Use an n-gram LM to rescore the lattice from fast_beam_search.

This commit is contained in:
Fangjun Kuang 2022-05-14 20:54:04 +08:00
parent 2d7096dfc6
commit 9ffc77a0f2
5 changed files with 570 additions and 49 deletions

View File

@ -1,8 +1,8 @@
#!/usr/bin/env bash
# This script downloads the test-clean and test-other datasets
# of LibriSpeech and unzip them to the folder ~/tmp/download,
# which is cached by GitHub actions for later runs.
# of LibriSpeech and unzips them to the folder ~/tmp/download,
# which are cached by GitHub actions for later runs.
#
# You will find directories ~/tmp/download/LibriSpeech after running
# this script.

View File

@ -10,6 +10,25 @@ During training, it selects either a batch from GigaSpeech with prob `giga_prob`
or a batch from LibriSpeech with prob `1 - giga_prob`. All utterances within
a batch come from the same dataset.
#### 2022-05-10
Using commit `TODO`.
The WERs are:
| | test-clean | test-other | comment |
|-------------------------------------|------------|------------|----------------------------------------|
| greedy search (max sym per frame 1) | 2.21 | 5.09 | --epoch 27 --avg 2 --max-duration 600 |
| greedy search (max sym per frame 1) | 2.25 | 5.02 | --epoch 27 --avg 12 --max-duration 600 |
| modified beam search | 2.19 | 5.03 | --epoch 25 --avg 6 --max-duration 600 |
| modified beam search | 2.23 | 4.94 | --epoch 27 --avg 10 --max-duration 600 |
| beam search | 2.16 | 4.95 | --epoch 25 --avg 7 --max-duration 600 |
| fast beam search | 2.21 | 4.96 | --epoch 27 --avg 10 --max-duration 600 |
| fast beam search | 2.19 | 4.97 | --epoch 27 --avg 12 --max-duration 600 |
#### 2022-04-29
Using commit `ac84220de91dee10c00e8f4223287f937b1930b6`.
See <https://github.com/k2-fsa/icefall/pull/312>.

View File

@ -19,6 +19,7 @@ from dataclasses import dataclass
from typing import Dict, List, Optional
import k2
import sentencepiece as spm
import torch
from model import Transducer
@ -34,10 +35,11 @@ def fast_beam_search_one_best(
beam: float,
max_states: int,
max_contexts: int,
temperature: float = 1.0,
) -> List[List[int]]:
"""It limits the maximum number of symbols per frame to 1.
A lattice is first obtained using modified beam search, and then
A lattice is first obtained using fast beam search, and then
the shortest path within the lattice is used as the final output.
Args:
@ -56,6 +58,8 @@ def fast_beam_search_one_best(
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
temperature:
Softmax temperature.
Returns:
Return the decoded result.
"""
@ -67,6 +71,7 @@ def fast_beam_search_one_best(
beam=beam,
max_states=max_states,
max_contexts=max_contexts,
temperature=temperature,
)
best_path = one_best_decoding(lattice)
@ -74,6 +79,85 @@ def fast_beam_search_one_best(
return hyps
def fast_beam_search_nbest(
model: Transducer,
decoding_graph: k2.Fsa,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: float,
max_states: int,
max_contexts: int,
num_paths: int,
use_double_scores: bool = True,
nbest_scale: float = 0.5,
temperature: float = 1.0,
) -> List[List[int]]:
"""It limits the maximum number of symbols per frame to 1.
A lattice is first obtained using fast beam search, and then
we extract `num_paths` from the lattice using k2.random_path(),
unique them, compute the total score of each path by intersecting
it with the lattice, and output the path with the largest total score.
Args:
model:
An instance of `Transducer`.
decoding_graph:
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
encoder_out:
A tensor of shape (N, T, C) from the encoder.
encoder_out_lens:
A tensor of shape (N,) containing the number of frames in `encoder_out`
before padding.
beam:
Beam value, similar to the beam used in Kaldi..
max_states:
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
num_paths:
Number of paths to extract from the decoded lattice.
use_double_scores:
True to use double precision for computation. False to use
single precision.
nbest_scale:
It's the scale applied to the lattice.scores. A smaller value
yields more unique paths.
temperature:
Softmax temperature.
Returns:
Return the decoded result.
"""
lattice = fast_beam_search(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=beam,
max_states=max_states,
max_contexts=max_contexts,
temperature=temperature,
)
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
nbest_scale=nbest_scale,
)
# at this point, nbest.fsa.scores are all zeros.
nbest = nbest.intersect(lattice)
# Now nbest.fsa.scores contains acoustic scores
max_indexes = nbest.tot_scores().argmax()
best_path = k2.index_fsa(nbest.fsa, max_indexes)
hyps = get_texts(best_path)
return hyps
def fast_beam_search_nbest_oracle(
model: Transducer,
decoding_graph: k2.Fsa,
@ -86,10 +170,11 @@ def fast_beam_search_nbest_oracle(
ref_texts: List[List[int]],
use_double_scores: bool = True,
nbest_scale: float = 0.5,
temperature: float = 1.0,
) -> List[List[int]]:
"""It limits the maximum number of symbols per frame to 1.
A lattice is first obtained using modified beam search, and then
A lattice is first obtained using fast beam search, and then
we select `num_paths` linear paths from the lattice. The path
that has the minimum edit distance with the given reference transcript
is used as the output.
@ -125,6 +210,8 @@ def fast_beam_search_nbest_oracle(
nbest_scale:
It's the scale applied to the lattice.scores. A smaller value
yields more unique paths.
temperature:
Softmax temperature.
Returns:
Return the decoded result.
@ -137,6 +224,7 @@ def fast_beam_search_nbest_oracle(
beam=beam,
max_states=max_states,
max_contexts=max_contexts,
temperature=temperature,
)
nbest = Nbest.from_lattice(
@ -169,6 +257,158 @@ def fast_beam_search_nbest_oracle(
return hyps
def fast_beam_search_with_nbest_rescoring(
model: Transducer,
decoding_graph: k2.Fsa,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: float,
max_states: int,
max_contexts: int,
ngram_lm_scale_list: List[float],
num_paths: int,
G: k2.Fsa,
sp: spm.SentencePieceProcessor,
word_table: k2.SymbolTable,
oov_word: str = "<UNK>",
use_double_scores: bool = True,
nbest_scale: float = 0.5,
temperature: float = 1.0,
) -> Dict[str, List[List[int]]]:
"""It limits the maximum number of symbols per frame to 1.
A lattice is first obtained using modified beam search, and then
the shortest path within the lattice is used as the final output.
Args:
model:
An instance of `Transducer`.
decoding_graph:
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
encoder_out:
A tensor of shape (N, T, C) from the encoder.
encoder_out_lens:
A tensor of shape (N,) containing the number of frames in `encoder_out`
before padding.
beam:
Beam value, similar to the beam used in Kaldi..
max_states:
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
ngram_lm_scale_list:
A list of floats representing LM score scales.
num_paths:
Number of paths to extract from the decoded lattice.
G:
An FsaVec containing only a single FSA. It is an n-gram LM.
sp:
The BPE model.
word_table:
The word symbol table.
oov_word:
OOV words are replaced with this word.
use_double_scores:
True to use double precision for computation. False to use
single precision.
nbest_scale:
It's the scale applied to the lattice.scores. A smaller value
yields more unique paths.
temperature:
Softmax temperature.
Returns:
Return the decoded result in a dict, where the key has the form
'ngram_lm_scale_xx' and the value is the decoded results. `xx` is the
ngram LM scale value used during decoding, i.e., 0.1.
"""
lattice = fast_beam_search(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=beam,
max_states=max_states,
max_contexts=max_contexts,
temperature=temperature,
)
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
nbest_scale=nbest_scale,
)
# at this point, nbest.fsa.scores are all zeros.
nbest = nbest.intersect(lattice)
# Now nbest.fsa.scores contains acoustic scores
am_scores = nbest.tot_scores()
# Now we need to compute the LM scores of each path.
# (1) Get the token IDs of each Path. We assume the decoding_graph
# is an acceptor, i.e., lattice is also an acceptor
tokens_shape = nbest.fsa.arcs.shape().remove_axis(1) # [path][arc]
tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.labels.contiguous())
tokens = tokens.remove_values_leq(0) # remove -1 and 0
token_list: List[List[int]] = tokens.tolist()
word_list: List[List[str]] = sp.decode(token_list)
assert isinstance(oov_word, str), oov_word
assert oov_word in word_table, oov_word
oov_word_id = word_table[oov_word]
word_ids_list: List[List[int]] = []
for words in word_list:
this_word_ids = []
for w in words:
if w in word_table:
this_word_ids.append(word_table[w])
else:
this_word_ids.append(oov_word_id)
word_ids_list.append(this_word_ids)
word_fsas = k2.linear_fsa(word_ids_list, device=lattice.device)
word_fsas_with_self_loops = k2.add_epsilon_self_loops(word_fsas)
num_unique_paths = len(word_ids_list)
b_to_a_map = torch.zeros(
num_unique_paths,
dtype=torch.int32,
device=lattice.device,
)
rescored_word_fsas = k2.intersect_device(
a_fsas=G,
b_fsas=word_fsas_with_self_loops,
b_to_a_map=b_to_a_map,
sorted_match_a=True,
ret_arc_maps=False,
)
rescored_word_fsas = k2.top_sort(k2.connect(rescored_word_fsas))
ngram_lm_scores = rescored_word_fsas.get_tot_scores(
use_double_scores=True,
log_semiring=False,
)
ans: Dict[str, List[List[int]]] = {}
for s in ngram_lm_scale_list:
key = f"ngram_lm_scale_{s}"
tot_scores = am_scores.values + s * ngram_lm_scores
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
max_indexes = ragged_tot_scores.argmax()
best_path = k2.index_fsa(nbest.fsa, max_indexes)
hyps = get_texts(best_path)
ans[key] = hyps
return ans
def fast_beam_search(
model: Transducer,
decoding_graph: k2.Fsa,
@ -177,6 +417,7 @@ def fast_beam_search(
beam: float,
max_states: int,
max_contexts: int,
temperature: float = 1.0,
) -> k2.Fsa:
"""It limits the maximum number of symbols per frame to 1.
@ -196,6 +437,8 @@ def fast_beam_search(
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
temperature:
Softmax temperature.
Returns:
Return an FsaVec with axes [utt][state][arc] containing the decoded
lattice. Note: When the input graph is a TrivialGraph, the returned
@ -244,7 +487,7 @@ def fast_beam_search(
project_input=False,
)
logits = logits.squeeze(1).squeeze(1)
log_probs = logits.log_softmax(dim=-1)
log_probs = (logits / temperature).log_softmax(dim=-1)
decoding_streams.advance(log_probs)
decoding_streams.terminate_and_flush_to_streams()
lattice = decoding_streams.format_output(encoder_out_lens.tolist())
@ -587,6 +830,7 @@ def modified_beam_search(
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: int = 4,
temperature: float = 1.0,
) -> List[List[int]]:
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
@ -600,6 +844,8 @@ def modified_beam_search(
encoder_out before padding.
beam:
Number of active paths during the beam search.
temperature:
Softmax temperature.
Returns:
Return a list-of-list of token IDs. ans[i] is the decoding results
for the i-th utterance.
@ -683,7 +929,7 @@ def modified_beam_search(
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
log_probs = (logits / temperature).log_softmax(dim=-1)
log_probs.add_(ys_log_probs)
@ -847,6 +1093,7 @@ def beam_search(
model: Transducer,
encoder_out: torch.Tensor,
beam: int = 4,
temperature: float = 1.0,
) -> List[int]:
"""
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
@ -860,6 +1107,8 @@ def beam_search(
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
beam:
Beam size.
temperature:
Softmax temperature.
Returns:
Return the decoded result.
"""
@ -936,7 +1185,7 @@ def beam_search(
)
# TODO(fangjun): Scale the blank posterior
log_prob = logits.log_softmax(dim=-1)
log_prob = (logits / temperature).log_softmax(dim=-1)
# log_prob is (1, 1, 1, vocab_size)
log_prob = log_prob.squeeze()
# Now log_prob is (vocab_size,)

View File

@ -19,40 +19,67 @@
Usage:
(1) greedy search
./pruned_transducer_stateless3/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless3/exp \
--max-duration 600 \
--decoding-method greedy_search
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless3/exp \
--max-duration 600 \
--decoding-method greedy_search
(2) beam search (not recommended)
./pruned_transducer_stateless3/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless3/exp \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless3/exp \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./pruned_transducer_stateless3/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless3/exp \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless3/exp \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search
(4) fast beam search (one best)
./pruned_transducer_stateless3/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless3/exp \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless3/exp \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
(5) fast beam search (nbest)
./pruned_transducer_stateless3/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless3/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest \
--beam 4 \
--max-contexts 4 \
--max-states 8 \
--num-paths 200 \
--nbest-scale 0.5
(6) fast beam search (nbest with n-gram LM rescoring)
./pruned_transducer_stateless3/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless3/exp \
--max-duration 600 \
--decoding-method fast_beam_search_with_nbest_rescoring \
--beam 4 \
--max-contexts 4 \
--max-states 8 \
--num-paths 200 \
--nbest-scale 0.5 \
--lm-dir ./data/lm
"""
@ -69,8 +96,10 @@ import torch.nn as nn
from asr_datamodule import AsrDataModule
from beam_search import (
beam_search,
fast_beam_search_nbest,
fast_beam_search_nbest_oracle,
fast_beam_search_one_best,
fast_beam_search_with_nbest_rescoring,
greedy_search,
greedy_search_batch,
modified_beam_search,
@ -147,7 +176,9 @@ def get_parser():
- beam_search
- modified_beam_search
- fast_beam_search
- fast_beam_search_nbest
- fast_beam_search_nbest_oracle
- fast_beam_search_with_nbest_rescoring
""",
)
@ -168,7 +199,9 @@ def get_parser():
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is
fast_beam_search or fast_beam_search_nbest_oracle""",
fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, or fast_beam_search_with_nbest_rescoring
""",
)
parser.add_argument(
@ -176,7 +209,9 @@ def get_parser():
type=int,
default=4,
help="""Used only when --decoding-method is
fast_beam_search or fast_beam_search_nbest_oracle""",
fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, or fast_beam_search_with_nbest_rescoring
""",
)
parser.add_argument(
@ -184,7 +219,9 @@ def get_parser():
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search or fast_beam_search_nbest_oracle""",
fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, or fast_beam_search_with_nbest_rescoring
""",
)
parser.add_argument(
@ -194,6 +231,7 @@ def get_parser():
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
@ -207,7 +245,8 @@ def get_parser():
type=int,
default=100,
help="""Number of paths for computed nbest oracle WER
when the decoding method is fast_beam_search_nbest_oracle.
when the decoding method is fast_beam_search_nbest_oracle,
fast_beam_search_nbest, or fast_beam_search_with_nbest_rescoring.
""",
)
@ -216,9 +255,40 @@ def get_parser():
type=float,
default=0.5,
help="""Scale applied to lattice scores when computing nbest paths.
Used only when the decoding_method is fast_beam_search_nbest_oracle.
Used only when the decoding_method is fast_beam_search_nbest_oracle,
fast_beam_search_nbest, or fast_beam_search_with_nbest_rescoring.
""",
)
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="""Softmax temperature.
The output of the model is (logits / temperature).log_softmax().
""",
)
parser.add_argument(
"--lm-dir",
type=Path,
default=Path("./data/lm"),
help="""Used only when --decoding-method is
fast_beam_search_with_nbest_rescoring.
It should contain either G_4_gram.pt or G_4_gram.fst.txt
""",
)
parser.add_argument(
"--words-txt",
type=Path,
default=Path("./data/lang_bpe_500/words.txt"),
help="""Used only when --decoding-method is
fast_beam_search_with_nbest_rescoring.
It is the word table.
""",
)
return parser
@ -228,6 +298,8 @@ def decode_one_batch(
sp: spm.SentencePieceProcessor,
batch: dict,
decoding_graph: Optional[k2.Fsa] = None,
G: Optional[k2.Fsa] = None,
word_table: Optional[k2.SymbolTable] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
@ -252,8 +324,17 @@ def decode_one_batch(
for the format of the `batch`.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is
fast_beam_search or fast_beam_search_nbest_oracle.
only when decoding method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, or fast_beam_search_with_nbest_rescoring.
G:
Optional. Used only when decoding method is fast_beam_search,
fast_beam_search_nbest, fast_beam_search_nbest_oracle,
or fast_beam_search_with_nbest_rescoring.
It an FsaVec containing an acceptor.
word_table:
Optional. Used only when decoding method is
fast_beam_search_with_nbest_rescoring. It is the word symbol table
containing mappings between words and IDs.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
@ -282,6 +363,22 @@ def decode_one_batch(
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
temperature=params.temperature,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_nbest":
hyp_tokens = fast_beam_search_nbest(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
temperature=params.temperature,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
@ -297,9 +394,30 @@ def decode_one_batch(
num_paths=params.num_paths,
ref_texts=sp.encode(supervisions["text"]),
nbest_scale=params.nbest_scale,
temperature=params.temperature,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_with_nbest_rescoring":
ngram_lm_scale_list = [-0.3, -0.2, -0.1, -0.05, -0.02, 0]
ngram_lm_scale_list += [0.01, 0.02, 0.05]
hyp_tokens = fast_beam_search_with_nbest_rescoring(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_states=params.max_states,
max_contexts=params.max_contexts,
ngram_lm_scale_list=ngram_lm_scale_list,
num_paths=params.num_paths,
G=G,
sp=sp,
word_table=word_table,
use_double_scores=True,
nbest_scale=params.nbest_scale,
temperature=params.temperature,
)
elif (
params.decoding_method == "greedy_search"
and params.max_sym_per_frame == 1
@ -317,6 +435,7 @@ def decode_one_batch(
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
temperature=params.temperature,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
@ -338,6 +457,7 @@ def decode_one_batch(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
temperature=params.temperature,
)
else:
raise ValueError(
@ -352,7 +472,19 @@ def decode_one_batch(
(
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}"
f"max_states_{params.max_states}_"
f"temperature_{params.temperature}"
): hyps
}
elif params.decoding_method == "fast_beam_search_nbest":
return {
(
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}_"
f"num_paths_{params.num_paths}_"
f"nbest_scale_{params.nbest_scale}_"
f"temperature_{params.temperature}"
): hyps
}
elif params.decoding_method == "fast_beam_search_nbest_oracle":
@ -362,11 +494,31 @@ def decode_one_batch(
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}_"
f"num_paths_{params.num_paths}_"
f"nbest_scale_{params.nbest_scale}"
f"nbest_scale_{params.nbest_scale}_"
f"temperature_{params.temperature}"
): hyps
}
elif params.decoding_method == "fast_beam_search_with_nbest_rescoring":
prefix = (
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}_"
f"num_paths_{params.num_paths}_"
f"nbest_scale_{params.nbest_scale}_"
f"temperature_{params.temperature}_"
)
ans: Dict[str, List[List[str]]] = {}
for key, hyp in hyp_tokens.items():
t: List[str] = sp.decode(hyp)
ans[prefix + key] = [s.split() for s in t]
return ans
else:
return {f"beam_size_{params.beam_size}": hyps}
return {
(
f"beam_size_{params.beam_size}_"
f"temperature_{params.temperature}"
): hyps
}
def decode_dataset(
@ -375,6 +527,8 @@ def decode_dataset(
model: nn.Module,
sp: spm.SentencePieceProcessor,
decoding_graph: Optional[k2.Fsa] = None,
G: Optional[k2.Fsa] = None,
word_table: Optional[k2.SymbolTable] = None,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
@ -389,7 +543,17 @@ def decode_dataset(
The BPE model.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
only when decoding method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, or fast_beam_search_with_nbest_rescoring.
G:
Optional. Used only when decoding method is fast_beam_search,
fast_beam_search_nbest, fast_beam_search_nbest_oracle,
or fast_beam_search_with_nbest_rescoring.
It an FsaVec containing an acceptor.
word_table:
Optional. Used only when decoding method is
fast_beam_search_with_nbest_rescoring. It is the word symbol table
containing mappings between words and IDs.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
@ -419,6 +583,8 @@ def decode_dataset(
sp=sp,
decoding_graph=decoding_graph,
batch=batch,
G=G,
word_table=word_table,
)
for name, hyps in hyps_dict.items():
@ -438,6 +604,7 @@ def decode_dataset(
logging.info(
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
return results
@ -485,6 +652,68 @@ def save_results(
logging.info(s)
def load_ngram_LM(
lm_dir: Path, word_table: k2.SymbolTable, device: torch.device
) -> k2.Fsa:
"""Read a ngram model from the given directory.
Args:
lm_dir:
It should contain either G_4_gram.pt or G_4_gram.fst.txt
word_table:
The word table mapping words to IDs and vice versa.
device:
The resulting FSA will be moved to this device.
Returns:
Return an FsaVec containing a single acceptor.
"""
lm_dir = Path(lm_dir)
assert lm_dir.is_dir(), f"{lm_dir} does not exist"
pt_file = lm_dir / "G_4_gram.pt"
if pt_file.is_file():
logging.info(f"Loading pre-compiled {pt_file}")
d = torch.load(pt_file, map_location=device)
G = k2.Fsa.from_dict(d)
return G
txt_file = lm_dir / "G_4_gram.fst.txt"
assert txt_file.is_file(), f"{txt_file} does not exist"
logging.info(f"Loading {txt_file}")
logging.warning("It may take 8 minutes (Will be cached for later use).")
with open(txt_file) as f:
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
# G.aux_labels is not needed in later computations, so
# remove it here.
del G.aux_labels
# Now G is an acceptor
first_word_disambig_id = word_table["#0"]
# CAUTION: The following line is crucial.
# Arcs entering the back-off state have label equal to #0.
# We have to change it to 0 here.
G.labels[G.labels >= first_word_disambig_id] = 0
# See https://github.com/k2-fsa/k2/issues/874
# for why we need to set G.properties to None
G.__dict__["_properties"] = None
G = k2.Fsa.from_fsas([G]).to(device)
G = k2.arc_sort(G)
# Save a dummy value so that it can be loaded in C++.
# See https://github.com/pytorch/pytorch/issues/67902
# for why we need to do this.
G.dummy = 1
logging.info(f"Saving to {pt_file} for later use")
torch.save(G.as_dict(), pt_file)
return G
@torch.no_grad()
def main():
parser = get_parser()
@ -499,7 +728,9 @@ def main():
"greedy_search",
"beam_search",
"fast_beam_search",
"fast_beam_search_nbest",
"fast_beam_search_nbest_oracle",
"fast_beam_search_with_nbest_rescoring",
"modified_beam_search",
)
params.res_dir = params.exp_dir / params.decoding_method
@ -513,19 +744,27 @@ def main():
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
elif params.decoding_method == "fast_beam_search_nbest_oracle":
params.suffix += f"-temperature-{params.temperature}"
elif params.decoding_method in (
"fast_beam_search_nbest",
"fast_beam_search_nbest_oracle",
"fast_beam_search_with_nbest_rescoring",
):
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
params.suffix += f"-num-paths-{params.num_paths}"
params.suffix += f"-nbest-scale-{params.nbest_scale}"
params.suffix += f"-temperature-{params.temperature}"
elif "beam_search" in params.decoding_method:
params.suffix += (
f"-{params.decoding_method}-beam-size-{params.beam_size}"
)
params.suffix += f"-temperature-{params.temperature}"
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
params.suffix += f"-temperature-{params.temperature}"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
@ -585,12 +824,26 @@ def main():
if params.decoding_method in (
"fast_beam_search",
"fast_beam_search_nbest",
"fast_beam_search_nbest_oracle",
"fast_beam_search_with_nbest_rescoring",
):
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
if params.decoding_method == "fast_beam_search_with_nbest_rescoring":
logging.info(f"Loading word symbol table from {params.words_txt}")
word_table = k2.SymbolTable.from_file(params.words_txt)
G = load_ngram_LM(
lm_dir=params.lm_dir,
word_table=word_table,
device=device,
)
else:
word_table = None
G = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
@ -613,6 +866,8 @@ def main():
model=model,
sp=sp,
decoding_graph=decoding_graph,
G=G,
word_table=word_table,
)
save_results(

View File

@ -308,9 +308,7 @@ class Nbest(object):
del word_fsa.aux_labels
word_fsa.scores.zero_()
word_fsa_with_epsilon_loops = k2.remove_epsilon_and_add_self_loops(
word_fsa
)
word_fsa_with_epsilon_loops = k2.linear_fsa_with_self_loops(word_fsa)
path_to_utt_map = self.shape.row_ids(1)
@ -609,7 +607,7 @@ def rescore_with_n_best_list(
num_paths:
Size of nbest list.
lm_scale_list:
A list of float representing LM score scales.
A list of floats representing LM score scales.
nbest_scale:
Scale to be applied to ``lattice.score`` when sampling paths
using ``k2.random_paths``.