||||
|
|
||||||
first_thinker_token_embed = torch.cat(
|
|
||||||
[
|
|
||||||
thinker_token_embeds_org[0][:, 1:],
|
|
||||||
thinker_token_embeds_org[1],
|
|
||||||
],
|
|
||||||
dim=1,
|
|
||||||
)
|
|
||||||
|
|
||||||
thinker_token_embeds = (
|
|
||||||
[first_thinker_token_embed]
|
|
||||||
+ thinker_token_embeds_org[2:]
|
|
||||||
+ [eos_token_embedding]
|
|
||||||
)
|
|
||||||
thinker_hidden_states = [
|
|
||||||
token_hidden_states[-1].to(self.llm.device)
|
|
||||||
for token_hidden_states in text_outputs.hidden_states
|
|
||||||
]
|
|
||||||
|
|
||||||
thinker_reply_part = [
|
|
||||||
torch.cat(
|
|
||||||
[
|
|
||||||
thinker_hidden_state,
|
|
||||||
thinker_token_embed,
|
|
||||||
],
|
|
||||||
dim=-1,
|
|
||||||
)
|
|
||||||
for thinker_hidden_state, thinker_token_embed in zip(
|
|
||||||
thinker_hidden_states[1:], thinker_token_embeds[1:]
|
|
||||||
)
|
|
||||||
]
|
|
||||||
thinker_reply_part = torch.cat(thinker_reply_part, dim=1)
|
|
||||||
# thinker_prompt_part = thinker_hidden_states[0] + thinker_token_embeds[0]
|
|
||||||
thinker_prompt_part = torch.cat(
|
|
||||||
[
|
|
||||||
thinker_hidden_states[0],
|
|
||||||
thinker_token_embeds[0],
|
|
||||||
],
|
|
||||||
dim=-1,
|
|
||||||
)
|
|
||||||
|
|
||||||
thinker_prompt_part = self.speech_token_projector(thinker_prompt_part)
|
|
||||||
thinker_reply_part = self.speech_token_projector(thinker_reply_part)
|
|
||||||
|
|
||||||
thinker_prompt_part_seq_len = thinker_prompt_part.shape[1]
|
|
||||||
talker_input_ids = torch.full(
|
|
||||||
(batch_size, thinker_prompt_part_seq_len + delay_step + 1),
|
|
||||||
self.codec_lm.config.mask_token_id,
|
|
||||||
dtype=torch.long,
|
|
||||||
device=self.llm.device,
|
|
||||||
)
|
|
||||||
talker_input_ids[:, -1] = self.codec_lm.config.bos_token_id
|
|
||||||
talker_inputs_embeds = self.codec_lm.get_input_embeddings()(talker_input_ids)
|
|
||||||
thinker_input_embeds = torch.cat(
|
|
||||||
[
|
|
||||||
thinker_prompt_part,
|
|
||||||
thinker_reply_part[:, : delay_step + 1, :],
|
|
||||||
],
|
|
||||||
dim=1,
|
|
||||||
)
|
|
||||||
talker_inputs_embeds += thinker_input_embeds
|
|
||||||
thinker_reply_part = thinker_reply_part[:, delay_step + 1 :, :]
|
|
||||||
|
|
||||||
past_key_values = None
|
|
||||||
|
|
||||||
generated_speech_tokens_list = []
|
|
||||||
next_token_ids = None
|
|
||||||
|
|
||||||
for t in range(max_speech_new_tokens):
|
|
||||||
if t > 0:
|
|
||||||
talker_inputs_embeds = self.codec_lm.get_input_embeddings()(
|
|
||||||
next_token_ids
|
|
||||||
)
|
|
||||||
if thinker_reply_part.shape[1] > 0:
|
|
||||||
talker_inputs_embeds += thinker_reply_part[:, :1, :]
|
|
||||||
thinker_reply_part = thinker_reply_part[:, 1:, :]
|
|
||||||
|
|
||||||
codec_outputs = self.codec_lm(
|
|
||||||
inputs_embeds=talker_inputs_embeds,
|
|
||||||
past_key_values=past_key_values,
|
|
||||||
use_cache=True,
|
|
||||||
return_dict=True,
|
|
||||||
output_hidden_states=True,
|
|
||||||
)
|
|
||||||
last_token_hidden_state = codec_outputs.hidden_states[-1][:, -1, :]
|
|
||||||
next_token_logits = self.codec_lm_head(last_token_hidden_state)
|
|
||||||
|
|
||||||
next_token_ids = topk_sampling(
|
|
||||||
next_token_logits,
|
|
||||||
)
|
|
||||||
if next_token_ids[0, 0] == self.codec_lm.config.eos_token_id:
|
|
||||||
break
|
|
||||||
|
|
||||||
past_key_values = codec_outputs.past_key_values # Update KV cache
|
|
||||||
generated_speech_tokens_list.append(
|
|
||||||
next_token_ids.squeeze(1).cpu().tolist()[0]
|
|
||||||
)
|
|
||||||
|
|
||||||
return generated_text_ids, generated_speech_tokens_list
|
|
||||||
|
|
||||||
|
|
||||||
def compute_accuracy(pad_outputs, pad_targets, ignore_label):
|
|
||||||
"""Calculate accuracy.
|
|
||||||
Copied from https://github.com/X-LANCE/SLAM-LLM/blob/main/src/slam_llm/utils/metric.py
|
|
||||||
Args:
|
|
||||||
pad_outputs (LongTensor): Prediction tensors (B, Lmax).
|
|
||||||
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
|
||||||
ignore_label (int): Ignore label id.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
float: Accuracy value (0.0 - 1.0).
|
|
||||||
|
|
||||||
"""
|
|
||||||
mask = pad_targets != ignore_label
|
|
||||||
numerator = torch.sum(
|
|
||||||
pad_outputs.masked_select(mask) == pad_targets.masked_select(mask)
|
|
||||||
)
|
|
||||||
denominator = torch.sum(mask)
|
|
||||||
return numerator.float() / denominator.float()
|
|
||||||
|
|
||||||
|
|
||||||
def topk_sampling(
|
|
||||||
logits,
|
|
||||||
top_k=50,
|
|
||||||
top_p=0.95,
|
|
||||||
temperature=0.8,
|
|
||||||
):
|
|
||||||
if temperature != 1.0:
|
|
||||||
logits = logits / temperature
|
|
||||||
# Top-p/top-k filtering
|
|
||||||
logits_filtered = top_k_top_p_filtering(
|
|
||||||
logits.clone(), top_k=top_k, top_p=top_p, min_tokens_to_keep=2
|
|
||||||
)
|
|
||||||
# Sample
|
|
||||||
probs = torch.nn.functional.softmax(logits_filtered, dim=-1)
|
|
||||||
tokens = torch.multinomial(probs, num_samples=1)
|
|
||||||
|
|
||||||
return tokens
|
|
||||||
|
|
||||||
|
|
||||||
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
|
|
||||||
def top_k_top_p_filtering(
|
|
||||||
logits, top_k=20, top_p=0.5, filter_value=-float("Inf"), min_tokens_to_keep=1
|
|
||||||
):
|
|
||||||
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
|
||||||
Args:
|
|
||||||
logits: logits distribution shape (batch size, vocabulary size)
|
|
||||||
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
|
||||||
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
|
||||||
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
|
||||||
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
|
||||||
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
|
||||||
"""
|
|
||||||
if top_k > 0:
|
|
||||||
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
|
||||||
# Remove all tokens with a probability less than the last token of the top-k
|
|
||||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
|
||||||
logits[indices_to_remove] = filter_value
|
|
||||||
|
|
||||||
if top_p < 1.0:
|
|
||||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
||||||
cumulative_probs = torch.cumsum(
|
|
||||||
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
|
||||||
sorted_indices_to_remove = cumulative_probs > top_p
|
|
||||||
if min_tokens_to_keep > 1:
|
|
||||||
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
|
||||||
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
|
||||||
# Shift the indices to the right to keep also the first token above the threshold
|
|
||||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
|
||||||
sorted_indices_to_remove[..., 0] = 0
|
|
||||||
|
|
||||||
# scatter sorted tensors to original indexing
|
|
||||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
|
||||||
1, sorted_indices, sorted_indices_to_remove
|
|
||||||
)
|
|
||||||
logits[indices_to_remove] = filter_value
|
|
||||||
return logits
|
|
@ -1,195 +0,0 @@
|
|||||||
#!/usr/bin/env bash
|
|
||||||
|
|
||||||
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
||||||
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
||||||
|
|
||||||
export PYTHONPATH=$PYTHONPATH:/workspace/icefall
|
|
||||||
|
|
||||||
set -eou pipefail
|
|
||||||
|
|
||||||
stage=$1
|
|
||||||
stop_stage=$2
|
|
||||||
# All files generated by this script are saved in "data".
|
|
||||||
# You can safely remove "data" and rerun this script to regenerate it.
|
|
||||||
mkdir -p data
|
|
||||||
|
|
||||||
log() {
|
|
||||||
# This function is from espnet
|
|
||||||
local fname=${BASH_SOURCE[1]##*/}
|
|
||||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
||||||
log "stage 0: Clone CosyVoice repo and install requirements inside the container"
|
|
||||||
# docker: ghcr.io/swivid/f5-tts:main
|
|
||||||
pip install k2==1.24.4.dev20241030+cuda12.4.torch2.4.0 -f https://k2-fsa.github.io/k2/cuda.html
|
|
||||||
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git /workspace/CosyVoice
|
|
||||||
cd /workspace/CosyVoice
|
|
||||||
# If you failed to clone submodule due to network failures, please run following command until success
|
|
||||||
git submodule update --init --recursive
|
|
||||||
pip install -r qwen_omni/requirements.txt
|
|
||||||
pip install -r qwen_omni/requirements-cosyvoice.txt
|
|
||||||
|
|
||||||
# For Chinese only dataset, you can use the following command to download the Chinese fine-tuned whisper model.
|
|
||||||
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper
|
|
||||||
# Cosyvoice pretrained model for speech token2wav module
|
|
||||||
huggingface-cli download --local-dir models/CosyVoice-300M-SFT FunAudioLLM/CosyVoice-300M-SFT
|
|
||||||
# Qwen Pretrained model
|
|
||||||
huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct
|
|
||||||
# Qwen-Omni like speech2speech model trained on worstchan/Belle_1.4M-SLAM-Omni
|
|
||||||
huggingface-cli download --local-dir models/qwen-omni-like-speech2speech-belle-1.4M yuekai/qwen-omni-like-speech2speech-belle-1.4M
|
|
||||||
|
|
||||||
# For Gradio demo, we follow https://arxiv.org/abs/2412.15649 to use ASR model to decode the history speech as context.
|
|
||||||
pip install sherpa-onnx
|
|
||||||
model_path=local/sherpa-onnx-paraformer-zh-2023-09-14
|
|
||||||
if [ ! -d $model_path ]; then
|
|
||||||
wget -nc https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2
|
|
||||||
tar xvf sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2 -C local
|
|
||||||
fi
|
|
||||||
fi
|
|
||||||
export PYTHONPATH=$PYTHONPATH:/workspace/CosyVoice
|
|
||||||
|
|
||||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
||||||
log "stage 1: Compute fbank feature from huggingface"
|
|
||||||
python3 local/compute_whisper_fbank.py \
|
|
||||||
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
||||||
--out-dir data/fbank_test \
|
|
||||||
--huggingface-dataset-path-or-name /workspace/Belle_1.4M-SLAM-Omni \
|
|
||||||
--audio-key question_audio --text-key answer \
|
|
||||||
--prefix belle
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
||||||
log "Stage 2: Combine features"
|
|
||||||
manifest_dir=data/fbank
|
|
||||||
if [ ! -f $manifest_dir/cuts_belle_00001-01600.jsonl.gz ]; then
|
|
||||||
mv $manifest_dir/cuts_belle.00000.jsonl.gz ./
|
|
||||||
# exclude cust_belle_00000.jsonl.gz for valid and test set
|
|
||||||
pieces=$(find $manifest_dir -name "cuts_belle.*.jsonl.gz" | sort)
|
|
||||||
echo $pieces | wc
|
|
||||||
lhotse combine $pieces data/fbank/cuts_belle_00001-01600.jsonl.gz
|
|
||||||
mv ./cuts_belle.00000.jsonl.gz $manifest_dir # put it back
|
|
||||||
cd $manifest_dir && ln -s cuts_belle_00001-01600.jsonl.gz cuts_belle_train.jsonl.gz
|
|
||||||
ln -s cuts_belle.00000.jsonl.gz cuts_belle_test.jsonl.gz && cd -
|
|
||||||
fi
|
|
||||||
fi
|
|
||||||
|
|
||||||
ngpu=8
|
|
||||||
exp_dir=./qwen_omni/exp_speech2speech
|
|
||||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
||||||
log "stage 3: Training Speech2Speech Model"
|
|
||||||
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
|
||||||
--max-duration 50 \
|
|
||||||
--enable-musan False \
|
|
||||||
--exp-dir $exp_dir \
|
|
||||||
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
|
||||||
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
|
||||||
--manifest-dir data/fbank \
|
|
||||||
--deepspeed \
|
|
||||||
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
|
||||||
--use-flash-attn True \
|
|
||||||
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
||||||
log "stage 4: Decoding, only support batch_size=1 for now."
|
|
||||||
cd $exp_dir && ln -s ../../models/qwen-omni-like-speech2speech-belle-1.4M/pytorch_model.bin epoch-999.pt && cd -
|
|
||||||
python3 ./qwen_omni/decode.py \
|
|
||||||
--max-duration 1 \
|
|
||||||
--exp-dir $exp_dir \
|
|
||||||
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
|
||||||
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
|
|
||||||
--epoch 999 --avg 1 \
|
|
||||||
--manifest-dir data/fbank \
|
|
||||||
--use-flash-attn True \
|
|
||||||
--method e2e-epoch10_speech2speech \
|
|
||||||
--enable-speech-output True \
|
|
||||||
--token2wav-path models/CosyVoice-300M-SFT \
|
|
||||||
--use-lora True
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
||||||
log "stage 5: Gradio Demo"
|
|
||||||
python3 ./qwen_omni/web_demo.py \
|
|
||||||
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
|
||||||
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
|
|
||||||
--checkpoint-path $exp_dir/epoch-999.pt \
|
|
||||||
--use-flash-attn True \
|
|
||||||
--enable-speech-output True \
|
|
||||||
--asr-model-dir local/sherpa-onnx-paraformer-zh-2023-09-14 \
|
|
||||||
--use-lora True --token2wav-path /workspace/CosyVoice-300M-SFT --share
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
||||||
log "stage 1: Compute fbank feature from huggingface"
|
|
||||||
# CUDA_VISIBLE_DEVICES=0 python3 local/compute_whisper_fbank.py \
|
|
||||||
# --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
||||||
# --out-dir data/fbank_voice_assistant \
|
|
||||||
# --huggingface-dataset-path-or-name worstchan/VoiceAssistant-400K-SLAM-Omni \
|
|
||||||
# --audio-key question_audio --text-key answer \
|
|
||||||
# --prefix voice_assistant
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python3 local/compute_whisper_fbank.py \
|
|
||||||
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
||||||
--out-dir data/fbank_voice_assistant_cosy2 \
|
|
||||||
--json-file-path /workspace/slam/VoiceAssistant-430K-vocalnet/VoiceAssistant-430K.json \
|
|
||||||
--prefix voice_assistant
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
||||||
log "stage 7: Compute fbank feature from huggingface"
|
|
||||||
# CUDA_VISIBLE_DEVICES=1 python3 local/compute_whisper_fbank.py \
|
|
||||||
# --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
||||||
# --out-dir data/fbank_ultrachat \
|
|
||||||
# --huggingface-dataset-path-or-name worstchan/UltraChat-300K-SLAM-Omni \
|
|
||||||
# --audio-key question_audio --text-key answer \
|
|
||||||
# --prefix ultrachat
|
|
||||||
CUDA_VISIBLE_DEVICES=1 python3 local/compute_whisper_fbank.py \
|
|
||||||
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
||||||
--out-dir data/fbank_ultrachat_cosy2 \
|
|
||||||
--json-file-path /workspace/slam/UltraChat-vocalnet/UltraChat.json \
|
|
||||||
--prefix ultrachat
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
|
||||||
log "stage 8: Compute fbank feature from huggingface"
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=1 python3 local/compute_whisper_fbank.py \
|
|
||||||
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
|
||||||
--out-dir data/fbank_gigaspeech \
|
|
||||||
--huggingface-dataset-path-or-name speechcolab/gigaspeech \
|
|
||||||
--subset test --split test \
|
|
||||||
--audio-key audio --text-key text \
|
|
||||||
--prefix gigaspeech
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
|
||||||
log "stage 9: Compute fbank feature from huggingface"
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python3 local/compute_whisper_fbank.py \
|
|
||||||
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb True \
|
|
||||||
--out-dir data/fbank_gigaspeech \
|
|
||||||
--huggingface-dataset-path-or-name speechcolab/gigaspeech \
|
|
||||||
--subset xl --split train \
|
|
||||||
--audio-key audio --text-key text \
|
|
||||||
--prefix gigaspeech
|
|
||||||
fi
|
|
||||||
|
|
||||||
|
|
||||||
ngpu=2
|
|
||||||
exp_dir=./qwen_omni/exp_speech2speech_en
|
|
||||||
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
|
||||||
log "stage 10: Training Speech2Speech Model"
|
|
||||||
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
|
||||||
--max-duration 1 \
|
|
||||||
--enable-musan False \
|
|
||||||
--exp-dir $exp_dir \
|
|
||||||
--speech-encoder-path-or-name models/large-v2.pt \
|
|
||||||
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
|
||||||
--dataset-format vocalnet \
|
|
||||||
--manifest-dir data/fbank \
|
|
||||||
--deepspeed \
|
|
||||||
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
|
||||||
--use-flash-attn False --bucketing-sampler False \
|
|
||||||
--use-lora False --unfreeze-llm False --unfreeze-speech-projector True --enable-speech-output False
|
|
||||||
# --use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
|
||||||
fi
|
|
@ -1,977 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
|
||||||
# 2024 Yuekai Zhang
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
Usage:
|
|
||||||
# For Chinese dataset, you can use the following command to download the Chinese fine-tuned whisper model.
|
|
||||||
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper
|
|
||||||
# Qwen Pretrained model
|
|
||||||
huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct
|
|
||||||
|
|
||||||
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
|
||||||
--max-duration 50 \
|
|
||||||
--enable-musan False \
|
|
||||||
--exp-dir $exp_dir \
|
|
||||||
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
|
||||||
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
|
||||||
--manifest-dir data/fbank \
|
|
||||||
--deepspeed \
|
|
||||||
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
|
||||||
--use-flash-attn True \
|
|
||||||
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import copy
|
|
||||||
import logging
|
|
||||||
import os
|
|
||||||
import random
|
|
||||||
import warnings
|
|
||||||
from pathlib import Path
|
|
||||||
from shutil import copyfile
|
|
||||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
||||||
|
|
||||||
import deepspeed
|
|
||||||
import torch
|
|
||||||
import torch.multiprocessing as mp
|
|
||||||
import torch.nn as nn
|
|
||||||
import transformers
|
|
||||||
import whisper
|
|
||||||
from data_module import AsrDataModule
|
|
||||||
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
|
||||||
from label_smoothing import LabelSmoothingLoss
|
|
||||||
from lhotse import CutSet, load_manifest
|
|
||||||
from lhotse.cut import Cut
|
|
||||||
from lhotse.dataset.sampling.base import CutSampler
|
|
||||||
from lhotse.utils import fix_random_seed
|
|
||||||
from model import IGNORE_TOKEN_ID, SPEECH_LLM, EncoderProjector
|
|
||||||
from peft import LoraConfig, get_peft_model
|
|
||||||
from torch import Tensor
|
|
||||||
from torch.utils.tensorboard import SummaryWriter
|
|
||||||
from transformers import (
|
|
||||||
AutoModelForCausalLM,
|
|
||||||
AutoTokenizer,
|
|
||||||
Qwen2Config,
|
|
||||||
Qwen2ForCausalLM,
|
|
||||||
)
|
|
||||||
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
|
||||||
|
|
||||||
# from icefall import diagnostics
|
|
||||||
from utils import get_rank, get_world_size
|
|
||||||
# from icefall.env import get_env_info
|
|
||||||
from utils import ( # filter_uneven_sized_batch,
|
|
||||||
AttributeDict,
|
|
||||||
MetricsTracker,
|
|
||||||
setup_logger,
|
|
||||||
str2bool,
|
|
||||||
)
|
|
||||||
|
|
||||||
DEFAULT_SPEECH_TOKEN = "<speech>"
|
|
||||||
|
|
||||||
|
|
||||||
def set_batch_count(model: nn.Module, batch_count: float) -> None:
|
|
||||||
for module in model.modules():
|
|
||||||
if hasattr(module, "batch_count"):
|
|
||||||
module.batch_count = batch_count
|
|
||||||
|
|
||||||
|
|
||||||
def add_model_arguments(parser: argparse.ArgumentParser):
|
|
||||||
parser.add_argument(
|
|
||||||
"--remove-whisper-encoder-input-length-restriction",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="replace whisper encoder forward method to remove input length restriction",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--llm-path-or-name",
|
|
||||||
type=str,
|
|
||||||
default="/workspace/asr/Qwen1.5-0.5B-Chat",
|
|
||||||
help="Path or name of the large language model.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--speech-encoder-path-or-name",
|
|
||||||
type=str,
|
|
||||||
default="whisper-large-v2",
|
|
||||||
help="Path or name of the speech encoder.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--encoder-projector-ds-rate",
|
|
||||||
type=int,
|
|
||||||
default=8,
|
|
||||||
help="Downsample rate for the encoder projector.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--use-flash-attn",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Whether to use flash attention.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--use-lora",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="Whether to use lora to fine-tune llm.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--enable-speech-output",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="Whether to enable speech codec output.",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--tensorboard",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Should various information be logged in tensorboard.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--num-epochs",
|
|
||||||
type=int,
|
|
||||||
default=10,
|
|
||||||
help="Number of epochs to train.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--start-epoch",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="""Resume training from this epoch. It should be positive.
|
|
||||||
If larger than 1, it will load checkpoint from
|
|
||||||
exp-dir/epoch-{start_epoch-1}.pt
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--exp-dir",
|
|
||||||
type=str,
|
|
||||||
default="whisper_qwen/exp",
|
|
||||||
help="""The experiment dir.
|
|
||||||
It specifies the directory where all training related
|
|
||||||
files, e.g., checkpoints, log, etc, are saved
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--pretrained-model-path",
|
|
||||||
type=str,
|
|
||||||
default=None,
|
|
||||||
help="""The path to the pretrained model if it is not None. Training will
|
|
||||||
start from this model. e.g. ./wenetspeech/ASR/whisper/exp_large_v2/epoch-4-avg-3.pt
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--sampler-state-dict-path",
|
|
||||||
type=str,
|
|
||||||
default=None,
|
|
||||||
help="""The path to the sampler state dict if it is not None. Training will start from this sampler state dict.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--seed",
|
|
||||||
type=int,
|
|
||||||
default=42,
|
|
||||||
help="The seed for random generators intended for reproducibility",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--use-fp16",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Whether to use half precision training.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--unfreeze-llm",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="Whether to unfreeze llm during training.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--unfreeze-speech-projector",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="Whether to unfreeze speech adaptor during training.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--dataset-format",
|
|
||||||
type=str,
|
|
||||||
default="slam_omni",
|
|
||||||
help="The format of the dataset.",
|
|
||||||
)
|
|
||||||
parser = deepspeed.add_config_arguments(parser)
|
|
||||||
add_model_arguments(parser)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def get_params() -> AttributeDict:
|
|
||||||
"""Return a dict containing training parameters.
|
|
||||||
|
|
||||||
All training related parameters that are not passed from the commandline
|
|
||||||
are saved in the variable `params`.
|
|
||||||
|
|
||||||
Commandline options are merged into `params` after they are parsed, so
|
|
||||||
you can also access them via `params`.
|
|
||||||
|
|
||||||
Explanation of options saved in `params`:
|
|
||||||
|
|
||||||
- frame_shift_ms: The frame shift in milliseconds.
|
|
||||||
- allowed_excess_duration_ratio: The allowed excess duration ratio.
|
|
||||||
- best_train_loss: The best training loss so far.
|
|
||||||
- best_valid_loss: The best validation loss so far.
|
|
||||||
- best_train_epoch: The epoch where the best training loss is achieved.
|
|
||||||
- best_valid_epoch: The epoch where the best validation loss is achieved.
|
|
||||||
- batch_idx_train: The batch index of the current batch.
|
|
||||||
- log_interval: Log training stats every `log_interval` batches.
|
|
||||||
- reset_interval: Reset the stats every `reset_interval` batches.
|
|
||||||
- valid_interval: Run validation every `valid_interval` batches.
|
|
||||||
- env_info: The environment information.
|
|
||||||
"""
|
|
||||||
params = AttributeDict(
|
|
||||||
{
|
|
||||||
"allowed_excess_duration_ratio": 0.1,
|
|
||||||
"subsampling_factor": 2,
|
|
||||||
"frame_shift_ms": 10,
|
|
||||||
"best_train_loss": float("inf"),
|
|
||||||
"best_valid_loss": float("inf"),
|
|
||||||
"best_train_epoch": -1,
|
|
||||||
"best_valid_epoch": -1,
|
|
||||||
"batch_idx_train": 0,
|
|
||||||
"log_interval": 50,
|
|
||||||
"reset_interval": 200,
|
|
||||||
"valid_interval": 5000,
|
|
||||||
# "env_info": get_env_info(),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
return params
|
|
||||||
|
|
||||||
|
|
||||||
def process_batch_slam_omni(batch: dict):
|
|
||||||
answers = batch["supervisions"]["text"]
|
|
||||||
questions_with_history = [
|
|
||||||
cut.custom["question"] for cut in batch["supervisions"]["cut"]
|
|
||||||
]
|
|
||||||
chat_rounds = [cut.custom["round"] for cut in batch["supervisions"]["cut"]]
|
|
||||||
answer_cosyvoice_speech_token = [
|
|
||||||
cut.custom["answer_cosyvoice_speech_token"]
|
|
||||||
for cut in batch["supervisions"]["cut"]
|
|
||||||
]
|
|
||||||
last_questions = [
|
|
||||||
question.split("<USER>: ")[-1].strip() for question in questions_with_history
|
|
||||||
]
|
|
||||||
history_contexts = [
|
|
||||||
question.rsplit("<USER>:", 1)[0].strip() for question in questions_with_history
|
|
||||||
]
|
|
||||||
|
|
||||||
messages = []
|
|
||||||
for i, total_round in enumerate(chat_rounds):
|
|
||||||
message = []
|
|
||||||
if total_round > 1:
|
|
||||||
history_question_answer = history_contexts[i].split("USER:")
|
|
||||||
history_question_answer = [item for item in history_question_answer if item]
|
|
||||||
for j in range(total_round - 1):
|
|
||||||
question_answer = history_question_answer[j].split("ASSISTANT:")
|
|
||||||
message += [
|
|
||||||
{"role": "user", "content": question_answer[0].strip()},
|
|
||||||
{"role": "assistant", "content": question_answer[1].strip()},
|
|
||||||
]
|
|
||||||
message += [
|
|
||||||
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
|
|
||||||
{"role": "assistant", "content": answers[i]},
|
|
||||||
]
|
|
||||||
messages.append(message)
|
|
||||||
return messages, answer_cosyvoice_speech_token
|
|
||||||
|
|
||||||
|
|
||||||
def process_batch_vocalnet(batch: dict):
|
|
||||||
answers = batch["supervisions"]["text"]
|
|
||||||
answer_cosyvoice_speech_token = [
|
|
||||||
cut.custom["speech_token"] for cut in batch["supervisions"]["cut"]
|
|
||||||
]
|
|
||||||
messages = []
|
|
||||||
for i in range(len(answers)):
|
|
||||||
message = [
|
|
||||||
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
|
|
||||||
{"role": "assistant", "content": answers[i]},
|
|
||||||
]
|
|
||||||
messages.append(message)
|
|
||||||
return messages, answer_cosyvoice_speech_token
|
|
||||||
|
|
||||||
|
|
||||||
def compute_loss(
|
|
||||||
params: AttributeDict,
|
|
||||||
tokenizer: AutoTokenizer,
|
|
||||||
model: nn.Module,
|
|
||||||
batch: dict,
|
|
||||||
is_training: bool,
|
|
||||||
) -> Tuple[Tensor, MetricsTracker]:
|
|
||||||
"""
|
|
||||||
Compute the loss for the given batch.
|
|
||||||
Args:
|
|
||||||
params:
|
|
||||||
It is returned by :func:`get_params`.
|
|
||||||
tokenizer:
|
|
||||||
The tokenizer used to encode the text.
|
|
||||||
model:
|
|
||||||
The model for training.
|
|
||||||
batch:
|
|
||||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
||||||
for the content in it.
|
|
||||||
is_training:
|
|
||||||
Whether it is training.
|
|
||||||
Returns:
|
|
||||||
Return a tuple of two elements. The first element is the loss tensor.
|
|
||||||
"""
|
|
||||||
# For the uneven-sized batch, the total duration after padding would possibly
|
|
||||||
# cause OOM. Hence, for each batch, which is sorted descendingly by length,
|
|
||||||
# we simply drop the last few shortest samples, so that the retained total frames
|
|
||||||
# (after padding) would not exceed `allowed_max_frames`:
|
|
||||||
# `allowed_max_frames = int(max_frames * (1.0 + allowed_excess_duration_ratio))`,
|
|
||||||
# where `max_frames = max_duration * 1000 // frame_shift_ms`.
|
|
||||||
# We set allowed_excess_duration_ratio=0.1.
|
|
||||||
|
|
||||||
def preprocess(
|
|
||||||
messages,
|
|
||||||
tokenizer: transformers.PreTrainedTokenizer,
|
|
||||||
) -> Dict:
|
|
||||||
"""Preprocesses the data for supervised fine-tuning."""
|
|
||||||
texts = []
|
|
||||||
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
|
||||||
for i, msg in enumerate(messages):
|
|
||||||
texts.append(
|
|
||||||
tokenizer.apply_chat_template(
|
|
||||||
msg,
|
|
||||||
tokenize=True,
|
|
||||||
chat_template=TEMPLATE,
|
|
||||||
add_generation_prompt=False,
|
|
||||||
padding="longest", # FIX me change padding to longest
|
|
||||||
truncation=False,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
if len(texts) != len(messages):
|
|
||||||
logging.warning(f"Remove too long text, {messages} ")
|
|
||||||
max_len_texts = max([len(text) for text in texts])
|
|
||||||
if tokenizer.padding_side == "right":
|
|
||||||
texts = [
|
|
||||||
text + [tokenizer.pad_token_id] * (max_len_texts - len(text))
|
|
||||||
for text in texts
|
|
||||||
]
|
|
||||||
else:
|
|
||||||
texts = [
|
|
||||||
[tokenizer.pad_token_id] * (max_len_texts - len(text)) + text
|
|
||||||
for text in texts
|
|
||||||
]
|
|
||||||
input_ids = torch.tensor(texts, dtype=torch.int)
|
|
||||||
|
|
||||||
target_ids = input_ids.clone()
|
|
||||||
target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID
|
|
||||||
# mask all tokens before token_id 151646 with IGNORE_TOKEN_ID
|
|
||||||
# first get the indices of the tokens
|
|
||||||
mask_prompt = True
|
|
||||||
if mask_prompt:
|
|
||||||
default_speech_token_id = tokenizer.convert_tokens_to_ids(
|
|
||||||
DEFAULT_SPEECH_TOKEN
|
|
||||||
)
|
|
||||||
mask_indices = torch.where(input_ids == default_speech_token_id)
|
|
||||||
for i in range(mask_indices[0].size(0)):
|
|
||||||
row = mask_indices[0][i]
|
|
||||||
col = mask_indices[1][i]
|
|
||||||
# + 6 to skip: 'assistant', '\n' 151665, 151645, 198, 151644, 77091, 198
|
|
||||||
# WAR: TODO FIXME check qwen3
|
|
||||||
target_ids[row, : col + 6] = IGNORE_TOKEN_ID
|
|
||||||
|
|
||||||
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
|
||||||
|
|
||||||
return input_ids, attention_mask, target_ids
|
|
||||||
|
|
||||||
# max_frames = params.max_duration * 1000 // params.frame_shift_ms
|
|
||||||
# allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio))
|
|
||||||
# batch = filter_uneven_sized_batch(batch, allowed_max_frames)
|
|
||||||
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
feature = batch["inputs"]
|
|
||||||
|
|
||||||
assert feature.ndim == 3
|
|
||||||
feature = feature.to(device)
|
|
||||||
feature = feature.transpose(1, 2) # (N, C, T)
|
|
||||||
|
|
||||||
batch_idx_train = params.batch_idx_train
|
|
||||||
|
|
||||||
# WAR: TODO FIXME merge process_batch_slam_omni and process_batch_vocalnet
|
|
||||||
if params.dataset_format == "slam_omni":
|
|
||||||
messages, answer_cosyvoice_speech_token = process_batch_slam_omni(batch)
|
|
||||||
elif params.dataset_format == "vocalnet":
|
|
||||||
messages, answer_cosyvoice_speech_token = process_batch_vocalnet(batch)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
|
|
||||||
|
|
||||||
print(f"messages: {messages}")
|
|
||||||
|
|
||||||
input_ids, attention_mask, target_ids = preprocess(messages, tokenizer)
|
|
||||||
|
|
||||||
target_ids = target_ids.type(torch.LongTensor)
|
|
||||||
input_ids = input_ids.type(torch.LongTensor)
|
|
||||||
|
|
||||||
with torch.set_grad_enabled(is_training):
|
|
||||||
if not params.enable_speech_output:
|
|
||||||
loss, acc = model(
|
|
||||||
fbank=feature,
|
|
||||||
input_ids=input_ids.to(device),
|
|
||||||
attention_mask=attention_mask.to(device),
|
|
||||||
labels=target_ids.to(device),
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
(
|
|
||||||
text_loss,
|
|
||||||
acc,
|
|
||||||
codec_loss,
|
|
||||||
codec_acc,
|
|
||||||
codec_topk_acc,
|
|
||||||
) = model.forward_with_speech_output(
|
|
||||||
fbank=feature,
|
|
||||||
input_ids=input_ids.to(device),
|
|
||||||
attention_mask=attention_mask.to(device),
|
|
||||||
labels=target_ids.to(device),
|
|
||||||
speech_codec_ids=answer_cosyvoice_speech_token,
|
|
||||||
)
|
|
||||||
loss = text_loss + codec_loss
|
|
||||||
assert loss.requires_grad == is_training
|
|
||||||
|
|
||||||
info = MetricsTracker()
|
|
||||||
with warnings.catch_warnings():
|
|
||||||
warnings.simplefilter("ignore")
|
|
||||||
feature_lens = batch["supervisions"]["num_frames"]
|
|
||||||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
|
||||||
info["loss"] = loss.detach().cpu().item()
|
|
||||||
info["acc"] = (
|
|
||||||
acc * info["frames"]
|
|
||||||
) # WAR: to avoid normalization by the number of frames
|
|
||||||
if params.enable_speech_output:
|
|
||||||
info["codec_acc"] = codec_acc * info["frames"]
|
|
||||||
info["codec_topk_acc"] = codec_topk_acc * info["frames"]
|
|
||||||
info["codec_loss"] = codec_loss.detach().cpu().item()
|
|
||||||
info["text_loss"] = text_loss.detach().cpu().item()
|
|
||||||
return loss, info
|
|
||||||
|
|
||||||
|
|
||||||
def compute_validation_loss(
|
|
||||||
params: AttributeDict,
|
|
||||||
tokenizer: whisper.tokenizer.Tokenizer,
|
|
||||||
model: nn.Module,
|
|
||||||
valid_dl: torch.utils.data.DataLoader,
|
|
||||||
world_size: int = 1,
|
|
||||||
) -> MetricsTracker:
|
|
||||||
"""Run the validation process."""
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
tot_loss = MetricsTracker()
|
|
||||||
|
|
||||||
for batch_idx, batch in enumerate(valid_dl):
|
|
||||||
with torch.amp.autocast("cuda", enabled=params.use_fp16):
|
|
||||||
loss, loss_info = compute_loss(
|
|
||||||
params=params,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
model=model,
|
|
||||||
batch=batch,
|
|
||||||
is_training=False,
|
|
||||||
)
|
|
||||||
assert loss.requires_grad is False
|
|
||||||
tot_loss = tot_loss + loss_info
|
|
||||||
|
|
||||||
if world_size > 1:
|
|
||||||
tot_loss.reduce(loss.device)
|
|
||||||
|
|
||||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
||||||
if loss_value < params.best_valid_loss:
|
|
||||||
params.best_valid_epoch = params.cur_epoch
|
|
||||||
params.best_valid_loss = loss_value
|
|
||||||
exit()
|
|
||||||
return tot_loss
|
|
||||||
|
|
||||||
|
|
||||||
def train_one_epoch(
|
|
||||||
params: AttributeDict,
|
|
||||||
tokenizer: AutoTokenizer,
|
|
||||||
model: nn.Module,
|
|
||||||
optimizer: torch.optim.Optimizer,
|
|
||||||
scheduler: torch.optim.lr_scheduler,
|
|
||||||
train_dl: torch.utils.data.DataLoader,
|
|
||||||
valid_dl: torch.utils.data.DataLoader,
|
|
||||||
tb_writer: Optional[SummaryWriter] = None,
|
|
||||||
world_size: int = 1,
|
|
||||||
rank: int = 0,
|
|
||||||
) -> None:
|
|
||||||
"""Train the model for one epoch.
|
|
||||||
|
|
||||||
The training loss from the mean of all frames is saved in
|
|
||||||
`params.train_loss`. It runs the validation process every
|
|
||||||
`params.valid_interval` batches.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
params:
|
|
||||||
It is returned by :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The model for training.
|
|
||||||
optimizer:
|
|
||||||
The optimizer we are using.
|
|
||||||
scheduler:
|
|
||||||
The learning rate scheduler, we call step() every step.
|
|
||||||
train_dl:
|
|
||||||
Dataloader for the training dataset.
|
|
||||||
valid_dl:
|
|
||||||
Dataloader for the validation dataset.
|
|
||||||
scaler:
|
|
||||||
The scaler used for mix precision training.
|
|
||||||
model_avg:
|
|
||||||
The stored model averaged from the start of training.
|
|
||||||
tb_writer:
|
|
||||||
Writer to write log messages to tensorboard.
|
|
||||||
world_size:
|
|
||||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
||||||
rank:
|
|
||||||
The rank of the node in DDP training. If no DDP is used, it should
|
|
||||||
be set to 0.
|
|
||||||
"""
|
|
||||||
model.encoder_projector.train()
|
|
||||||
|
|
||||||
tot_loss = MetricsTracker()
|
|
||||||
|
|
||||||
for batch_idx, batch in enumerate(train_dl):
|
|
||||||
params.batch_idx_train += 1
|
|
||||||
batch_size = len(batch["supervisions"]["text"])
|
|
||||||
if batch_idx % params.valid_interval == 0:
|
|
||||||
logging.info("Computing validation loss")
|
|
||||||
valid_info = compute_validation_loss(
|
|
||||||
params=params,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
model=model,
|
|
||||||
valid_dl=valid_dl,
|
|
||||||
world_size=world_size,
|
|
||||||
)
|
|
||||||
model.train()
|
|
||||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
|
||||||
logging.info(
|
|
||||||
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
|
||||||
)
|
|
||||||
if tb_writer is not None:
|
|
||||||
valid_info.write_summary(
|
|
||||||
tb_writer, "train/valid_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
if batch_idx != 0:
|
|
||||||
model.save_checkpoint(
|
|
||||||
save_dir=params.exp_dir,
|
|
||||||
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
|
||||||
client_state={},
|
|
||||||
exclude_frozen_parameters=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
if rank == 0:
|
|
||||||
convert_zero_checkpoint_to_fp32_state_dict(
|
|
||||||
params.exp_dir,
|
|
||||||
f"{params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}.pt",
|
|
||||||
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
|
||||||
exclude_frozen_parameters=True,
|
|
||||||
)
|
|
||||||
# save sampler state dict into checkpoint
|
|
||||||
sampler_state_dict = train_dl.sampler.state_dict()
|
|
||||||
torch.save(
|
|
||||||
sampler_state_dict,
|
|
||||||
f"{params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}-sampler.pt",
|
|
||||||
)
|
|
||||||
os.system(
|
|
||||||
f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}"
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
with torch.amp.autocast("cuda", enabled=params.use_fp16):
|
|
||||||
loss, loss_info = compute_loss(
|
|
||||||
params=params,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
model=model,
|
|
||||||
batch=batch,
|
|
||||||
is_training=True,
|
|
||||||
)
|
|
||||||
# summary stats
|
|
||||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
|
||||||
|
|
||||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
|
||||||
# in the batch and there is no normalization to it so far.
|
|
||||||
|
|
||||||
# deepspeed's backward() is different from torch's backward()
|
|
||||||
# in that it does not accept a loss tensor as input.
|
|
||||||
# It computes the loss internally.
|
|
||||||
model.backward(loss)
|
|
||||||
model.step()
|
|
||||||
|
|
||||||
except: # noqa
|
|
||||||
display_and_save_batch(batch, params=params)
|
|
||||||
raise
|
|
||||||
|
|
||||||
if batch_idx % params.log_interval == 0:
|
|
||||||
try:
|
|
||||||
cur_lr = scheduler.get_last_lr()[0]
|
|
||||||
except: # noqa
|
|
||||||
cur_lr = 0.0
|
|
||||||
|
|
||||||
logging.info(
|
|
||||||
f"Epoch {params.cur_epoch}, "
|
|
||||||
f"batch {batch_idx}, loss[{loss_info}], "
|
|
||||||
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
|
||||||
f"lr: {cur_lr:.2e}, "
|
|
||||||
)
|
|
||||||
|
|
||||||
if tb_writer is not None:
|
|
||||||
tb_writer.add_scalar(
|
|
||||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
loss_info.write_summary(
|
|
||||||
tb_writer, "train/current_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
|
||||||
|
|
||||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
||||||
params.train_loss = loss_value
|
|
||||||
if params.train_loss < params.best_train_loss:
|
|
||||||
params.best_train_epoch = params.cur_epoch
|
|
||||||
params.best_train_loss = params.train_loss
|
|
||||||
|
|
||||||
|
|
||||||
def run(rank, world_size, args):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
rank:
|
|
||||||
It is a value between 0 and `world_size-1`, which is
|
|
||||||
passed automatically by `mp.spawn()` in :func:`main`.
|
|
||||||
The node with rank 0 is responsible for saving checkpoint.
|
|
||||||
world_size:
|
|
||||||
Number of GPUs for DDP training.
|
|
||||||
args:
|
|
||||||
The return value of get_parser().parse_args()
|
|
||||||
"""
|
|
||||||
params = get_params()
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
fix_random_seed(params.seed)
|
|
||||||
|
|
||||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
||||||
logging.info(params)
|
|
||||||
|
|
||||||
logging.info("About to create model")
|
|
||||||
|
|
||||||
replace_whisper_encoder_forward()
|
|
||||||
whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu")
|
|
||||||
speech_encoder = whisper_model.encoder
|
|
||||||
speech_encoder_dim = whisper_model.dims.n_audio_state
|
|
||||||
for name, param in speech_encoder.named_parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
speech_encoder.eval()
|
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name)
|
|
||||||
|
|
||||||
if params.use_flash_attn:
|
|
||||||
attn_implementation = "flash_attention_2"
|
|
||||||
torch_dtype = torch.float16
|
|
||||||
tokenizer.padding_side = "left"
|
|
||||||
|
|
||||||
else:
|
|
||||||
attn_implementation = "eager"
|
|
||||||
torch_dtype = torch.float16
|
|
||||||
tokenizer.padding_side = "right"
|
|
||||||
|
|
||||||
llm = AutoModelForCausalLM.from_pretrained(
|
|
||||||
params.llm_path_or_name,
|
|
||||||
attn_implementation=attn_implementation,
|
|
||||||
torch_dtype=torch_dtype,
|
|
||||||
)
|
|
||||||
|
|
||||||
if not params.unfreeze_llm:
|
|
||||||
for name, param in llm.named_parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
llm.eval()
|
|
||||||
else:
|
|
||||||
if params.use_lora:
|
|
||||||
lora_config = LoraConfig(
|
|
||||||
r=64,
|
|
||||||
lora_alpha=16,
|
|
||||||
target_modules=[
|
|
||||||
"q_proj",
|
|
||||||
"k_proj",
|
|
||||||
"v_proj",
|
|
||||||
"o_proj",
|
|
||||||
"up_proj",
|
|
||||||
"gate_proj",
|
|
||||||
"down_proj",
|
|
||||||
],
|
|
||||||
lora_dropout=0.05,
|
|
||||||
task_type="CAUSAL_LM",
|
|
||||||
)
|
|
||||||
llm = get_peft_model(llm, lora_config)
|
|
||||||
llm.print_trainable_parameters()
|
|
||||||
|
|
||||||
special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]}
|
|
||||||
tokenizer.add_special_tokens(special_tokens_dict)
|
|
||||||
|
|
||||||
llm.config.pad_token_id = tokenizer.pad_token_id
|
|
||||||
llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids(
|
|
||||||
DEFAULT_SPEECH_TOKEN
|
|
||||||
)
|
|
||||||
|
|
||||||
encoder_projector = EncoderProjector(
|
|
||||||
speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate
|
|
||||||
)
|
|
||||||
if not params.unfreeze_speech_projector:
|
|
||||||
for name, param in encoder_projector.named_parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
encoder_projector.eval()
|
|
||||||
|
|
||||||
if params.enable_speech_output:
|
|
||||||
# Determine attn_implementation and torch_dtype based on use_flash_attn
|
|
||||||
if params.use_flash_attn:
|
|
||||||
attn_implementation = "flash_attention_2"
|
|
||||||
torch_dtype = torch.float16 # Or torch.bfloat16 if needed/supported
|
|
||||||
else:
|
|
||||||
attn_implementation = "eager"
|
|
||||||
torch_dtype = torch.float16
|
|
||||||
if params.dataset_format == "slam_omni":
|
|
||||||
codec_vocab_size = 4096 + 4
|
|
||||||
elif params.dataset_format == "vocalnet":
|
|
||||||
codec_vocab_size = 6561 + 4
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
|
|
||||||
# TODO: modify above vocab size or supress_tokens when decoding
|
|
||||||
config = Qwen2Config(
|
|
||||||
vocab_size=codec_vocab_size,
|
|
||||||
hidden_size=1024,
|
|
||||||
num_hidden_layers=12,
|
|
||||||
num_attention_heads=16,
|
|
||||||
num_key_value_heads=16,
|
|
||||||
intermediate_size=2048,
|
|
||||||
max_position_embeddings=4096,
|
|
||||||
)
|
|
||||||
|
|
||||||
codec_lm = AutoModelForCausalLM.from_config(
|
|
||||||
config=config,
|
|
||||||
attn_implementation=attn_implementation,
|
|
||||||
torch_dtype=torch_dtype,
|
|
||||||
)
|
|
||||||
|
|
||||||
codec_lm.resize_token_embeddings(codec_vocab_size)
|
|
||||||
codec_lm.vocab_size = codec_vocab_size
|
|
||||||
codec_lm.config.pad_token_id = codec_vocab_size - 1
|
|
||||||
codec_lm.config.eos_token_id = codec_vocab_size - 2
|
|
||||||
codec_lm.config.bos_token_id = codec_vocab_size - 3
|
|
||||||
codec_lm.config.mask_token_id = codec_vocab_size - 4
|
|
||||||
else:
|
|
||||||
codec_lm = None
|
|
||||||
|
|
||||||
model = SPEECH_LLM(
|
|
||||||
speech_encoder,
|
|
||||||
llm,
|
|
||||||
encoder_projector,
|
|
||||||
codec_lm,
|
|
||||||
codec_lm_padding_side="left" if params.use_flash_attn else "right",
|
|
||||||
)
|
|
||||||
|
|
||||||
if params.pretrained_model_path:
|
|
||||||
checkpoint = torch.load(params.pretrained_model_path, map_location="cpu")
|
|
||||||
missing_keys, unexpected_keys = model.load_state_dict(checkpoint, strict=False)
|
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
|
||||||
|
|
||||||
logging.info("Trainable parameters (excluding model.eval modules):")
|
|
||||||
for name, param in model.named_parameters():
|
|
||||||
if param.requires_grad:
|
|
||||||
logging.info(f"{name}: {param.shape}")
|
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", rank)
|
|
||||||
else:
|
|
||||||
device = torch.device("cpu")
|
|
||||||
logging.info(f"Device: {device}")
|
|
||||||
model.to(device)
|
|
||||||
|
|
||||||
assert params.deepspeed and world_size > 1
|
|
||||||
logging.info("Using DeepSpeed")
|
|
||||||
model, optimizer, _, scheduler = deepspeed.initialize(
|
|
||||||
args=params, model=model, model_parameters=model.parameters()
|
|
||||||
)
|
|
||||||
|
|
||||||
data_module = AsrDataModule(args)
|
|
||||||
|
|
||||||
def remove_short_and_long_utt(c: Cut):
|
|
||||||
# Keep only utterances with duration between 1 second and 20 seconds
|
|
||||||
#
|
|
||||||
# Caution: There is a reason to select 20.0 here. Please see
|
|
||||||
# ../local/display_manifest_statistics.py
|
|
||||||
#
|
|
||||||
# You should use ../local/display_manifest_statistics.py to get
|
|
||||||
# an utterance duration distribution for your dataset to select
|
|
||||||
# the threshold
|
|
||||||
if c.duration < 1.0 or c.duration > 30.0:
|
|
||||||
# logging.warning(
|
|
||||||
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
|
||||||
# )
|
|
||||||
return False
|
|
||||||
codec_len = (
|
|
||||||
len(c.custom["answer_cosyvoice_speech_token"])
|
|
||||||
if "answer_cosyvoice_speech_token" in c.custom
|
|
||||||
else len(c.custom["speech_token"])
|
|
||||||
)
|
|
||||||
if codec_len > 2200:
|
|
||||||
logging.warning(
|
|
||||||
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}, lenth: {codec_len}"
|
|
||||||
)
|
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
if params.dataset_format == "slam_omni":
|
|
||||||
train_cuts = data_module.train_cuts()
|
|
||||||
valid_cuts = data_module.dev_cuts()
|
|
||||||
elif params.dataset_format == "vocalnet":
|
|
||||||
train_cuts = data_module.train_cuts_en_vocalnet()
|
|
||||||
valid_cuts = data_module.valid_cuts_en_vocalnet()
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
|
|
||||||
|
|
||||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
|
||||||
valid_cuts = valid_cuts.filter(remove_short_and_long_utt)
|
|
||||||
|
|
||||||
sampler_state_dict = None
|
|
||||||
if params.sampler_state_dict_path:
|
|
||||||
sampler_state_dict = torch.load(params.sampler_state_dict_path)
|
|
||||||
sampler_state_dict["max_duration"] = params.max_duration
|
|
||||||
|
|
||||||
train_dl = data_module.train_dataloaders(
|
|
||||||
train_cuts, sampler_state_dict=sampler_state_dict
|
|
||||||
)
|
|
||||||
|
|
||||||
valid_dl = data_module.valid_dataloaders(valid_cuts)
|
|
||||||
|
|
||||||
if args.tensorboard and rank == 0:
|
|
||||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
||||||
else:
|
|
||||||
tb_writer = None
|
|
||||||
|
|
||||||
logging.info(f"start training from epoch {params.start_epoch}")
|
|
||||||
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
|
||||||
|
|
||||||
fix_random_seed(params.seed + epoch - 1)
|
|
||||||
train_dl.sampler.set_epoch(epoch - 1)
|
|
||||||
|
|
||||||
if tb_writer is not None:
|
|
||||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
||||||
|
|
||||||
params.cur_epoch = epoch
|
|
||||||
|
|
||||||
train_one_epoch(
|
|
||||||
params=params,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
model=model,
|
|
||||||
optimizer=optimizer,
|
|
||||||
scheduler=scheduler,
|
|
||||||
train_dl=train_dl,
|
|
||||||
valid_dl=valid_dl,
|
|
||||||
tb_writer=tb_writer,
|
|
||||||
world_size=world_size,
|
|
||||||
rank=rank,
|
|
||||||
)
|
|
||||||
|
|
||||||
model.save_checkpoint(
|
|
||||||
save_dir=params.exp_dir,
|
|
||||||
tag=f"epoch-{params.cur_epoch}",
|
|
||||||
client_state={},
|
|
||||||
exclude_frozen_parameters=True,
|
|
||||||
)
|
|
||||||
if rank == 0:
|
|
||||||
convert_zero_checkpoint_to_fp32_state_dict(
|
|
||||||
params.exp_dir,
|
|
||||||
f"{params.exp_dir}/epoch-{params.cur_epoch}.pt",
|
|
||||||
tag=f"epoch-{params.cur_epoch}",
|
|
||||||
exclude_frozen_parameters=True,
|
|
||||||
)
|
|
||||||
# save sampler state dict into checkpoint
|
|
||||||
sampler_state_dict = train_dl.sampler.state_dict()
|
|
||||||
torch.save(
|
|
||||||
sampler_state_dict,
|
|
||||||
f"{params.exp_dir}/epoch-{params.cur_epoch}-sampler.pt",
|
|
||||||
)
|
|
||||||
|
|
||||||
os.system(f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}")
|
|
||||||
|
|
||||||
logging.info("Done!")
|
|
||||||
|
|
||||||
|
|
||||||
def display_and_save_batch(
|
|
||||||
batch: dict,
|
|
||||||
params: AttributeDict,
|
|
||||||
) -> None:
|
|
||||||
"""Display the batch statistics and save the batch into disk.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
batch:
|
|
||||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
||||||
for the content in it.
|
|
||||||
params:
|
|
||||||
Parameters for training. See :func:`get_params`.
|
|
||||||
"""
|
|
||||||
from lhotse.utils import uuid4
|
|
||||||
|
|
||||||
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
|
||||||
logging.info(f"Saving batch to {filename}")
|
|
||||||
torch.save(batch, filename)
|
|
||||||
|
|
||||||
features = batch["inputs"]
|
|
||||||
|
|
||||||
logging.info(f"features shape: {features.shape}")
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
AsrDataModule.add_arguments(parser)
|
|
||||||
args = parser.parse_args()
|
|
||||||
args.exp_dir = Path(args.exp_dir)
|
|
||||||
|
|
||||||
world_size = get_world_size()
|
|
||||||
rank = get_rank()
|
|
||||||
|
|
||||||
torch.set_num_threads(1)
|
|
||||||
torch.set_num_interop_threads(1)
|
|
||||||
run(rank=rank, world_size=world_size, args=args)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
@ -240,11 +240,11 @@ fi
|
|||||||
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
|
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
|
||||||
log "stage 14: Client"
|
log "stage 14: Client"
|
||||||
exp_dir=./qwen_omni/exp_speech2text_first_libri_continuation_second_ce
|
exp_dir=./qwen_omni/exp_speech2text_first_libri_continuation_second_ce
|
||||||
|
exp_dir=./qwen_omni/exp_speech2text_first_asr_second_ce
|
||||||
|
exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_qa
|
||||||
# The final assignment of datasets in the original script is used here:
|
# The final assignment of datasets in the original script is used here:
|
||||||
# (alpacaeval_full wildvoice mmsu advbench bbh ifeval commoneval openbookqa sd-qa)
|
# (alpacaeval_full wildvoice mmsu advbench bbh ifeval commoneval openbookqa sd-qa)
|
||||||
declare -a target_datasets=("alpacaeval_full" "wildvoice" "ifeval" "commoneval" "openbookqa" "sd-qa" "advbench" "bbh" "mmsu")
|
declare -a target_datasets=("alpacaeval_full" "wildvoice" "ifeval" "commoneval" "openbookqa" "sd-qa" "advbench" "bbh" "mmsu")
|
||||||
declare -a target_datasets=("openbookqa" "ifeval" "sd-qa" "commoneval" "alpacaeval_full")
|
|
||||||
declare -a target_datasets=("alpacaeval_full" "wildvoice" "advbench" "bbh" "mmsu")
|
|
||||||
|
|
||||||
NUM_CLIENT_JOBS=4 # Number of parallel client jobs
|
NUM_CLIENT_JOBS=4 # Number of parallel client jobs
|
||||||
BASE_PORT=8000 # Base port for servers
|
BASE_PORT=8000 # Base port for servers
|
||||||
@ -365,7 +365,8 @@ if [ $stage -le 17 ] && [ $stop_stage -ge 17 ]; then
|
|||||||
# pip install gradio sherpa-onnx
|
# pip install gradio sherpa-onnx
|
||||||
log "stage 17: Server for adapter only speech continuation"
|
log "stage 17: Server for adapter only speech continuation"
|
||||||
exp_dir=./qwen_omni/exp_speech2text_first_libri_continuation_second_ce
|
exp_dir=./qwen_omni/exp_speech2text_first_libri_continuation_second_ce
|
||||||
# exp_dir=./qwen_omni/exp_speech2text_first_asr_second_ce
|
exp_dir=./qwen_omni/exp_speech2text_first_asr_second_ce
|
||||||
|
exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_qa
|
||||||
|
|
||||||
N_GPUS=4 # Define the number of GPUs/processes you want to launch
|
N_GPUS=4 # Define the number of GPUs/processes you want to launch
|
||||||
|
|
||||||
|
@ -36,6 +36,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|||||||
CutConcatenate,
|
CutConcatenate,
|
||||||
CutMix,
|
CutMix,
|
||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
PerturbSpeed,
|
PerturbSpeed,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SimpleCutSampler,
|
SimpleCutSampler,
|
||||||
@ -46,7 +47,6 @@ from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
|||||||
OnTheFlyFeatures,
|
OnTheFlyFeatures,
|
||||||
)
|
)
|
||||||
from lhotse.utils import fix_random_seed
|
from lhotse.utils import fix_random_seed
|
||||||
from speech_dataset import K2SpeechRecognitionDataset
|
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
from utils import get_local_rank, str2bool
|
from utils import get_local_rank, str2bool
|
||||||
|
|
||||||
@ -203,21 +203,15 @@ class AsrDataModule:
|
|||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--audio-key",
|
"--audio-key",
|
||||||
type=str,
|
type=str,
|
||||||
default="audio",
|
default=None,
|
||||||
help="The key in the Huggingface dataset containing the audio data",
|
help="The key in the Huggingface dataset containing the audio data",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--text-key",
|
"--text-key",
|
||||||
type=str,
|
type=str,
|
||||||
default="text",
|
default=None,
|
||||||
help="The key in the Huggingface dataset containing the text data",
|
help="The key in the Huggingface dataset containing the text data",
|
||||||
)
|
)
|
||||||
# group.add_argument(
|
|
||||||
# "--resample-to-16kHz",
|
|
||||||
# type=str2bool,
|
|
||||||
# default=True,
|
|
||||||
# help="Resample audio to 16kHz. Default: False.",
|
|
||||||
# )
|
|
||||||
|
|
||||||
def train_dataloaders(
|
def train_dataloaders(
|
||||||
self,
|
self,
|
||||||
@ -389,29 +383,21 @@ class AsrDataModule:
|
|||||||
return test_dl
|
return test_dl
|
||||||
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def test_cuts(self) -> CutSet:
|
def test_cuts_belle(self) -> CutSet:
|
||||||
logging.info("About to get test cuts")
|
logging.info("About to get test cuts")
|
||||||
if self.args.on_the_fly_feats:
|
return {
|
||||||
pass
|
"test": load_manifest_lazy(
|
||||||
else:
|
|
||||||
return {
|
|
||||||
"test": load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "cuts_belle_test.jsonl.gz"
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def dev_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get test cuts")
|
|
||||||
if self.args.on_the_fly_feats:
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
return load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "cuts_belle_test.jsonl.gz"
|
self.args.manifest_dir / "cuts_belle_test.jsonl.gz"
|
||||||
)
|
)
|
||||||
|
}
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def train_cuts(self) -> CutSet:
|
def dev_cuts_belle(self) -> CutSet:
|
||||||
|
logging.info("About to get test cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_belle_test.jsonl.gz"
|
||||||
|
)
|
||||||
|
@lru_cache()
|
||||||
|
def train_cuts_belle(self) -> CutSet:
|
||||||
logging.info("About to get train cuts")
|
logging.info("About to get train cuts")
|
||||||
slam_omni_zh_cuts = load_manifest_lazy(
|
slam_omni_zh_cuts = load_manifest_lazy(
|
||||||
self.args.manifest_dir / "cuts_belle_train.jsonl.gz"
|
self.args.manifest_dir / "cuts_belle_train.jsonl.gz"
|
||||||
@ -435,8 +421,6 @@ class AsrDataModule:
|
|||||||
len(ultrachat_cuts),
|
len(ultrachat_cuts),
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
# valid cuts_voice_assistant.00000.jsonl.gz
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def valid_cuts_en_vocalnet(self) -> CutSet:
|
def valid_cuts_en_vocalnet(self) -> CutSet:
|
||||||
logging.info("About to get valid cuts")
|
logging.info("About to get valid cuts")
|
||||||
@ -453,15 +437,6 @@ class AsrDataModule:
|
|||||||
)
|
)
|
||||||
return {"test": VoiceAssistant_cuts}
|
return {"test": VoiceAssistant_cuts}
|
||||||
|
|
||||||
def test_cuts_voicebench(
|
|
||||||
self,
|
|
||||||
) -> CutSet:
|
|
||||||
logging.info("About to get test cuts")
|
|
||||||
VoiceAssistant_cuts = load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "cuts_voice_assistant_small.00000.jsonl.gz"
|
|
||||||
)
|
|
||||||
return {"test": VoiceAssistant_cuts}
|
|
||||||
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def train_cuts_ultravox(self) -> CutSet:
|
def train_cuts_ultravox(self) -> CutSet:
|
||||||
logging.info("About to get train cuts")
|
logging.info("About to get train cuts")
|
||||||
@ -556,65 +531,6 @@ class AsrDataModule:
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
# @lru_cache()
|
|
||||||
# def train_cuts_ultravox(self) -> CutSet:
|
|
||||||
# logging.info("About to get train cuts")
|
|
||||||
# keep_columns = ["audio", "text", "continuation", "id"]
|
|
||||||
# librispeech_path="fixie-ai/librispeech_asr"
|
|
||||||
# # 148_688
|
|
||||||
# librispeech_other = load_dataset(librispeech_path, 'other', split='train.500', streaming=True)
|
|
||||||
# # 104_014
|
|
||||||
# librispeech_clean_360 = load_dataset(librispeech_path, 'clean', split='train.360', streaming=True)
|
|
||||||
# # 28_539
|
|
||||||
# librispeech_clean_100 = load_dataset(librispeech_path, 'clean', split='train.100', streaming=True)
|
|
||||||
|
|
||||||
# cols_to_remove = librispeech_clean_100.column_names
|
|
||||||
# cols_to_remove = [col for col in cols_to_remove if col not in keep_columns]
|
|
||||||
# librispeech_clean_100 = librispeech_clean_100.remove_columns(cols_to_remove)
|
|
||||||
# librispeech_clean_360 = librispeech_clean_360.remove_columns(cols_to_remove)
|
|
||||||
# librispeech_other = librispeech_other.remove_columns(cols_to_remove)
|
|
||||||
# people_speech_path="fixie-ai/peoples_speech"
|
|
||||||
# # 1_501_271
|
|
||||||
# people_speech_clean = load_dataset(people_speech_path, 'clean', split='train', streaming=True)
|
|
||||||
# # 548_000
|
|
||||||
# people_speech_dirty_sa = load_dataset(people_speech_path, 'dirty_sa', split='train', streaming=True)
|
|
||||||
# cols_to_remove = people_speech_clean.column_names
|
|
||||||
# cols_to_remove = [col for col in cols_to_remove if col not in keep_columns]
|
|
||||||
# people_speech_clean = people_speech_clean.remove_columns(cols_to_remove)
|
|
||||||
# people_speech_dirty_sa = people_speech_dirty_sa.remove_columns(cols_to_remove)
|
|
||||||
|
|
||||||
# # 8_266_422
|
|
||||||
# gigaspeech_path="fixie-ai/gigaspeech"
|
|
||||||
# gigaspeech = load_dataset(gigaspeech_path, 'xl-empty-audio-removed', split='train', streaming=True)
|
|
||||||
# # first rename segment_id to id
|
|
||||||
# gigaspeech = gigaspeech.rename_column("segment_id", "id")
|
|
||||||
# cols_to_remove = gigaspeech.column_names
|
|
||||||
# cols_to_remove = [col for col in cols_to_remove if col not in keep_columns]
|
|
||||||
# gigaspeech = gigaspeech.remove_columns(cols_to_remove)
|
|
||||||
|
|
||||||
# total_item = 104014 + 28539 + 8266422 + 1501271 + 548000 + 148688
|
|
||||||
# final_datasets = interleave_datasets([
|
|
||||||
# librispeech_clean_100,
|
|
||||||
# librispeech_clean_360,
|
|
||||||
# gigaspeech,
|
|
||||||
# people_speech_clean,
|
|
||||||
# people_speech_dirty_sa,
|
|
||||||
# librispeech_other,
|
|
||||||
# ], probabilities=[
|
|
||||||
# 28539 / total_item,
|
|
||||||
# 104014 / total_item,
|
|
||||||
# 8266422 / total_item,
|
|
||||||
# 1501271 / total_item,
|
|
||||||
# 548000 / total_item,
|
|
||||||
# 148688 / total_item,
|
|
||||||
# ])
|
|
||||||
|
|
||||||
# train_cuts = CutSet.from_huggingface_dataset(
|
|
||||||
# final_datasets, audio_key=self.args.audio_key, text_key=self.args.text_key
|
|
||||||
# )
|
|
||||||
|
|
||||||
# return train_cuts
|
|
||||||
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def valid_cuts_ultravox(self) -> CutSet:
|
def valid_cuts_ultravox(self) -> CutSet:
|
||||||
logging.info("About to get valid cuts")
|
logging.info("About to get valid cuts")
|
||||||
|
@ -741,7 +741,7 @@ def main():
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
# TODO: FIX ME
|
# TODO: FIX ME
|
||||||
# test_sets_cuts = data_module.test_cuts()
|
# test_sets_cuts = data_module.test_cuts_belle()
|
||||||
test_sets_cuts = data_module.test_cuts_en_vocalnet()
|
test_sets_cuts = data_module.test_cuts_en_vocalnet()
|
||||||
test_sets = test_sets_cuts.keys()
|
test_sets = test_sets_cuts.keys()
|
||||||
test_dls = [
|
test_dls = [
|
||||||
|
@ -11,3 +11,5 @@ flash-attn
|
|||||||
peft
|
peft
|
||||||
torchmetrics
|
torchmetrics
|
||||||
# triton==3.3.0 # may be violate with openai-whisper
|
# triton==3.3.0 # may be violate with openai-whisper
|
||||||
|
gradio
|
||||||
|
sherpa-onnx
|
@ -1,175 +0,0 @@
|
|||||||
from typing import Callable, Dict, List, Union
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from lhotse import validate
|
|
||||||
from lhotse.cut import CutSet
|
|
||||||
from lhotse.dataset.input_strategies import BatchIO, PrecomputedFeatures
|
|
||||||
from lhotse.utils import compute_num_frames, ifnone
|
|
||||||
from lhotse.workarounds import Hdf5MemoryIssueFix
|
|
||||||
from torch.utils.data.dataloader import DataLoader, default_collate
|
|
||||||
|
|
||||||
|
|
||||||
class K2SpeechRecognitionDataset(torch.utils.data.Dataset):
|
|
||||||
"""
|
|
||||||
The PyTorch Dataset for the speech recognition task using k2 library.
|
|
||||||
|
|
||||||
This dataset expects to be queried with lists of cut IDs,
|
|
||||||
for which it loads features and automatically collates/batches them.
|
|
||||||
|
|
||||||
To use it with a PyTorch DataLoader, set ``batch_size=None``
|
|
||||||
and provide a :class:`SimpleCutSampler` sampler.
|
|
||||||
|
|
||||||
Each item in this dataset is a dict of:
|
|
||||||
|
|
||||||
.. code-block::
|
|
||||||
|
|
||||||
{
|
|
||||||
'inputs': float tensor with shape determined by :attr:`input_strategy`:
|
|
||||||
- single-channel:
|
|
||||||
- features: (B, T, F)
|
|
||||||
- audio: (B, T)
|
|
||||||
- multi-channel: currently not supported
|
|
||||||
'supervisions': [
|
|
||||||
{
|
|
||||||
'sequence_idx': Tensor[int] of shape (S,)
|
|
||||||
'text': List[str] of len S
|
|
||||||
|
|
||||||
# For feature input strategies
|
|
||||||
'start_frame': Tensor[int] of shape (S,)
|
|
||||||
'num_frames': Tensor[int] of shape (S,)
|
|
||||||
|
|
||||||
# For audio input strategies
|
|
||||||
'start_sample': Tensor[int] of shape (S,)
|
|
||||||
'num_samples': Tensor[int] of shape (S,)
|
|
||||||
|
|
||||||
# Optionally, when return_cuts=True
|
|
||||||
'cut': List[AnyCut] of len S
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
|
|
||||||
Dimension symbols legend:
|
|
||||||
* ``B`` - batch size (number of Cuts)
|
|
||||||
* ``S`` - number of supervision segments (greater or equal to B, as each Cut may have multiple supervisions)
|
|
||||||
* ``T`` - number of frames of the longest Cut
|
|
||||||
* ``F`` - number of features
|
|
||||||
|
|
||||||
The 'sequence_idx' field is the index of the Cut used to create the example in the Dataset.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
return_cuts: bool = False,
|
|
||||||
cut_transforms: List[Callable[[CutSet], CutSet]] = None,
|
|
||||||
input_transforms: List[Callable[[torch.Tensor], torch.Tensor]] = None,
|
|
||||||
input_strategy: BatchIO = PrecomputedFeatures(),
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
k2 ASR IterableDataset constructor.
|
|
||||||
|
|
||||||
:param return_cuts: When ``True``, will additionally return a "cut" field in each batch with the Cut
|
|
||||||
objects used to create that batch.
|
|
||||||
:param cut_transforms: A list of transforms to be applied on each sampled batch,
|
|
||||||
before converting cuts to an input representation (audio/features).
|
|
||||||
Examples: cut concatenation, noise cuts mixing, etc.
|
|
||||||
:param input_transforms: A list of transforms to be applied on each sampled batch,
|
|
||||||
after the cuts are converted to audio/features.
|
|
||||||
Examples: normalization, SpecAugment, etc.
|
|
||||||
:param input_strategy: Converts cuts into a collated batch of audio/features.
|
|
||||||
By default, reads pre-computed features from disk.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
# Initialize the fields
|
|
||||||
self.return_cuts = return_cuts
|
|
||||||
self.cut_transforms = ifnone(cut_transforms, [])
|
|
||||||
self.input_transforms = ifnone(input_transforms, [])
|
|
||||||
self.input_strategy = input_strategy
|
|
||||||
|
|
||||||
# This attribute is a workaround to constantly growing HDF5 memory
|
|
||||||
# throughout the epoch. It regularly closes open file handles to
|
|
||||||
# reset the internal HDF5 caches.
|
|
||||||
self.hdf5_fix = Hdf5MemoryIssueFix(reset_interval=100)
|
|
||||||
|
|
||||||
def __getitem__(self, cuts: CutSet) -> Dict[str, Union[torch.Tensor, List[str]]]:
|
|
||||||
"""
|
|
||||||
Return a new batch, with the batch size automatically determined using the constraints
|
|
||||||
of max_duration and max_cuts.
|
|
||||||
"""
|
|
||||||
validate_for_asr(cuts)
|
|
||||||
|
|
||||||
self.hdf5_fix.update()
|
|
||||||
|
|
||||||
# Sort the cuts by duration so that the first one determines the batch time dimensions.
|
|
||||||
cuts = cuts.sort_by_duration(ascending=False)
|
|
||||||
|
|
||||||
# Optional CutSet transforms - e.g. padding, or speed perturbation that adjusts
|
|
||||||
# the supervision boundaries.
|
|
||||||
for tnfm in self.cut_transforms:
|
|
||||||
cuts = tnfm(cuts)
|
|
||||||
|
|
||||||
# Sort the cuts again after transforms
|
|
||||||
cuts = cuts.sort_by_duration(ascending=False)
|
|
||||||
|
|
||||||
# Get a tensor with batched feature matrices, shape (B, T, F)
|
|
||||||
# Collation performs auto-padding, if necessary.
|
|
||||||
input_tpl = self.input_strategy(cuts)
|
|
||||||
if len(input_tpl) == 3:
|
|
||||||
# An input strategy with fault tolerant audio reading mode.
|
|
||||||
# "cuts" may be a subset of the original "cuts" variable,
|
|
||||||
# that only has cuts for which we succesfully read the audio.
|
|
||||||
inputs, _, cuts = input_tpl
|
|
||||||
else:
|
|
||||||
inputs, _ = input_tpl
|
|
||||||
|
|
||||||
# Get a dict of tensors that encode the positional information about supervisions
|
|
||||||
# in the batch of feature matrices. The tensors are named "sequence_idx",
|
|
||||||
# "start_frame/sample" and "num_frames/samples".
|
|
||||||
supervision_intervals = self.input_strategy.supervision_intervals(cuts)
|
|
||||||
|
|
||||||
# Apply all available transforms on the inputs, i.e. either audio or features.
|
|
||||||
# This could be feature extraction, global MVN, SpecAugment, etc.
|
|
||||||
segments = torch.stack(list(supervision_intervals.values()), dim=1)
|
|
||||||
for tnfm in self.input_transforms:
|
|
||||||
inputs = tnfm(inputs, supervision_segments=segments)
|
|
||||||
|
|
||||||
batch = {
|
|
||||||
"inputs": inputs,
|
|
||||||
"supervisions": default_collate(
|
|
||||||
[
|
|
||||||
{
|
|
||||||
"text": supervision.text,
|
|
||||||
}
|
|
||||||
for sequence_idx, cut in enumerate(cuts)
|
|
||||||
for supervision in cut.supervisions
|
|
||||||
]
|
|
||||||
),
|
|
||||||
}
|
|
||||||
# Update the 'supervisions' field with sequence_idx and start/num frames/samples
|
|
||||||
batch["supervisions"].update(supervision_intervals)
|
|
||||||
if self.return_cuts:
|
|
||||||
batch["supervisions"]["cut"] = [
|
|
||||||
cut for cut in cuts for sup in cut.supervisions
|
|
||||||
]
|
|
||||||
|
|
||||||
return batch
|
|
||||||
|
|
||||||
|
|
||||||
def validate_for_asr(cuts: CutSet) -> None:
|
|
||||||
validate(cuts)
|
|
||||||
tol = 2e-3 # 1ms
|
|
||||||
for cut in cuts:
|
|
||||||
for supervision in cut.supervisions:
|
|
||||||
assert supervision.start >= -tol, (
|
|
||||||
f"Supervisions starting before the cut are not supported for ASR"
|
|
||||||
f" (sup id: {supervision.id}, cut id: {cut.id})"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Supervision start time is relative to Cut ...
|
|
||||||
# https://lhotse.readthedocs.io/en/v0.10_e/cuts.html
|
|
||||||
#
|
|
||||||
# 'supervision.end' is end of supervision inside the Cut
|
|
||||||
assert supervision.end <= cut.duration + tol, (
|
|
||||||
f"Supervisions ending after the cut "
|
|
||||||
f"are not supported for ASR"
|
|
||||||
f" (sup id: {supervision.id}, cut id: {cut.id})"
|
|
||||||
)
|
|
@ -89,12 +89,6 @@ except RuntimeError:
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
def set_batch_count(model: nn.Module, batch_count: float) -> None:
|
|
||||||
for module in model.modules():
|
|
||||||
if hasattr(module, "batch_count"):
|
|
||||||
module.batch_count = batch_count
|
|
||||||
|
|
||||||
|
|
||||||
def add_model_arguments(parser: argparse.ArgumentParser):
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--remove-whisper-encoder-input-length-restriction",
|
"--remove-whisper-encoder-input-length-restriction",
|
||||||
@ -143,6 +137,13 @@ def add_model_arguments(parser: argparse.ArgumentParser):
|
|||||||
help="Whether to enable speech codec output.",
|
help="Whether to enable speech codec output.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--speech-tokenizer-type",
|
||||||
|
type=str,
|
||||||
|
default="cosyvoice2",
|
||||||
|
help="The type of the speech tokenizer. cosyvoice2: 6561, cosyvoice1: 4096",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
@ -229,10 +230,10 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--dataset-format",
|
"--prompt-template",
|
||||||
type=str,
|
type=str,
|
||||||
default="slam_omni",
|
default="speech_qa",
|
||||||
help="The format of the dataset.",
|
help="The prompt template to use.",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -291,123 +292,89 @@ def get_params() -> AttributeDict:
|
|||||||
"log_interval": 50,
|
"log_interval": 50,
|
||||||
"reset_interval": 200,
|
"reset_interval": 200,
|
||||||
"valid_interval": 1000,
|
"valid_interval": 1000,
|
||||||
# "env_info": get_env_info(),
|
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
return params
|
return params
|
||||||
|
|
||||||
|
|
||||||
def process_batch_slam_omni(batch: dict):
|
def extract_text_and_speech_token(
|
||||||
|
batch: dict,
|
||||||
|
prompt_template: str,
|
||||||
|
enable_speech_output: bool
|
||||||
|
) -> Tuple[List[Dict[str, str]], Optional[List[Any]]]:
|
||||||
|
"""
|
||||||
|
Extracts messages and speech tokens from a batch based on the dataset format.
|
||||||
|
Uses the global DEFAULT_SPEECH_TOKEN.
|
||||||
|
"""
|
||||||
|
messages = []
|
||||||
|
speech_tokens = None # Initialize as None
|
||||||
|
if enable_speech_output:
|
||||||
|
if "answer_cosyvoice_speech_token" in batch["supervisions"]["cut"][0].custom:
|
||||||
|
assert "speech_token" not in batch["supervisions"]["cut"][0].custom
|
||||||
|
speech_tokens = [
|
||||||
|
cut.custom["answer_cosyvoice_speech_token"]
|
||||||
|
for cut in batch["supervisions"]["cut"]
|
||||||
|
]
|
||||||
|
elif "speech_token" in batch["supervisions"]["cut"][0].custom:
|
||||||
|
speech_tokens = [
|
||||||
|
cut.custom["speech_token"] for cut in batch["supervisions"]["cut"]
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
raise ValueError("Unknown speech token type")
|
||||||
answers = batch["supervisions"]["text"]
|
answers = batch["supervisions"]["text"]
|
||||||
questions_with_history = [
|
batch_size = len(answers)
|
||||||
cut.custom["question"] for cut in batch["supervisions"]["cut"]
|
|
||||||
]
|
|
||||||
chat_rounds = [cut.custom["round"] for cut in batch["supervisions"]["cut"]]
|
|
||||||
answer_cosyvoice_speech_token = [
|
|
||||||
cut.custom["answer_cosyvoice_speech_token"]
|
|
||||||
for cut in batch["supervisions"]["cut"]
|
|
||||||
]
|
|
||||||
last_questions = [
|
|
||||||
question.split("<USER>: ")[-1].strip() for question in questions_with_history
|
|
||||||
]
|
|
||||||
history_contexts = [
|
|
||||||
question.rsplit("<USER>:", 1)[0].strip() for question in questions_with_history
|
|
||||||
]
|
|
||||||
|
|
||||||
messages = []
|
if prompt_template == "speech_qa":
|
||||||
for i, total_round in enumerate(chat_rounds):
|
for i in range(batch_size):
|
||||||
message = []
|
message_list_item = []
|
||||||
if total_round > 1:
|
if 'round' in batch["supervisions"]["cut"][i].custom:
|
||||||
history_question_answer = history_contexts[i].split("USER:")
|
# slam_omni format dataset
|
||||||
history_question_answer = [item for item in history_question_answer if item]
|
current_question_with_history = batch["supervisions"]["cut"][i].custom["question"]
|
||||||
for j in range(total_round - 1):
|
total_round = batch["supervisions"]["cut"][i].custom["round"]
|
||||||
question_answer = history_question_answer[j].split("ASSISTANT:")
|
history_context = current_question_with_history.rsplit("<USER>:", 1)[0].strip()
|
||||||
message += [
|
if total_round > 1:
|
||||||
{"role": "user", "content": question_answer[0].strip()},
|
history_question_answer = history_context.split("USER:")
|
||||||
{"role": "assistant", "content": question_answer[1].strip()},
|
history_question_answer = [item for item in history_question_answer if item]
|
||||||
]
|
for j in range(total_round - 1):
|
||||||
message += [
|
question_answer = history_question_answer[j].split("ASSISTANT:")
|
||||||
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
|
message_list_item += [
|
||||||
{"role": "assistant", "content": answers[i]},
|
{"role": "user", "content": question_answer[0].strip()},
|
||||||
]
|
{"role": "assistant", "content": question_answer[1].strip()},
|
||||||
messages.append(message)
|
]
|
||||||
return messages, answer_cosyvoice_speech_token
|
message_list_item += [
|
||||||
|
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
|
||||||
|
{"role": "assistant", "content": answers[i]},
|
||||||
|
]
|
||||||
|
messages.append(message_list_item)
|
||||||
|
|
||||||
|
elif prompt_template == "speech_continuation":
|
||||||
|
# speech_tokens remains None
|
||||||
|
for i in range(batch_size):
|
||||||
|
message_list_item = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": f"Continue the following text using less than 50 words:\\n\\n{DEFAULT_SPEECH_TOKEN}",
|
||||||
|
},
|
||||||
|
{"role": "assistant", "content": answers[i]},
|
||||||
|
]
|
||||||
|
messages.append(message_list_item)
|
||||||
|
|
||||||
def process_batch_vocalnet(batch: dict):
|
elif prompt_template == "asr":
|
||||||
answers = batch["supervisions"]["text"]
|
# speech_tokens remains None
|
||||||
answer_cosyvoice_speech_token = [
|
for i in range(batch_size):
|
||||||
cut.custom["speech_token"] for cut in batch["supervisions"]["cut"]
|
message_list_item = [
|
||||||
]
|
{
|
||||||
messages = []
|
"role": "user",
|
||||||
for i in range(len(answers)):
|
"content": f"Transcribe the following audio into text:\\n\\n{DEFAULT_SPEECH_TOKEN}",
|
||||||
message = [
|
},
|
||||||
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
|
{"role": "assistant", "content": answers[i]},
|
||||||
{"role": "assistant", "content": answers[i]},
|
]
|
||||||
]
|
messages.append(message_list_item)
|
||||||
messages.append(message)
|
else:
|
||||||
return messages, answer_cosyvoice_speech_token
|
raise ValueError(f"Unknown prompt template: {prompt_template}")
|
||||||
|
|
||||||
|
|
||||||
def process_batch_text_vocalnet(batch: dict):
|
|
||||||
pass
|
|
||||||
answers = batch["supervisions"]["text"]
|
|
||||||
answer_cosyvoice_speech_token = [
|
|
||||||
cut.custom["speech_token"] for cut in batch["supervisions"]["cut"]
|
|
||||||
]
|
|
||||||
messages = []
|
|
||||||
for i in range(len(answers)):
|
|
||||||
message = [
|
|
||||||
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
|
|
||||||
{"role": "assistant", "content": answers[i]},
|
|
||||||
]
|
|
||||||
messages.append(message)
|
|
||||||
return messages, answer_cosyvoice_speech_token
|
|
||||||
|
|
||||||
|
|
||||||
def process_batch_speech_continuation(batch: dict):
|
|
||||||
messages = []
|
|
||||||
for i in range(len(batch["supervisions"]["text"])):
|
|
||||||
message = [
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": f"Continue the following text using less than 50 words:\n\n{DEFAULT_SPEECH_TOKEN}",
|
|
||||||
},
|
|
||||||
{"role": "assistant", "content": batch["supervisions"]["text"][i]},
|
|
||||||
]
|
|
||||||
# transcript = batch["supervisions"]["cut"][i].custom["text"]
|
|
||||||
messages.append(message)
|
|
||||||
return messages
|
|
||||||
|
|
||||||
def process_batch_asr(batch: dict):
|
|
||||||
messages = []
|
|
||||||
for i in range(len(batch["supervisions"]["text"])):
|
|
||||||
transcript = batch["supervisions"]["cut"][i].custom["text"]
|
|
||||||
message = [
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": f"Transcribe the following audio into text:\n\n{DEFAULT_SPEECH_TOKEN}",
|
|
||||||
},
|
|
||||||
{"role": "assistant", "content": transcript},
|
|
||||||
]
|
|
||||||
messages.append(message)
|
|
||||||
return messages
|
|
||||||
|
|
||||||
def process_batch_text_continuation(batch: dict):
|
|
||||||
messages = []
|
|
||||||
for i in range(len(batch["supervisions"]["text"])):
|
|
||||||
transcript = batch["supervisions"]["cut"][i].custom["text"]
|
|
||||||
message = [
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": f"Continue the following text using less than 50 words:\n\n{transcript}{DEFAULT_SPEECH_TOKEN}",
|
|
||||||
},
|
|
||||||
{"role": "assistant", "content": batch["supervisions"]["text"][i]},
|
|
||||||
]
|
|
||||||
messages.append(message)
|
|
||||||
return messages
|
|
||||||
|
|
||||||
|
return messages, speech_tokens
|
||||||
|
|
||||||
def preprocess(
|
def preprocess(
|
||||||
messages,
|
messages,
|
||||||
@ -459,6 +426,19 @@ def preprocess(
|
|||||||
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||||
return input_ids, attention_mask, target_ids
|
return input_ids, attention_mask, target_ids
|
||||||
|
|
||||||
|
def process_batch_text_continuation(batch: dict):
|
||||||
|
messages = []
|
||||||
|
for i in range(len(batch["supervisions"]["text"])):
|
||||||
|
transcript = batch["supervisions"]["cut"][i].custom["text"]
|
||||||
|
message = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": f"Continue the following text using less than 50 words:\n\n{transcript}{DEFAULT_SPEECH_TOKEN}",
|
||||||
|
},
|
||||||
|
{"role": "assistant", "content": batch["supervisions"]["text"][i]},
|
||||||
|
]
|
||||||
|
messages.append(message)
|
||||||
|
return messages
|
||||||
|
|
||||||
def preprocess_teacher(
|
def preprocess_teacher(
|
||||||
messages,
|
messages,
|
||||||
@ -551,20 +531,9 @@ def compute_loss(
|
|||||||
feature = feature.transpose(1, 2) # (N, C, T)
|
feature = feature.transpose(1, 2) # (N, C, T)
|
||||||
|
|
||||||
# WAR: TODO FIXME merge process_batch_slam_omni and process_batch_vocalnet
|
# WAR: TODO FIXME merge process_batch_slam_omni and process_batch_vocalnet
|
||||||
if params.dataset_format == "slam_omni":
|
messages, answer_cosyvoice_speech_token = extract_text_and_speech_token(
|
||||||
messages, answer_cosyvoice_speech_token = process_batch_slam_omni(batch)
|
batch, params.prompt_template, params.enable_speech_output
|
||||||
elif params.dataset_format == "vocalnet":
|
)
|
||||||
messages, answer_cosyvoice_speech_token = process_batch_vocalnet(batch)
|
|
||||||
if params.loss_type == "kl_div":
|
|
||||||
messages_text = process_batch_text_vocalnet(batch)
|
|
||||||
elif params.dataset_format == "speech_continuation":
|
|
||||||
messages = process_batch_speech_continuation(batch)
|
|
||||||
if params.loss_type == "kl_div":
|
|
||||||
messages_text = process_batch_text_continuation(batch)
|
|
||||||
elif params.dataset_format == "asr":
|
|
||||||
messages = process_batch_asr(batch)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
|
|
||||||
|
|
||||||
input_ids, attention_mask, target_ids = preprocess(messages, tokenizer)
|
input_ids, attention_mask, target_ids = preprocess(messages, tokenizer)
|
||||||
|
|
||||||
@ -581,6 +550,8 @@ def compute_loss(
|
|||||||
labels=target_ids.to(device),
|
labels=target_ids.to(device),
|
||||||
)
|
)
|
||||||
elif params.loss_type == "kl_div":
|
elif params.loss_type == "kl_div":
|
||||||
|
assert params.prompt_template == "speech_continuation"
|
||||||
|
messages_text = process_batch_text_continuation(batch)
|
||||||
(
|
(
|
||||||
teacher_input_ids,
|
teacher_input_ids,
|
||||||
teacher_attention_mask,
|
teacher_attention_mask,
|
||||||
@ -598,6 +569,7 @@ def compute_loss(
|
|||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown loss type: {params.loss_type}")
|
raise ValueError(f"Unknown loss type: {params.loss_type}")
|
||||||
else:
|
else:
|
||||||
|
assert params.loss_type == "ce"
|
||||||
(
|
(
|
||||||
text_loss,
|
text_loss,
|
||||||
acc,
|
acc,
|
||||||
@ -918,13 +890,13 @@ def run(rank, world_size, args):
|
|||||||
else:
|
else:
|
||||||
attn_implementation = "eager"
|
attn_implementation = "eager"
|
||||||
torch_dtype = torch.float16
|
torch_dtype = torch.float16
|
||||||
if params.dataset_format == "slam_omni":
|
if params.speech_tokenizer_type == "cosyvoice2":
|
||||||
codec_vocab_size = 4096 + 4
|
|
||||||
elif params.dataset_format == "vocalnet":
|
|
||||||
codec_vocab_size = 6561 + 4
|
codec_vocab_size = 6561 + 4
|
||||||
|
elif params.speech_tokenizer_type == "cosyvoice1":
|
||||||
|
codec_vocab_size = 4096 + 4
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
|
raise ValueError(f"Unknown speech tokenizer type: {params.speech_tokenizer_type}")
|
||||||
# TODO: modify above vocab size or supress_tokens when decoding
|
|
||||||
config = Qwen2Config(
|
config = Qwen2Config(
|
||||||
vocab_size=codec_vocab_size,
|
vocab_size=codec_vocab_size,
|
||||||
hidden_size=1024,
|
hidden_size=1024,
|
||||||
@ -1029,24 +1001,23 @@ def run(rank, world_size, args):
|
|||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
if params.dataset_format == "slam_omni":
|
if params.dataset == "slam_omni_belle":
|
||||||
train_cuts = data_module.train_cuts()
|
train_cuts = data_module.train_cuts_belle()
|
||||||
valid_cuts = data_module.dev_cuts()
|
valid_cuts = data_module.dev_cuts_belle()
|
||||||
elif params.dataset_format == "vocalnet":
|
elif params.dataset == "vocalnet_ultrachat_voiceassistant":
|
||||||
train_cuts = data_module.train_cuts_en_vocalnet()
|
train_cuts = data_module.train_cuts_en_vocalnet()
|
||||||
valid_cuts = data_module.valid_cuts_en_vocalnet()
|
valid_cuts = data_module.valid_cuts_en_vocalnet()
|
||||||
elif params.dataset_format == "speech_continuation" or params.dataset_format == "asr":
|
elif params.dataset == "ultravox_multi_en":
|
||||||
if params.dataset == "multi_en":
|
train_cuts = data_module.train_cuts_ultravox()
|
||||||
train_cuts = data_module.train_cuts_ultravox()
|
valid_cuts = data_module.valid_cuts_ultravox()
|
||||||
elif params.dataset == "librispeech":
|
elif params.dataset == "librispeech":
|
||||||
train_cuts = data_module.train_cuts_librispeech()
|
train_cuts = data_module.train_cuts_librispeech()
|
||||||
elif params.dataset == "gigaspeech":
|
valid_cuts = data_module.valid_cuts_ultravox()
|
||||||
train_cuts = data_module.train_cuts_gigaspeech()
|
elif params.dataset == "gigaspeech":
|
||||||
else:
|
train_cuts = data_module.train_cuts_gigaspeech()
|
||||||
raise ValueError(f"Unknown dataset: {params.dataset}")
|
|
||||||
valid_cuts = data_module.valid_cuts_ultravox()
|
valid_cuts = data_module.valid_cuts_ultravox()
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
|
raise ValueError(f"Unknown dataset: {params.dataset}")
|
||||||
|
|
||||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||||
valid_cuts = valid_cuts.filter(remove_short_and_long_utt)
|
valid_cuts = valid_cuts.filter(remove_short_and_long_utt)
|
||||||
|
@ -8,11 +8,10 @@ import random
|
|||||||
import re
|
import re
|
||||||
import subprocess
|
import subprocess
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
# from contextlib import contextmanager
|
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
# from shutil import copyfile
|
|
||||||
from typing import Dict, Iterable, List, Optional, TextIO, Tuple, Union
|
from typing import Dict, Iterable, List, Optional, TextIO, Tuple, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
Loading…
x
Reference in New Issue
Block a user