mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-12 02:24:20 +00:00
Merge branch 'master' of https://github.com/k2-fsa/icefall
This commit is contained in:
commit
9d922ec2a0
2
.flake8
2
.flake8
@ -11,7 +11,7 @@ per-file-ignores =
|
|||||||
egs/*/ASR/*/scaling.py: E501,
|
egs/*/ASR/*/scaling.py: E501,
|
||||||
egs/librispeech/ASR/lstm_transducer_stateless*/*.py: E501, E203
|
egs/librispeech/ASR/lstm_transducer_stateless*/*.py: E501, E203
|
||||||
egs/librispeech/ASR/conv_emformer_transducer_stateless*/*.py: E501, E203
|
egs/librispeech/ASR/conv_emformer_transducer_stateless*/*.py: E501, E203
|
||||||
egs/librispeech/ASR/conformer_ctc2/*py: E501,
|
egs/librispeech/ASR/conformer_ctc*/*py: E501,
|
||||||
egs/librispeech/ASR/RESULTS.md: E999,
|
egs/librispeech/ASR/RESULTS.md: E999,
|
||||||
|
|
||||||
# invalid escape sequence (cause by tex formular), W605
|
# invalid escape sequence (cause by tex formular), W605
|
||||||
|
119
.github/scripts/run-librispeech-conformer-ctc3-2022-11-28.sh
vendored
Executable file
119
.github/scripts/run-librispeech-conformer-ctc3-2022-11-28.sh
vendored
Executable file
@ -0,0 +1,119 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-conformer-ctc3-2022-11-27
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
git lfs install
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
git lfs pull --include "data/*"
|
||||||
|
git lfs pull --include "exp/jit_trace.pt"
|
||||||
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
|
ln -s pretrained.pt epoch-99.pt
|
||||||
|
ls -lh *.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.trace()"
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./conformer_ctc3/jit_pretrained.py \
|
||||||
|
--model-filename $repo/exp/jit_trace.pt \
|
||||||
|
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||||
|
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--G $repo/data/lm/G_4_gram.pt \
|
||||||
|
--method $m \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
log "Export to torchscript model"
|
||||||
|
|
||||||
|
./conformer_ctc3/export.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--lang-dir $repo/data/lang_bpe_500 \
|
||||||
|
--jit-trace 1 \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0
|
||||||
|
|
||||||
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.trace()"
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./conformer_ctc3/jit_pretrained.py \
|
||||||
|
--model-filename $repo/exp/jit_trace.pt \
|
||||||
|
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||||
|
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--G $repo/data/lm/G_4_gram.pt \
|
||||||
|
--method $m \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./conformer_ctc3/pretrained.py \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||||
|
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--G $repo/data/lm/G_4_gram.pt \
|
||||||
|
--method $m \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||||
|
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||||
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||||
|
mkdir -p conformer_ctc3/exp
|
||||||
|
ln -s $PWD/$repo/exp/pretrained.pt conformer_ctc3/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh conformer_ctc3/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
|
# use a small value for decoding with CPU
|
||||||
|
max_duration=100
|
||||||
|
|
||||||
|
for method in ctc-decoding 1best; do
|
||||||
|
log "Decoding with $method"
|
||||||
|
./conformer_ctc3/decode.py \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--exp-dir conformer_ctc3/exp/ \
|
||||||
|
--max-duration $max_duration \
|
||||||
|
--decoding-method $method \
|
||||||
|
--lm-dir data/lm
|
||||||
|
done
|
||||||
|
|
||||||
|
rm conformer_ctc3/exp/*.pt
|
||||||
|
fi
|
79
.github/scripts/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.sh
vendored
Executable file
79
.github/scripts/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.sh
vendored
Executable file
@ -0,0 +1,79 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
#
|
||||||
|
set -e
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
pushd $repo
|
||||||
|
git lfs pull --include "exp/pretrained-epoch-30-avg-10-averaged.pt"
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
cd exp
|
||||||
|
ln -s pretrained-epoch-30-avg-10-averaged.pt epoch-99.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
log "Install ncnn and pnnx"
|
||||||
|
|
||||||
|
# We are using a modified ncnn here. Will try to merge it to the official repo
|
||||||
|
# of ncnn
|
||||||
|
git clone https://github.com/csukuangfj/ncnn
|
||||||
|
pushd ncnn
|
||||||
|
git submodule init
|
||||||
|
git submodule update python/pybind11
|
||||||
|
python3 setup.py bdist_wheel
|
||||||
|
ls -lh dist/
|
||||||
|
pip install dist/*.whl
|
||||||
|
cd tools/pnnx
|
||||||
|
mkdir build
|
||||||
|
cd build
|
||||||
|
cmake -D Python3_EXECUTABLE=/opt/hostedtoolcache/Python/3.8.14/x64/bin/python3 ..
|
||||||
|
make -j4 pnnx
|
||||||
|
|
||||||
|
./src/pnnx || echo "pass"
|
||||||
|
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Test exporting to pnnx format"
|
||||||
|
|
||||||
|
./conv_emformer_transducer_stateless2/export-for-ncnn.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
\
|
||||||
|
--num-encoder-layers 12 \
|
||||||
|
--chunk-length 32 \
|
||||||
|
--cnn-module-kernel 31 \
|
||||||
|
--left-context-length 32 \
|
||||||
|
--right-context-length 8 \
|
||||||
|
--memory-size 32
|
||||||
|
|
||||||
|
./ncnn/tools/pnnx/build/src/pnnx $repo/exp/encoder_jit_trace-pnnx.pt
|
||||||
|
./ncnn/tools/pnnx/build/src/pnnx $repo/exp/decoder_jit_trace-pnnx.pt
|
||||||
|
./ncnn/tools/pnnx/build/src/pnnx $repo/exp/joiner_jit_trace-pnnx.pt
|
||||||
|
|
||||||
|
./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py \
|
||||||
|
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||||
|
--encoder-param-filename $repo/exp/encoder_jit_trace-pnnx.ncnn.param \
|
||||||
|
--encoder-bin-filename $repo/exp/encoder_jit_trace-pnnx.ncnn.bin \
|
||||||
|
--decoder-param-filename $repo/exp/decoder_jit_trace-pnnx.ncnn.param \
|
||||||
|
--decoder-bin-filename $repo/exp/decoder_jit_trace-pnnx.ncnn.bin \
|
||||||
|
--joiner-param-filename $repo/exp/joiner_jit_trace-pnnx.ncnn.param \
|
||||||
|
--joiner-bin-filename $repo/exp/joiner_jit_trace-pnnx.ncnn.bin \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav
|
@ -16,6 +16,7 @@ log "Downloading pre-trained model from $repo_url"
|
|||||||
git lfs install
|
git lfs install
|
||||||
git clone $repo_url
|
git clone $repo_url
|
||||||
repo=$(basename $repo_url)
|
repo=$(basename $repo_url)
|
||||||
|
abs_repo=$(realpath $repo)
|
||||||
|
|
||||||
log "Display test files"
|
log "Display test files"
|
||||||
tree $repo/
|
tree $repo/
|
||||||
@ -178,21 +179,27 @@ echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
|||||||
if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"shallow-fusion" ]]; then
|
if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"shallow-fusion" ]]; then
|
||||||
lm_repo_url=https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
|
lm_repo_url=https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
|
||||||
log "Download pre-trained RNN-LM model from ${lm_repo_url}"
|
log "Download pre-trained RNN-LM model from ${lm_repo_url}"
|
||||||
git clone $lm_repo_url
|
GIT_LFS_SKIP_SMUDGE=1 git clone $lm_repo_url
|
||||||
lm_repo=$(basename $lm_repo_url)
|
lm_repo=$(basename $lm_repo_url)
|
||||||
pushd $lm_repo
|
pushd $lm_repo
|
||||||
git lfs pull --include "exp/pretrained.pt"
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
cd exp
|
mv exp/pretrained.pt exp/epoch-88.pt
|
||||||
ln -s pretrained.pt epoch-88.pt
|
|
||||||
popd
|
popd
|
||||||
|
|
||||||
|
mkdir -p lstm_transducer_stateless2/exp
|
||||||
|
ln -sf $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh lstm_transducer_stateless2/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
./lstm_transducer_stateless2/decode.py \
|
./lstm_transducer_stateless2/decode.py \
|
||||||
--use-averaged-model 0 \
|
--use-averaged-model 0 \
|
||||||
--epoch 99 \
|
--epoch 999 \
|
||||||
--avg 1 \
|
--avg 1 \
|
||||||
--exp-dir $repo/exp \
|
--exp-dir lstm_transducer_stateless2/exp \
|
||||||
--lang-dir $repo/data/lang_bpe_500 \
|
|
||||||
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method modified_beam_search_rnnlm_shallow_fusion \
|
--decoding-method modified_beam_search_rnnlm_shallow_fusion \
|
||||||
--beam 4 \
|
--beam 4 \
|
||||||
@ -204,6 +211,52 @@ if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"shallow-fusion" ]]; then
|
|||||||
--rnn-lm-tie-weights 1
|
--rnn-lm-tie-weights 1
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"LODR" ]]; then
|
||||||
|
bigram_repo_url=https://huggingface.co/marcoyang/librispeech_bigram
|
||||||
|
log "Download bi-gram LM from ${bigram_repo_url}"
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $bigram_repo_url
|
||||||
|
bigramlm_repo=$(basename $bigram_repo_url)
|
||||||
|
pushd $bigramlm_repo
|
||||||
|
git lfs pull --include "2gram.fst.txt"
|
||||||
|
cp 2gram.fst.txt $abs_repo/data/lang_bpe_500/.
|
||||||
|
popd
|
||||||
|
|
||||||
|
lm_repo_url=https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
|
||||||
|
log "Download pre-trained RNN-LM model from ${lm_repo_url}"
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $lm_repo_url
|
||||||
|
lm_repo=$(basename $lm_repo_url)
|
||||||
|
pushd $lm_repo
|
||||||
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
|
mv exp/pretrained.pt exp/epoch-88.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
mkdir -p lstm_transducer_stateless2/exp
|
||||||
|
ln -sf $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh lstm_transducer_stateless2/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
|
./lstm_transducer_stateless2/decode.py \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir lstm_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search_rnnlm_LODR \
|
||||||
|
--beam 4 \
|
||||||
|
--rnn-lm-scale 0.3 \
|
||||||
|
--rnn-lm-exp-dir $lm_repo/exp \
|
||||||
|
--rnn-lm-epoch 88 \
|
||||||
|
--rnn-lm-avg 1 \
|
||||||
|
--rnn-lm-num-layers 3 \
|
||||||
|
--rnn-lm-tie-weights 1 \
|
||||||
|
--tokens-ngram 2 \
|
||||||
|
--ngram-lm-scale -0.16
|
||||||
|
fi
|
||||||
|
|
||||||
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" ]]; then
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" ]]; then
|
||||||
mkdir -p lstm_transducer_stateless2/exp
|
mkdir -p lstm_transducer_stateless2/exp
|
||||||
ln -s $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
ln -s $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
147
.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-2022-12-01.sh
vendored
Executable file
147
.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-2022-12-01.sh
vendored
Executable file
@ -0,0 +1,147 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-ctc-2022-12-01
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
git lfs install
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
git lfs pull --include "data/*"
|
||||||
|
git lfs pull --include "exp/cpu_jit.pt"
|
||||||
|
git lfs pull --include "exp/pretrained.pt"
|
||||||
|
ln -s pretrained.pt epoch-99.pt
|
||||||
|
ls -lh *.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Export to torchscript model"
|
||||||
|
./pruned_transducer_stateless7_ctc/export.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--use-averaged-model false \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
|
log "Decode with models exported by torch.jit.script()"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc/jit_pretrained.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--nn-model-filename $repo/exp/cpu_jit.pt \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./pruned_transducer_stateless7_ctc/jit_pretrained_ctc.py \
|
||||||
|
--model-filename $repo/exp/cpu_jit.pt \
|
||||||
|
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||||
|
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--G $repo/data/lm/G_4_gram.pt \
|
||||||
|
--method $m \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for sym in 1 2 3; do
|
||||||
|
log "Greedy search with --max-sym-per-frame $sym"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc/pretrained.py \
|
||||||
|
--method greedy_search \
|
||||||
|
--max-sym-per-frame $sym \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for method in modified_beam_search beam_search fast_beam_search; do
|
||||||
|
log "$method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc/pretrained.py \
|
||||||
|
--method $method \
|
||||||
|
--beam-size 4 \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./pruned_transducer_stateless7_ctc/pretrained_ctc.py \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||||
|
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--G $repo/data/lm/G_4_gram.pt \
|
||||||
|
--method $m \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||||
|
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||||
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||||
|
mkdir -p pruned_transducer_stateless7_ctc/exp
|
||||||
|
ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless7_ctc/exp/epoch-999.pt
|
||||||
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
|
ls -lh data
|
||||||
|
ls -lh pruned_transducer_stateless7_ctc/exp
|
||||||
|
|
||||||
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
|
# use a small value for decoding with CPU
|
||||||
|
max_duration=100
|
||||||
|
|
||||||
|
for method in greedy_search fast_beam_search modified_beam_search; do
|
||||||
|
log "Decoding with $method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc/decode.py \
|
||||||
|
--decoding-method $method \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--max-duration $max_duration \
|
||||||
|
--exp-dir pruned_transducer_stateless7_ctc/exp
|
||||||
|
done
|
||||||
|
|
||||||
|
for m in ctc-decoding 1best; do
|
||||||
|
./pruned_transducer_stateless7_ctc/ctc_decode.py \
|
||||||
|
--epoch 999 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_ctc/exp \
|
||||||
|
--max-duration $max_duration \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--decoding-method $m \
|
||||||
|
--hlg-scale 0.6 \
|
||||||
|
--lm-dir data/lm
|
||||||
|
done
|
||||||
|
|
||||||
|
rm pruned_transducer_stateless7_ctc/exp/*.pt
|
||||||
|
fi
|
4
.github/workflows/build-doc.yml
vendored
4
.github/workflows/build-doc.yml
vendored
@ -26,6 +26,10 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: build_doc-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
build-doc:
|
build-doc:
|
||||||
if: github.event.label.name == 'doc' || github.event_name == 'push'
|
if: github.event.label.name == 'doc' || github.event_name == 'push'
|
||||||
|
4
.github/workflows/run-aishell-2022-06-20.yml
vendored
4
.github/workflows/run-aishell-2022-06-20.yml
vendored
@ -34,6 +34,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_aishell_2022_06_20-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_aishell_2022_06_20:
|
run_aishell_2022_06_20:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_gigaspeech_2022_05_13-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_gigaspeech_2022_05_13:
|
run_gigaspeech_2022_05_13:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_03_12-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_2022_03_12:
|
run_librispeech_2022_03_12:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_04_29-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_2022_04_29:
|
run_librispeech_2022_04_29:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_05_13-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_2022_05_13:
|
run_librispeech_2022_05_13:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_11_11_zipformer-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_2022_11_11_zipformer:
|
run_librispeech_2022_11_11_zipformer:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_11_14_zipformer_stateless8-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_2022_11_14_zipformer_stateless8:
|
run_librispeech_2022_11_14_zipformer_stateless8:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
163
.github/workflows/run-librispeech-2022-12-01-stateless7-ctc.yml
vendored
Normal file
163
.github/workflows/run-librispeech-2022-12-01-stateless7-ctc.yml
vendored
Normal file
@ -0,0 +1,163 @@
|
|||||||
|
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-librispeech-2022-12-01-stateless7-ctc
|
||||||
|
# zipformer
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_librispeech_2022_11_11_zipformer:
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/install-kaldifeat.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other datasets
|
||||||
|
id: libri-test-clean-and-test-other-data
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/download
|
||||||
|
key: cache-libri-test-clean-and-test-other
|
||||||
|
|
||||||
|
- name: Download LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
|
||||||
|
|
||||||
|
- name: Prepare manifests for LibriSpeech test-clean and test-other
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other fbank features
|
||||||
|
id: libri-test-clean-and-test-other-fbank
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/fbank-libri
|
||||||
|
key: cache-libri-fbank-test-clean-and-test-other-v2
|
||||||
|
|
||||||
|
- name: Compute fbank for LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||||
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
|
run: |
|
||||||
|
mkdir -p egs/librispeech/ASR/data
|
||||||
|
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
|
||||||
|
ls -lh egs/librispeech/ASR/data/*
|
||||||
|
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-pruned-transducer-stateless7-ctc-2022-12-01.sh
|
||||||
|
|
||||||
|
- name: Display decoding results for librispeech pruned_transducer_stateless7_ctc
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd egs/librispeech/ASR/
|
||||||
|
tree ./pruned_transducer_stateless7_ctc/exp
|
||||||
|
|
||||||
|
cd pruned_transducer_stateless7_ctc
|
||||||
|
echo "results for pruned_transducer_stateless7_ctc"
|
||||||
|
echo "===greedy search==="
|
||||||
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===fast_beam_search==="
|
||||||
|
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===modified beam search==="
|
||||||
|
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===ctc decoding==="
|
||||||
|
find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===1best==="
|
||||||
|
find exp/1best -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/1best -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
- name: Upload decoding results for librispeech pruned_transducer_stateless7_ctc
|
||||||
|
uses: actions/upload-artifact@v2
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
with:
|
||||||
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless7-ctc-2022-12-01
|
||||||
|
path: egs/librispeech/ASR/pruned_transducer_stateless7_ctc/exp/
|
155
.github/workflows/run-librispeech-conformer-ctc3-2022-11-28.yml
vendored
Normal file
155
.github/workflows/run-librispeech-conformer-ctc3-2022-11-28.yml
vendored
Normal file
@ -0,0 +1,155 @@
|
|||||||
|
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-librispeech-conformer-ctc3-2022-11-28
|
||||||
|
# zipformer
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_11_28_conformer_ctc3-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_librispeech_2022_11_28_conformer_ctc3:
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/install-kaldifeat.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other datasets
|
||||||
|
id: libri-test-clean-and-test-other-data
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/download
|
||||||
|
key: cache-libri-test-clean-and-test-other
|
||||||
|
|
||||||
|
- name: Download LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
|
||||||
|
|
||||||
|
- name: Prepare manifests for LibriSpeech test-clean and test-other
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
|
||||||
|
|
||||||
|
- name: Cache LibriSpeech test-clean and test-other fbank features
|
||||||
|
id: libri-test-clean-and-test-other-fbank
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/fbank-libri
|
||||||
|
key: cache-libri-fbank-test-clean-and-test-other-v2
|
||||||
|
|
||||||
|
- name: Compute fbank for LibriSpeech test-clean and test-other
|
||||||
|
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||||
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
|
run: |
|
||||||
|
mkdir -p egs/librispeech/ASR/data
|
||||||
|
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
|
||||||
|
ls -lh egs/librispeech/ASR/data/*
|
||||||
|
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-conformer-ctc3-2022-11-28.sh
|
||||||
|
|
||||||
|
- name: Display decoding results for librispeech conformer_ctc3
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd egs/librispeech/ASR/
|
||||||
|
tree ./conformer_ctc3/exp
|
||||||
|
|
||||||
|
cd conformer_ctc3
|
||||||
|
echo "results for conformer_ctc3"
|
||||||
|
echo "===ctc-decoding==="
|
||||||
|
find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/ctc-decoding -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
echo "===1best==="
|
||||||
|
find exp/1best -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find exp/1best -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
- name: Upload decoding results for librispeech conformer_ctc3
|
||||||
|
uses: actions/upload-artifact@v2
|
||||||
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||||
|
with:
|
||||||
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-conformer_ctc3-2022-11-28
|
||||||
|
path: egs/librispeech/ASR/conformer_ctc3/exp/
|
77
.github/workflows/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.yml
vendored
Normal file
77
.github/workflows/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.yml
vendored
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
name: run-librispeech-conv-emformer-transducer-stateless2-2022-12-05
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_librispeech_conv_emformer_transducer_stateless2_2022_12_05:
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'ncnn' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
.github/scripts/install-kaldifeat.sh
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||||
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
|
run: |
|
||||||
|
mkdir -p egs/librispeech/ASR/data
|
||||||
|
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
|
||||||
|
ls -lh egs/librispeech/ASR/data/*
|
||||||
|
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-conv-emformer-transducer-stateless2-2022-12-05.sh
|
@ -16,9 +16,13 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_lstm_transducer_stateless2_2022_09_03-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_lstm_transducer_stateless2_2022_09_03:
|
run_librispeech_lstm_transducer_stateless2_2022_09_03:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'ncnn' || github.event.label.name == 'onnx' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'LODR' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'ncnn' || github.event.label.name == 'onnx' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
@ -107,7 +111,7 @@ jobs:
|
|||||||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
.github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.yml
|
.github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.sh
|
||||||
|
|
||||||
- name: Display decoding results for lstm_transducer_stateless2
|
- name: Display decoding results for lstm_transducer_stateless2
|
||||||
if: github.event_name == 'schedule'
|
if: github.event_name == 'schedule'
|
||||||
@ -139,9 +143,20 @@ jobs:
|
|||||||
find modified_beam_search_rnnlm_shallow_fusion -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
find modified_beam_search_rnnlm_shallow_fusion -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
find modified_beam_search_rnnlm_shallow_fusion -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
find modified_beam_search_rnnlm_shallow_fusion -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
|
- name: Display decoding results for lstm_transducer_stateless2
|
||||||
|
if: github.event.label.name == 'LODR'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
tree lstm_transducer_stateless2/exp
|
||||||
|
cd lstm_transducer_stateless2/exp
|
||||||
|
echo "===modified_beam_search_rnnlm_LODR==="
|
||||||
|
find modified_beam_search_rnnlm_LODR -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
|
find modified_beam_search_rnnlm_LODR -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
- name: Upload decoding results for lstm_transducer_stateless2
|
- name: Upload decoding results for lstm_transducer_stateless2
|
||||||
uses: actions/upload-artifact@v2
|
uses: actions/upload-artifact@v2
|
||||||
if: github.event_name == 'schedule' || github.event.label.name == 'shallow-fusion'
|
if: github.event_name == 'schedule' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'LODR'
|
||||||
with:
|
with:
|
||||||
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-lstm_transducer_stateless2-2022-09-03
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-lstm_transducer_stateless2-2022-09-03
|
||||||
path: egs/librispeech/ASR/lstm_transducer_stateless2/exp/
|
path: egs/librispeech/ASR/lstm_transducer_stateless2/exp/
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_pruned_transducer_stateless3_2022_05_13-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_pruned_transducer_stateless3_2022_05_13:
|
run_librispeech_pruned_transducer_stateless3_2022_05_13:
|
||||||
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_streaming_2022_06_26-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_streaming_2022_06_26:
|
run_librispeech_streaming_2022_06_26:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -33,6 +33,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_librispeech_2022_04_19-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_2022_04_19:
|
run_librispeech_2022_04_19:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -23,6 +23,10 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_conformer_ctc-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_conformer_ctc:
|
run_pre_trained_conformer_ctc:
|
||||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||||
|
@ -32,6 +32,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_transducer_stateless_multi_datasets_librispeech_100h-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_transducer_stateless_multi_datasets_librispeech_100h:
|
run_pre_trained_transducer_stateless_multi_datasets_librispeech_100h:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -32,6 +32,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_transducer_stateless_multi_datasets_librispeech_960h-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_transducer_stateless_multi_datasets_librispeech_960h:
|
run_pre_trained_transducer_stateless_multi_datasets_librispeech_960h:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -23,6 +23,10 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_transducer_stateless_modified_2_aishell-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_transducer_stateless_modified_2_aishell:
|
run_pre_trained_transducer_stateless_modified_2_aishell:
|
||||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||||
|
@ -23,6 +23,10 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_transducer_stateless_modified_aishell-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_transducer_stateless_modified_aishell:
|
run_pre_trained_transducer_stateless_modified_aishell:
|
||||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||||
|
@ -32,6 +32,10 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_transducer_stateless-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_transducer_stateless:
|
run_pre_trained_transducer_stateless:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
@ -23,6 +23,10 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_pre_trained_transducer-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_pre_trained_transducer:
|
run_pre_trained_transducer:
|
||||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||||
|
71
.github/workflows/run-ptb-rnn-lm.yml
vendored
Normal file
71
.github/workflows/run-ptb-rnn-lm.yml
vendored
Normal file
@ -0,0 +1,71 @@
|
|||||||
|
name: run-ptb-rnn-lm-training
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
schedule:
|
||||||
|
# minute (0-59)
|
||||||
|
# hour (0-23)
|
||||||
|
# day of the month (1-31)
|
||||||
|
# month (1-12)
|
||||||
|
# day of the week (0-6)
|
||||||
|
# nightly build at 15:50 UTC time every day
|
||||||
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_ptb_rnn_lm_training-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_ptb_rnn_lm_training:
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'rnnlm' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest]
|
||||||
|
python-version: ["3.8"]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install
|
||||||
|
pip uninstall -y protobuf
|
||||||
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
- name: Prepare data
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
cd egs/ptb/LM
|
||||||
|
./prepare.sh
|
||||||
|
|
||||||
|
- name: Run training
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
cd egs/ptb/LM
|
||||||
|
./train-rnn-lm.sh --world-size 1 --num-epochs 5 --use-epoch 4 --use-avg 2
|
||||||
|
|
||||||
|
- name: Upload pretrained models
|
||||||
|
uses: actions/upload-artifact@v2
|
||||||
|
if: github.event.label.name == 'ready' || github.event.label.name == 'rnnlm' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
|
with:
|
||||||
|
name: python-${{ matrix.python-version }}-ubuntu-rnn-lm-ptb
|
||||||
|
path: egs/ptb/LM/my-rnnlm-exp/
|
@ -23,8 +23,12 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run_wenetspeech_pruned_transducer_stateless2-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_pruned_transducer_stateless3_2022_05_13:
|
run_wenetspeech_pruned_transducer_stateless2:
|
||||||
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'wenetspeech'
|
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'wenetspeech'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
|
10
.github/workflows/run-yesno-recipe.yml
vendored
10
.github/workflows/run-yesno-recipe.yml
vendored
@ -21,11 +21,15 @@ on:
|
|||||||
branches:
|
branches:
|
||||||
- master
|
- master
|
||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
branches:
|
||||||
|
- master
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: run-yesno-recipe-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run-yesno-recipe:
|
run-yesno-recipe:
|
||||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
@ -61,7 +65,7 @@ jobs:
|
|||||||
|
|
||||||
- name: Install Python dependencies
|
- name: Install Python dependencies
|
||||||
run: |
|
run: |
|
||||||
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install
|
||||||
pip uninstall -y protobuf
|
pip uninstall -y protobuf
|
||||||
pip install --no-binary protobuf protobuf
|
pip install --no-binary protobuf protobuf
|
||||||
|
|
||||||
|
4
.github/workflows/style_check.yml
vendored
4
.github/workflows/style_check.yml
vendored
@ -24,6 +24,10 @@ on:
|
|||||||
branches:
|
branches:
|
||||||
- master
|
- master
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: style_check-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
style_check:
|
style_check:
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
|
34
.github/workflows/test.yml
vendored
34
.github/workflows/test.yml
vendored
@ -21,26 +21,23 @@ on:
|
|||||||
branches:
|
branches:
|
||||||
- master
|
- master
|
||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
branches:
|
||||||
|
- master
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: test-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
test:
|
test:
|
||||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
# os: [ubuntu-18.04, macos-10.15]
|
os: [ubuntu-latest]
|
||||||
# disable macOS test for now.
|
python-version: ["3.8"]
|
||||||
os: [ubuntu-18.04]
|
torch: ["1.10.0"]
|
||||||
python-version: [3.7, 3.8]
|
torchaudio: ["0.10.0"]
|
||||||
torch: ["1.8.0", "1.11.0"]
|
k2-version: ["1.23.2.dev20221201"]
|
||||||
torchaudio: ["0.8.0", "0.11.0"]
|
|
||||||
k2-version: ["1.15.1.dev20220427"]
|
|
||||||
exclude:
|
|
||||||
- torch: "1.8.0"
|
|
||||||
torchaudio: "0.11.0"
|
|
||||||
- torch: "1.11.0"
|
|
||||||
torchaudio: "0.8.0"
|
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
@ -67,11 +64,7 @@ jobs:
|
|||||||
# numpy 1.20.x does not support python 3.6
|
# numpy 1.20.x does not support python 3.6
|
||||||
pip install numpy==1.19
|
pip install numpy==1.19
|
||||||
pip install torch==${{ matrix.torch }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
pip install torch==${{ matrix.torch }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
||||||
if [[ ${{ matrix.torchaudio }} == "0.11.0" ]]; then
|
|
||||||
pip install torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
pip install torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
||||||
else
|
|
||||||
pip install torchaudio==${{ matrix.torchaudio }}
|
|
||||||
fi
|
|
||||||
|
|
||||||
pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
|
pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
|
||||||
pip install git+https://github.com/lhotse-speech/lhotse
|
pip install git+https://github.com/lhotse-speech/lhotse
|
||||||
@ -81,7 +74,6 @@ jobs:
|
|||||||
|
|
||||||
pip install kaldifst
|
pip install kaldifst
|
||||||
pip install onnxruntime
|
pip install onnxruntime
|
||||||
|
|
||||||
pip install -r requirements.txt
|
pip install -r requirements.txt
|
||||||
|
|
||||||
- name: Install graphviz
|
- name: Install graphviz
|
||||||
@ -124,7 +116,6 @@ jobs:
|
|||||||
cd ../transducer_stateless
|
cd ../transducer_stateless
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
|
|
||||||
if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then
|
|
||||||
cd ../transducer
|
cd ../transducer
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
|
|
||||||
@ -133,7 +124,6 @@ jobs:
|
|||||||
|
|
||||||
cd ../transducer_lstm
|
cd ../transducer_lstm
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
fi
|
|
||||||
|
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
if: startsWith(matrix.os, 'macos')
|
if: startsWith(matrix.os, 'macos')
|
||||||
@ -164,7 +154,6 @@ jobs:
|
|||||||
cd ../transducer_stateless
|
cd ../transducer_stateless
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
|
|
||||||
if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then
|
|
||||||
cd ../transducer
|
cd ../transducer
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
|
|
||||||
@ -173,4 +162,3 @@ jobs:
|
|||||||
|
|
||||||
cd ../transducer_lstm
|
cd ../transducer_lstm
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
fi
|
|
||||||
|
20
.gitignore
vendored
20
.gitignore
vendored
@ -11,5 +11,25 @@ log
|
|||||||
*.bak
|
*.bak
|
||||||
*-bak
|
*-bak
|
||||||
*bak.py
|
*bak.py
|
||||||
|
|
||||||
|
# Ignore Mac system files
|
||||||
|
.DS_store
|
||||||
|
|
||||||
|
# Ignore node_modules folder
|
||||||
|
node_modules
|
||||||
|
|
||||||
|
# ignore .nfs
|
||||||
|
|
||||||
|
.nfs*
|
||||||
|
|
||||||
|
# Ignore all text files
|
||||||
|
*.txt
|
||||||
|
|
||||||
|
# Ignore files related to API keys
|
||||||
|
.env
|
||||||
|
|
||||||
|
# Ignore SASS config files
|
||||||
|
.sass-cache
|
||||||
|
|
||||||
*.param
|
*.param
|
||||||
*.bin
|
*.bin
|
||||||
|
@ -393,6 +393,17 @@ Now let us run the training part:
|
|||||||
We use ``export CUDA_VISIBLE_DEVICES=""`` so that ``icefall`` uses CPU
|
We use ``export CUDA_VISIBLE_DEVICES=""`` so that ``icefall`` uses CPU
|
||||||
even if there are GPUs available.
|
even if there are GPUs available.
|
||||||
|
|
||||||
|
.. hint::
|
||||||
|
|
||||||
|
In case you get a ``Segmentation fault (core dump)`` error, please use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
|
See more at `<https://github.com/k2-fsa/icefall/issues/674>` if you are
|
||||||
|
interested.
|
||||||
|
|
||||||
The training log is given below:
|
The training log is given below:
|
||||||
|
|
||||||
.. code-block::
|
.. code-block::
|
||||||
|
@ -1,5 +1,8 @@
|
|||||||
#!/usr/bin/env bash
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
set -eou pipefail
|
set -eou pipefail
|
||||||
|
|
||||||
stage=-1
|
stage=-1
|
||||||
|
@ -1,5 +1,8 @@
|
|||||||
#!/usr/bin/env bash
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
set -eou pipefail
|
set -eou pipefail
|
||||||
|
|
||||||
nj=15
|
nj=15
|
||||||
|
@ -1,5 +1,8 @@
|
|||||||
#!/usr/bin/env bash
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
set -eou pipefail
|
set -eou pipefail
|
||||||
|
|
||||||
nj=30
|
nj=30
|
||||||
|
@ -1,5 +1,8 @@
|
|||||||
#!/usr/bin/env bash
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
set -eou pipefail
|
set -eou pipefail
|
||||||
|
|
||||||
stage=-1
|
stage=-1
|
||||||
|
@ -1,5 +1,8 @@
|
|||||||
#!/usr/bin/env bash
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
set -eou pipefail
|
set -eou pipefail
|
||||||
|
|
||||||
stage=-1
|
stage=-1
|
||||||
|
48
egs/ami/ASR/README.md
Normal file
48
egs/ami/ASR/README.md
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# AMI
|
||||||
|
|
||||||
|
This is an ASR recipe for the AMI corpus. AMI provides recordings from the speaker's
|
||||||
|
headset and lapel microphones, and also 2 array microphones containing 8 channels each.
|
||||||
|
We pool data in the following 4 ways and train a single model on the pooled data:
|
||||||
|
|
||||||
|
(i) individual headset microphone (IHM)
|
||||||
|
(ii) IHM with simulated reverb
|
||||||
|
(iii) Single distant microphone (SDM)
|
||||||
|
(iv) GSS-enhanced array microphones
|
||||||
|
|
||||||
|
Speed perturbation and MUSAN noise augmentation are additionally performed on the pooled
|
||||||
|
data. Here are the statistics of the combined training data:
|
||||||
|
|
||||||
|
```python
|
||||||
|
>>> cuts_train.describe()
|
||||||
|
Cuts count: 1222053
|
||||||
|
Total duration (hh:mm:ss): 905:00:28
|
||||||
|
Speech duration (hh:mm:ss): 905:00:28 (99.9%)
|
||||||
|
Duration statistics (seconds):
|
||||||
|
mean 2.7
|
||||||
|
std 2.8
|
||||||
|
min 0.0
|
||||||
|
25% 0.6
|
||||||
|
50% 1.6
|
||||||
|
75% 3.8
|
||||||
|
99% 12.3
|
||||||
|
99.5% 13.9
|
||||||
|
99.9% 18.4
|
||||||
|
max 36.8
|
||||||
|
```
|
||||||
|
|
||||||
|
**Note:** This recipe additionally uses [GSS](https://github.com/desh2608/gss) for enhancement
|
||||||
|
of far-field array microphones, but this is optional (see `prepare.sh` for details).
|
||||||
|
|
||||||
|
## Performance Record
|
||||||
|
|
||||||
|
### pruned_transducer_stateless7
|
||||||
|
|
||||||
|
The following are decoded using `modified_beam_search`:
|
||||||
|
|
||||||
|
| Evaluation set | dev WER | test WER |
|
||||||
|
|--------------------------|------------|---------|
|
||||||
|
| IHM | 18.92 | 17.40 |
|
||||||
|
| SDM | 31.25 | 32.21 |
|
||||||
|
| MDM (GSS-enhanced) | 21.67 | 22.43 |
|
||||||
|
|
||||||
|
See [RESULTS](/egs/ami/ASR/RESULTS.md) for details.
|
92
egs/ami/ASR/RESULTS.md
Normal file
92
egs/ami/ASR/RESULTS.md
Normal file
@ -0,0 +1,92 @@
|
|||||||
|
## Results
|
||||||
|
|
||||||
|
### AMI training results (Pruned Transducer)
|
||||||
|
|
||||||
|
#### 2022-11-20
|
||||||
|
|
||||||
|
#### Zipformer (pruned_transducer_stateless7)
|
||||||
|
|
||||||
|
Zipformer encoder + non-current decoder. The decoder
|
||||||
|
contains only an embedding layer, a Conv1d (with kernel size 2) and a linear
|
||||||
|
layer (to transform tensor dim).
|
||||||
|
|
||||||
|
All the results below are using a single model that is trained by combining the following
|
||||||
|
data: IHM, IHM+reverb, SDM, and GSS-enhanced MDM. Speed perturbation and MUSAN noise
|
||||||
|
augmentation are applied on top of the pooled data.
|
||||||
|
|
||||||
|
**WERs for IHM:**
|
||||||
|
|
||||||
|
| | dev | test | comment |
|
||||||
|
|---------------------------|------------|------------|------------------------------------------|
|
||||||
|
| greedy search | 19.25 | 17.83 | --epoch 14 --avg 8 --max-duration 500 |
|
||||||
|
| modified beam search | 18.92 | 17.40 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 |
|
||||||
|
| fast beam search | 19.44 | 18.04 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 |
|
||||||
|
|
||||||
|
**WERs for SDM:**
|
||||||
|
|
||||||
|
| | dev | test | comment |
|
||||||
|
|---------------------------|------------|------------|------------------------------------------|
|
||||||
|
| greedy search | 31.32 | 32.38 | --epoch 14 --avg 8 --max-duration 500 |
|
||||||
|
| modified beam search | 31.25 | 32.21 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 |
|
||||||
|
| fast beam search | 31.11 | 32.10 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 |
|
||||||
|
|
||||||
|
**WERs for GSS-enhanced MDM:**
|
||||||
|
|
||||||
|
| | dev | test | comment |
|
||||||
|
|---------------------------|------------|------------|------------------------------------------|
|
||||||
|
| greedy search | 22.05 | 22.93 | --epoch 14 --avg 8 --max-duration 500 |
|
||||||
|
| modified beam search | 21.67 | 22.43 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 |
|
||||||
|
| fast beam search | 22.21 | 22.83 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 |
|
||||||
|
|
||||||
|
The training command for reproducing is given below:
|
||||||
|
|
||||||
|
```
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 15 \
|
||||||
|
--exp-dir pruned_transducer_stateless7/exp \
|
||||||
|
--max-duration 150 \
|
||||||
|
--max-cuts 150 \
|
||||||
|
--prune-range 5 \
|
||||||
|
--lr-factor 5 \
|
||||||
|
--lm-scale 0.25 \
|
||||||
|
--use-fp16 True
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command is:
|
||||||
|
```
|
||||||
|
# greedy search
|
||||||
|
./pruned_transducer_stateless7/decode.py \
|
||||||
|
--epoch 14 \
|
||||||
|
--avg 8 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
|
--max-duration 500 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
# modified beam search
|
||||||
|
./pruned_transducer_stateless7/decode.py \
|
||||||
|
--iter 105000 \
|
||||||
|
--avg 10 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
|
--max-duration 500 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
# fast beam search
|
||||||
|
./pruned_transducer_stateless7/decode.py \
|
||||||
|
--iter 105000 \
|
||||||
|
--avg 10 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||||
|
--max-duration 500 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 4 \
|
||||||
|
--max-states 8
|
||||||
|
```
|
||||||
|
|
||||||
|
Pretrained model is available at <https://huggingface.co/desh2608/icefall-asr-ami-pruned-transducer-stateless7>
|
||||||
|
|
||||||
|
The tensorboard training log can be found at
|
||||||
|
<https://tensorboard.dev/experiment/VH10QOTBTbuYpWx994Onrg/#scalars>
|
0
egs/ami/ASR/local/__init__.py
Normal file
0
egs/ami/ASR/local/__init__.py
Normal file
114
egs/ami/ASR/local/compute_fbank_musan.py
Executable file
114
egs/ami/ASR/local/compute_fbank_musan.py
Executable file
@ -0,0 +1,114 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the musan dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, LilcomChunkyWriter, combine
|
||||||
|
from lhotse.features.kaldifeat import (
|
||||||
|
KaldifeatFbank,
|
||||||
|
KaldifeatFbankConfig,
|
||||||
|
KaldifeatFrameOptions,
|
||||||
|
KaldifeatMelOptions,
|
||||||
|
)
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_musan():
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
|
||||||
|
sampling_rate = 16000
|
||||||
|
num_mel_bins = 80
|
||||||
|
|
||||||
|
dataset_parts = (
|
||||||
|
"music",
|
||||||
|
"speech",
|
||||||
|
"noise",
|
||||||
|
)
|
||||||
|
prefix = "musan"
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix=prefix,
|
||||||
|
suffix=suffix,
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
assert len(manifests) == len(dataset_parts), (
|
||||||
|
len(manifests),
|
||||||
|
len(dataset_parts),
|
||||||
|
list(manifests.keys()),
|
||||||
|
dataset_parts,
|
||||||
|
)
|
||||||
|
|
||||||
|
musan_cuts_path = src_dir / "musan_cuts.jsonl.gz"
|
||||||
|
|
||||||
|
if musan_cuts_path.is_file():
|
||||||
|
logging.info(f"{musan_cuts_path} already exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
logging.info("Extracting features for Musan")
|
||||||
|
|
||||||
|
extractor = KaldifeatFbank(
|
||||||
|
KaldifeatFbankConfig(
|
||||||
|
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
|
||||||
|
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
|
||||||
|
device="cuda",
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# create chunks of Musan with duration 5 - 10 seconds
|
||||||
|
_ = (
|
||||||
|
CutSet.from_manifests(
|
||||||
|
recordings=combine(part["recordings"] for part in manifests.values())
|
||||||
|
)
|
||||||
|
.cut_into_windows(10.0)
|
||||||
|
.filter(lambda c: c.duration > 5)
|
||||||
|
.compute_and_store_features_batch(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=output_dir / "musan_feats",
|
||||||
|
manifest_path=musan_cuts_path,
|
||||||
|
batch_duration=500,
|
||||||
|
num_workers=4,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
compute_fbank_musan()
|
158
egs/ami/ASR/local/prepare_ami_enhanced.py
Normal file
158
egs/ami/ASR/local/prepare_ami_enhanced.py
Normal file
@ -0,0 +1,158 @@
|
|||||||
|
#!/usr/local/bin/python
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
# Data preparation for AMI GSS-enhanced dataset.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from lhotse import Recording, RecordingSet, SupervisionSet
|
||||||
|
from lhotse.qa import fix_manifests
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
from lhotse.utils import fastcopy
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
logging.basicConfig(
|
||||||
|
format="%(asctime)s %(levelname)-8s %(message)s",
|
||||||
|
level=logging.INFO,
|
||||||
|
datefmt="%Y-%m-%d %H:%M:%S",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="AMI enhanced dataset preparation.")
|
||||||
|
parser.add_argument(
|
||||||
|
"manifests_dir",
|
||||||
|
type=Path,
|
||||||
|
help="Path to directory containing AMI manifests.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"enhanced_dir",
|
||||||
|
type=Path,
|
||||||
|
help="Path to enhanced data directory.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-jobs",
|
||||||
|
"-j",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of parallel jobs to run.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--min-segment-duration",
|
||||||
|
"-d",
|
||||||
|
type=float,
|
||||||
|
default=0.0,
|
||||||
|
help="Minimum duration of a segment in seconds.",
|
||||||
|
)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def find_recording_and_create_new_supervision(enhanced_dir, supervision):
|
||||||
|
"""
|
||||||
|
Given a supervision (corresponding to original AMI recording), this function finds the
|
||||||
|
enhanced recording correspoding to the supervision, and returns this recording and
|
||||||
|
a new supervision whose start and end times are adjusted to match the enhanced recording.
|
||||||
|
"""
|
||||||
|
file_name = Path(
|
||||||
|
f"{supervision.recording_id}-{supervision.speaker}-{int(100*supervision.start):06d}_{int(100*supervision.end):06d}.flac"
|
||||||
|
)
|
||||||
|
save_path = enhanced_dir / f"{supervision.recording_id}" / file_name
|
||||||
|
if save_path.exists():
|
||||||
|
recording = Recording.from_file(save_path)
|
||||||
|
if recording.duration == 0:
|
||||||
|
logging.warning(f"Skipping {save_path} which has duration 0 seconds.")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Old supervision is wrt to the original recording, we create new supervision
|
||||||
|
# wrt to the enhanced segment
|
||||||
|
new_supervision = fastcopy(
|
||||||
|
supervision,
|
||||||
|
recording_id=recording.id,
|
||||||
|
start=0,
|
||||||
|
duration=recording.duration,
|
||||||
|
)
|
||||||
|
return recording, new_supervision
|
||||||
|
else:
|
||||||
|
logging.warning(f"{save_path} does not exist.")
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
# Get arguments
|
||||||
|
manifests_dir = args.manifests_dir
|
||||||
|
enhanced_dir = args.enhanced_dir
|
||||||
|
|
||||||
|
# Load manifests from cache if they exist (saves time)
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=["train", "dev", "test"],
|
||||||
|
output_dir=manifests_dir,
|
||||||
|
prefix="ami-sdm",
|
||||||
|
suffix="jsonl.gz",
|
||||||
|
)
|
||||||
|
if not manifests:
|
||||||
|
raise ValueError("AMI SDM manifests not found in {}".format(manifests_dir))
|
||||||
|
|
||||||
|
with ThreadPoolExecutor(args.num_jobs) as ex:
|
||||||
|
for part in ["train", "dev", "test"]:
|
||||||
|
logging.info(f"Processing {part}...")
|
||||||
|
supervisions_orig = manifests[part]["supervisions"].filter(
|
||||||
|
lambda s: s.duration >= args.min_segment_duration
|
||||||
|
)
|
||||||
|
# Remove TS3009d supervisions since they are not present in the enhanced data
|
||||||
|
supervisions_orig = supervisions_orig.filter(
|
||||||
|
lambda s: s.recording_id != "TS3009d"
|
||||||
|
)
|
||||||
|
futures = []
|
||||||
|
|
||||||
|
for supervision in tqdm(
|
||||||
|
supervisions_orig,
|
||||||
|
desc="Distributing tasks",
|
||||||
|
):
|
||||||
|
futures.append(
|
||||||
|
ex.submit(
|
||||||
|
find_recording_and_create_new_supervision,
|
||||||
|
enhanced_dir,
|
||||||
|
supervision,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
recordings = []
|
||||||
|
supervisions = []
|
||||||
|
for future in tqdm(
|
||||||
|
futures,
|
||||||
|
total=len(futures),
|
||||||
|
desc="Processing tasks",
|
||||||
|
):
|
||||||
|
result = future.result()
|
||||||
|
if result is not None:
|
||||||
|
recording, new_supervision = result
|
||||||
|
recordings.append(recording)
|
||||||
|
supervisions.append(new_supervision)
|
||||||
|
|
||||||
|
# Remove duplicates from the recordings
|
||||||
|
recordings_nodup = {}
|
||||||
|
for recording in recordings:
|
||||||
|
if recording.id not in recordings_nodup:
|
||||||
|
recordings_nodup[recording.id] = recording
|
||||||
|
else:
|
||||||
|
logging.warning("Recording {} is duplicated.".format(recording.id))
|
||||||
|
recordings = RecordingSet.from_recordings(recordings_nodup.values())
|
||||||
|
supervisions = SupervisionSet.from_segments(supervisions)
|
||||||
|
|
||||||
|
recordings, supervisions = fix_manifests(
|
||||||
|
recordings=recordings, supervisions=supervisions
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(f"Writing {part} enhanced manifests")
|
||||||
|
recordings.to_file(manifests_dir / f"ami-gss_recordings_{part}.jsonl.gz")
|
||||||
|
supervisions.to_file(
|
||||||
|
manifests_dir / f"ami-gss_supervisions_{part}.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
args = get_args()
|
||||||
|
main(args)
|
98
egs/ami/ASR/local/prepare_ami_gss.sh
Executable file
98
egs/ami/ASR/local/prepare_ami_gss.sh
Executable file
@ -0,0 +1,98 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# This script is used to run GSS-based enhancement on AMI data.
|
||||||
|
set -euo pipefail
|
||||||
|
nj=4
|
||||||
|
stage=0
|
||||||
|
|
||||||
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
|
if [ $# != 2 ]; then
|
||||||
|
echo "Wrong #arguments ($#, expected 2)"
|
||||||
|
echo "Usage: local/prepare_ami_gss.sh [options] <data-dir> <exp-dir>"
|
||||||
|
echo "e.g. local/prepare_ami_gss.sh data/manifests exp/ami_gss"
|
||||||
|
echo "main options (for others, see top of script file)"
|
||||||
|
echo " --nj <nj> # number of parallel jobs"
|
||||||
|
echo " --stage <stage> # stage to start running from"
|
||||||
|
exit 1;
|
||||||
|
fi
|
||||||
|
|
||||||
|
DATA_DIR=$1
|
||||||
|
EXP_DIR=$2
|
||||||
|
|
||||||
|
mkdir -p $EXP_DIR
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
if [ $stage -le 1 ]; then
|
||||||
|
log "Stage 1: Prepare cut sets"
|
||||||
|
for part in train dev test; do
|
||||||
|
lhotse cut simple \
|
||||||
|
-r $DATA_DIR/ami-mdm_recordings_${part}.jsonl.gz \
|
||||||
|
-s $DATA_DIR/ami-mdm_supervisions_${part}.jsonl.gz \
|
||||||
|
$EXP_DIR/cuts_${part}.jsonl.gz
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 2 ]; then
|
||||||
|
log "Stage 2: Trim cuts to supervisions (1 cut per supervision segment)"
|
||||||
|
for part in train dev test; do
|
||||||
|
lhotse cut trim-to-supervisions --discard-overlapping \
|
||||||
|
$EXP_DIR/cuts_${part}.jsonl.gz $EXP_DIR/cuts_per_segment_${part}.jsonl.gz
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 3 ]; then
|
||||||
|
log "Stage 3: Split manifests for multi-GPU processing (optional)"
|
||||||
|
for part in train; do
|
||||||
|
gss utils split $nj $EXP_DIR/cuts_per_segment_${part}.jsonl.gz \
|
||||||
|
$EXP_DIR/cuts_per_segment_${part}_split$nj
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 4 ]; then
|
||||||
|
log "Stage 4: Enhance train segments using GSS (requires GPU)"
|
||||||
|
# for train, we use smaller context and larger batches to speed-up processing
|
||||||
|
for JOB in $(seq $nj); do
|
||||||
|
gss enhance cuts $EXP_DIR/cuts_train.jsonl.gz \
|
||||||
|
$EXP_DIR/cuts_per_segment_train_split$nj/cuts_per_segment_train.JOB.jsonl.gz $EXP_DIR/enhanced \
|
||||||
|
--bss-iterations 10 \
|
||||||
|
--context-duration 5.0 \
|
||||||
|
--use-garbage-class \
|
||||||
|
--channels 0,1,2,3,4,5,6,7 \
|
||||||
|
--min-segment-length 0.05 \
|
||||||
|
--max-segment-length 35.0 \
|
||||||
|
--max-batch-duration 60.0 \
|
||||||
|
--num-buckets 3 \
|
||||||
|
--num-workers 2
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 5 ]; then
|
||||||
|
log "Stage 5: Enhance dev/test segments using GSS (using GPU)"
|
||||||
|
# for dev/test, we use larger context and smaller batches to get better quality
|
||||||
|
for part in dev test; do
|
||||||
|
for JOB in $(seq $nj); do
|
||||||
|
gss enhance cuts $EXP_DIR/cuts_${part}.jsonl.gz \
|
||||||
|
$EXP_DIR/cuts_per_segment_${part}_split$nj/cuts_per_segment_${part}.JOB.jsonl.gz \
|
||||||
|
$EXP_DIR/enhanced \
|
||||||
|
--bss-iterations 10 \
|
||||||
|
--context-duration 15.0 \
|
||||||
|
--use-garbage-class \
|
||||||
|
--channels 0,1,2,3,4,5,6,7 \
|
||||||
|
--min-segment-length 0.05 \
|
||||||
|
--max-segment-length 30.0 \
|
||||||
|
--max-batch-duration 45.0 \
|
||||||
|
--num-buckets 3 \
|
||||||
|
--num-workers 2
|
||||||
|
done
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 6 ]; then
|
||||||
|
log "Stage 6: Prepare manifests for GSS-enhanced data"
|
||||||
|
python local/prepare_ami_enhanced.py $DATA_DIR $EXP_DIR/enhanced -j $nj --min-segment-duration 0.05
|
||||||
|
fi
|
1
egs/ami/ASR/local/prepare_lang_bpe.py
Symbolic link
1
egs/ami/ASR/local/prepare_lang_bpe.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/prepare_lang_bpe.py
|
1
egs/ami/ASR/local/train_bpe_model.py
Symbolic link
1
egs/ami/ASR/local/train_bpe_model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/train_bpe_model.py
|
430
egs/ami/ASR/pruned_transducer_stateless7/asr_datamodule.py
Normal file
430
egs/ami/ASR/pruned_transducer_stateless7/asr_datamodule.py
Normal file
@ -0,0 +1,430 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from lhotse.dataset import (
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class _SeedWorkers:
|
||||||
|
def __init__(self, seed: int):
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, worker_id: int):
|
||||||
|
fix_random_seed(self.seed + worker_id)
|
||||||
|
|
||||||
|
|
||||||
|
class AmiAsrDataModule:
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train and valid dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description=(
|
||||||
|
"These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/manifests"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help=(
|
||||||
|
"When enabled, select noise from MUSAN and mix it "
|
||||||
|
"with training dataset. "
|
||||||
|
),
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--concatenate-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help=(
|
||||||
|
"When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--duration-factor",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help=(
|
||||||
|
"Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--gap",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help=(
|
||||||
|
"The amount of padding (in seconds) inserted between "
|
||||||
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
|
"noise augmentation is used."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=100.0,
|
||||||
|
help=(
|
||||||
|
"Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-cuts", type=int, default=None, help="Maximum cuts in a single batch."
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=50,
|
||||||
|
help=(
|
||||||
|
"The number of buckets for the BucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets)."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help=(
|
||||||
|
"When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help=(
|
||||||
|
"When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help=(
|
||||||
|
"The number of training dataloader workers that " "collect the batches."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help=(
|
||||||
|
"Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--ihm-only",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, only use IHM data for training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self,
|
||||||
|
cuts_train: CutSet,
|
||||||
|
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
CutSet for training.
|
||||||
|
sampler_state_dict:
|
||||||
|
The state dict for the training sampler.
|
||||||
|
"""
|
||||||
|
logging.info("About to get Musan cuts")
|
||||||
|
|
||||||
|
transforms = []
|
||||||
|
if self.args.enable_musan:
|
||||||
|
logging.info("Enable MUSAN")
|
||||||
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||||
|
transforms.append(
|
||||||
|
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
logging.info(
|
||||||
|
"Using cut concatenation with duration factor "
|
||||||
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
|
)
|
||||||
|
# Cut concatenation should be the first transform in the list,
|
||||||
|
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||||
|
# different utterances.
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
input_transforms = []
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=2,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
max_cuts=self.args.max_cuts,
|
||||||
|
shuffle=False,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
drop_last=True,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
if sampler_state_dict is not None:
|
||||||
|
logging.info("Loading sampler state dict")
|
||||||
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
|
|
||||||
|
# 'seed' is derived from the current random state, which will have
|
||||||
|
# previously been set in the main process.
|
||||||
|
seed = torch.randint(0, 100000, ()).item()
|
||||||
|
worker_init_fn = _SeedWorkers(seed)
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=False,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
|
||||||
|
transforms = []
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
)
|
||||||
|
valid_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else PrecomputedFeatures(),
|
||||||
|
return_cuts=True,
|
||||||
|
)
|
||||||
|
sampler = DynamicBucketingSampler(
|
||||||
|
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
||||||
|
|
||||||
|
def remove_short_cuts(self, cut: Cut) -> bool:
|
||||||
|
"""
|
||||||
|
See: https://github.com/k2-fsa/icefall/issues/500
|
||||||
|
Basically, the zipformer model subsamples the input using the following formula:
|
||||||
|
num_out_frames = (num_in_frames - 7)//2
|
||||||
|
For num_out_frames to be at least 1, num_in_frames must be at least 9.
|
||||||
|
"""
|
||||||
|
return cut.duration >= 0.09
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_cuts(self, sp: Optional[Any] = None) -> CutSet:
|
||||||
|
logging.info("About to get AMI train cuts")
|
||||||
|
|
||||||
|
def _remove_short_and_long_utt(c: Cut):
|
||||||
|
if c.duration < 0.2 or c.duration > 25.0:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# In pruned RNN-T, we require that T >= S
|
||||||
|
# where T is the number of feature frames after subsampling
|
||||||
|
# and S is the number of tokens in the utterance
|
||||||
|
|
||||||
|
# In ./zipformer.py, the conv module uses the following expression
|
||||||
|
# for subsampling
|
||||||
|
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||||
|
tokens = sp.encode(c.supervisions[0].text, out_type=str)
|
||||||
|
return T >= len(tokens)
|
||||||
|
|
||||||
|
if self.args.ihm_only:
|
||||||
|
cuts_train = load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_train_ihm.jsonl.gz"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
cuts_train = load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_train_all.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
return cuts_train.filter(_remove_short_and_long_utt)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_ihm_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get AMI IHM dev cuts")
|
||||||
|
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_ihm.jsonl.gz")
|
||||||
|
return cs.filter(self.remove_short_cuts)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_sdm_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get AMI SDM dev cuts")
|
||||||
|
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_sdm.jsonl.gz")
|
||||||
|
return cs.filter(self.remove_short_cuts)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_gss_cuts(self) -> CutSet:
|
||||||
|
if not (self.args.manifest_dir / "cuts_dev_gss.jsonl.gz").exists():
|
||||||
|
logging.info("No GSS dev cuts found")
|
||||||
|
return None
|
||||||
|
logging.info("About to get AMI GSS-enhanced dev cuts")
|
||||||
|
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_gss.jsonl.gz")
|
||||||
|
return cs.filter(self.remove_short_cuts)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_ihm_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get AMI IHM test cuts")
|
||||||
|
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_ihm.jsonl.gz")
|
||||||
|
return cs.filter(self.remove_short_cuts)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_sdm_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get AMI SDM test cuts")
|
||||||
|
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_sdm.jsonl.gz")
|
||||||
|
return cs.filter(self.remove_short_cuts)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_gss_cuts(self) -> CutSet:
|
||||||
|
if not (self.args.manifest_dir / "cuts_test_gss.jsonl.gz").exists():
|
||||||
|
logging.info("No GSS test cuts found")
|
||||||
|
return None
|
||||||
|
logging.info("About to get AMI GSS-enhanced test cuts")
|
||||||
|
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_gss.jsonl.gz")
|
||||||
|
return cs.filter(self.remove_short_cuts)
|
1
egs/ami/ASR/pruned_transducer_stateless7/beam_search.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7/beam_search.py
|
747
egs/ami/ASR/pruned_transducer_stateless7/decode.py
Executable file
747
egs/ami/ASR/pruned_transducer_stateless7/decode.py
Executable file
@ -0,0 +1,747 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./pruned_transducer_stateless7/decode.py \
|
||||||
|
--iter 105000 \
|
||||||
|
--avg 10 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) beam search
|
||||||
|
./pruned_transducer_stateless7/decode.py \
|
||||||
|
--iter 105000 \
|
||||||
|
--avg 10 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
|
--max-duration 500 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./pruned_transducer_stateless7/decode.py \
|
||||||
|
--iter 105000 \
|
||||||
|
--avg 10 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
|
--max-duration 500 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(4) fast beam search
|
||||||
|
./pruned_transducer_stateless7/decode.py \
|
||||||
|
--iter 105000 \
|
||||||
|
--avg 10 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||||
|
--max-duration 500 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 4 \
|
||||||
|
--max-states 8
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AmiAsrDataModule
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_nbest_LG,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall import NgramLm
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=10,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default="data/lang_bpe_500",
|
||||||
|
help="The lang dir containing word table and LG graph",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
- fast_beam_search_nbest
|
||||||
|
- fast_beam_search_nbest_oracle
|
||||||
|
- fast_beam_search_nbest_LG
|
||||||
|
If you use fast_beam_search_nbest_LG, you have to specify
|
||||||
|
`--lang-dir`, which should contain `LG.pt`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An interger indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.01,
|
||||||
|
help="""
|
||||||
|
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=200,
|
||||||
|
help="""Number of paths for nbest decoding.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""Scale applied to lattice scores when computing nbest paths.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||||
|
hyps = []
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_LG(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
hyps.append([word_table[i] for i in hyp])
|
||||||
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": hyps}
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
return {
|
||||||
|
(
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
): hyps
|
||||||
|
}
|
||||||
|
elif "fast_beam_search" in params.decoding_method:
|
||||||
|
key = f"beam_{params.beam}_"
|
||||||
|
key += f"max_contexts_{params.max_contexts}_"
|
||||||
|
key += f"max_states_{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
key += f"_num_paths_{params.num_paths}_"
|
||||||
|
key += f"nbest_scale_{params.nbest_scale}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||||
|
|
||||||
|
return {key: hyps}
|
||||||
|
else:
|
||||||
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 100
|
||||||
|
else:
|
||||||
|
log_interval = 2
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
word_table=word_table,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((cut_id, ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
test_set_cers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
wers_filename = (
|
||||||
|
params.res_dir / f"wers-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(wers_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
# we also compute CER for AMI dataset.
|
||||||
|
results_char = []
|
||||||
|
for res in results:
|
||||||
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||||
|
cers_filename = (
|
||||||
|
params.res_dir / f"cers-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(cers_filename, "w") as f:
|
||||||
|
cer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_cers[key] = cer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(wers_filename))
|
||||||
|
|
||||||
|
test_set_wers = {k: v for k, v in sorted(test_set_wers.items(), key=lambda x: x[1])}
|
||||||
|
test_set_cers = {k: v for k, v in sorted(test_set_cers.items(), key=lambda x: x[1])}
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER\tCER", file=f)
|
||||||
|
for key in test_set_wers:
|
||||||
|
print(
|
||||||
|
"{}\t{}\t{}".format(key, test_set_wers[key], test_set_cers[key]),
|
||||||
|
file=f,
|
||||||
|
)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER/CER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key in test_set_wers:
|
||||||
|
s += "{}\t{}\t{}{}\n".format(key, test_set_wers[key], test_set_cers[key], note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AmiAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"fast_beam_search_nbest_LG",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||||
|
params.suffix += f"-num-paths-{params.num_paths}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(f"{params.lang_dir}/bpe.model")
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
word_table = lexicon.word_table
|
||||||
|
lg_filename = params.lang_dir / "LG.pt"
|
||||||
|
logging.info(f"Loading {lg_filename}")
|
||||||
|
decoding_graph = k2.Fsa.from_dict(
|
||||||
|
torch.load(lg_filename, map_location=device)
|
||||||
|
)
|
||||||
|
decoding_graph.scores *= params.ngram_lm_scale
|
||||||
|
else:
|
||||||
|
word_table = None
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
word_table = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
ami = AmiAsrDataModule(args)
|
||||||
|
|
||||||
|
dev_ihm_cuts = ami.dev_ihm_cuts()
|
||||||
|
test_ihm_cuts = ami.test_ihm_cuts()
|
||||||
|
dev_sdm_cuts = ami.dev_sdm_cuts()
|
||||||
|
test_sdm_cuts = ami.test_sdm_cuts()
|
||||||
|
dev_gss_cuts = ami.dev_gss_cuts()
|
||||||
|
test_gss_cuts = ami.test_gss_cuts()
|
||||||
|
|
||||||
|
dev_ihm_dl = ami.test_dataloaders(dev_ihm_cuts)
|
||||||
|
test_ihm_dl = ami.test_dataloaders(test_ihm_cuts)
|
||||||
|
dev_sdm_dl = ami.test_dataloaders(dev_sdm_cuts)
|
||||||
|
test_sdm_dl = ami.test_dataloaders(test_sdm_cuts)
|
||||||
|
if dev_gss_cuts is not None:
|
||||||
|
dev_gss_dl = ami.test_dataloaders(dev_gss_cuts)
|
||||||
|
if test_gss_cuts is not None:
|
||||||
|
test_gss_dl = ami.test_dataloaders(test_gss_cuts)
|
||||||
|
|
||||||
|
test_sets = {
|
||||||
|
"dev_ihm": (dev_ihm_dl, dev_ihm_cuts),
|
||||||
|
"test_ihm": (test_ihm_dl, test_ihm_cuts),
|
||||||
|
"dev_sdm": (dev_sdm_dl, dev_sdm_cuts),
|
||||||
|
"test_sdm": (test_sdm_dl, test_sdm_cuts),
|
||||||
|
}
|
||||||
|
if dev_gss_cuts is not None:
|
||||||
|
test_sets["dev_gss"] = (dev_gss_dl, dev_gss_cuts)
|
||||||
|
if test_gss_cuts is not None:
|
||||||
|
test_sets["test_gss"] = (test_gss_dl, test_gss_cuts)
|
||||||
|
|
||||||
|
for test_set in test_sets:
|
||||||
|
logging.info(f"Decoding {test_set}")
|
||||||
|
dl, cuts = test_sets[test_set]
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
word_table=word_table,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/ami/ASR/pruned_transducer_stateless7/decoder.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/decoder.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7/decoder.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/encoder_interface.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7/encoder_interface.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/export.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/export.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7/export.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/joiner.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/joiner.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7/joiner.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/model.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7/model.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/optim.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/optim.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7/optim.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/scaling.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/scaling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7/scaling.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/scaling_converter.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7/scaling_converter.py
|
1193
egs/ami/ASR/pruned_transducer_stateless7/train.py
Executable file
1193
egs/ami/ASR/pruned_transducer_stateless7/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/ami/ASR/pruned_transducer_stateless7/zipformer.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7/zipformer.py
|
1
egs/ami/ASR/shared
Symbolic link
1
egs/ami/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../icefall/shared
|
@ -35,6 +35,9 @@
|
|||||||
# can generate other transcript formats by supplying your own config files. A few examples of these
|
# can generate other transcript formats by supplying your own config files. A few examples of these
|
||||||
# config files can be found in local/conf.
|
# config files can be found in local/conf.
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
set -eou pipefail
|
set -eou pipefail
|
||||||
|
|
||||||
nj=8
|
nj=8
|
||||||
|
@ -1,5 +1,8 @@
|
|||||||
#!/usr/bin/env bash
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
set -eou pipefail
|
set -eou pipefail
|
||||||
|
|
||||||
nj=15
|
nj=15
|
||||||
|
@ -23,6 +23,7 @@ The following table lists the differences among them.
|
|||||||
| `pruned_transducer_stateless5` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + more layers + random combiner|
|
| `pruned_transducer_stateless5` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + more layers + random combiner|
|
||||||
| `pruned_transducer_stateless6` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + distillation with hubert|
|
| `pruned_transducer_stateless6` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + distillation with hubert|
|
||||||
| `pruned_transducer_stateless7` | Zipformer | Embedding + Conv1d | First experiment with Zipformer from Dan|
|
| `pruned_transducer_stateless7` | Zipformer | Embedding + Conv1d | First experiment with Zipformer from Dan|
|
||||||
|
| `pruned_transducer_stateless7_ctc` | Zipformer | Embedding + Conv1d | Same as pruned_transducer_stateless7, but with extra CTC head|
|
||||||
| `pruned_transducer_stateless8` | Zipformer | Embedding + Conv1d | Same as pruned_transducer_stateless7, but using extra data from GigaSpeech|
|
| `pruned_transducer_stateless8` | Zipformer | Embedding + Conv1d | Same as pruned_transducer_stateless7, but using extra data from GigaSpeech|
|
||||||
| `pruned_stateless_emformer_rnnt2` | Emformer(from torchaudio) | Embedding + Conv1d | Using Emformer from torchaudio for streaming ASR|
|
| `pruned_stateless_emformer_rnnt2` | Emformer(from torchaudio) | Embedding + Conv1d | Using Emformer from torchaudio for streaming ASR|
|
||||||
| `conv_emformer_transducer_stateless` | ConvEmformer | Embedding + Conv1d | Using ConvEmformer for streaming ASR + mechanisms in reworked model |
|
| `conv_emformer_transducer_stateless` | ConvEmformer | Embedding + Conv1d | Using ConvEmformer for streaming ASR + mechanisms in reworked model |
|
||||||
|
@ -1,5 +1,185 @@
|
|||||||
## Results
|
## Results
|
||||||
|
|
||||||
|
### pruned_transducer_stateless7_ctc (zipformer with transducer loss and ctc loss)
|
||||||
|
|
||||||
|
See <https://github.com/k2-fsa/icefall/pull/683> for more details.
|
||||||
|
|
||||||
|
[pruned_transducer_stateless7_ctc](./pruned_transducer_stateless7_ctc)
|
||||||
|
|
||||||
|
The tensorboard log can be found at
|
||||||
|
<https://tensorboard.dev/experiment/hxlGAhOPToGmRLZFnAzPWw/>
|
||||||
|
|
||||||
|
You can find a pretrained model, training logs, decoding logs, and decoding
|
||||||
|
results at:
|
||||||
|
<https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-ctc-2022-12-01>
|
||||||
|
|
||||||
|
Number of model parameters: 70561891, i.e., 70.56 M
|
||||||
|
|
||||||
|
| | test-clean | test-other | comment |
|
||||||
|
|--------------------------|------------|-------------|--------------------|
|
||||||
|
| greedy search | 2.23 | 5.19 | --epoch 30 --avg 8 |
|
||||||
|
| modified beam search | 2.21 | 5.12 | --epoch 30 --avg 8 |
|
||||||
|
| fast beam search | 2.23 | 5.18 | --epoch 30 --avg 8 |
|
||||||
|
| ctc decoding | 2.48 | 5.82 | --epoch 30 --avg 9 |
|
||||||
|
| 1best | 2.43 | 5.22 | --epoch 30 --avg 9 |
|
||||||
|
| nbest | 2.43 | 5.22 | --epoch 30 --avg 9 |
|
||||||
|
| nbest rescoring | 2.34 | 5.05 | --epoch 30 --avg 9 |
|
||||||
|
| whole lattice rescoring | 2.34 | 5.04 | --epoch 30 --avg 9 |
|
||||||
|
|
||||||
|
The training commands are:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_ctc/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--full-libri 1 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--max-duration 750 \
|
||||||
|
--exp-dir pruned_transducer_stateless7_ctc/exp \
|
||||||
|
--feedforward-dims "1024,1024,2048,2048,1024" \
|
||||||
|
--ctc-loss-scale 0.2 \
|
||||||
|
--master-port 12535
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding commands for the transducer branch are:
|
||||||
|
```bash
|
||||||
|
for m in greedy_search fast_beam_search modified_beam_search ; do
|
||||||
|
for epoch in 30; do
|
||||||
|
for avg in 8; do
|
||||||
|
./pruned_transducer_stateless7_ctc/decode.py \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg \
|
||||||
|
--use-averaged-model 1 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_ctc/exp \
|
||||||
|
--feedforward-dims "1024,1024,2048,2048,1024" \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding commands for the ctc branch are:
|
||||||
|
```bash
|
||||||
|
for m in ctc-decoding nbest nbest-rescoring whole-lattice-rescoring; do
|
||||||
|
for epoch in 30; do
|
||||||
|
for avg in 9; do
|
||||||
|
./pruned_transducer_stateless7_ctc/ctc_decode.py \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_ctc/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method $m \
|
||||||
|
--hlg-scale 0.6 \
|
||||||
|
--lm-dir data/lm
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### LibriSpeech BPE training results (Conformer CTC, supporting delay penalty)
|
||||||
|
|
||||||
|
#### [conformer_ctc3](./conformer_ctc3)
|
||||||
|
|
||||||
|
It implements Conformer model training with CTC loss.
|
||||||
|
For streaming mode, it supports symbol delay penalty.
|
||||||
|
|
||||||
|
See <https://github.com/k2-fsa/icefall/pull/669> for more details.
|
||||||
|
|
||||||
|
##### training on full librispeech
|
||||||
|
|
||||||
|
This model contains 12 encoder layers. The number of model parameters is 77352694.
|
||||||
|
|
||||||
|
The WERs are:
|
||||||
|
|
||||||
|
| | test-clean | test-other | comment |
|
||||||
|
|-------------------------------------|------------|------------|----------------------|
|
||||||
|
| ctc-decoding | 3.09 | 7.62 | --epoch 25 --avg 7 |
|
||||||
|
| 1best | 2.87 | 6.44 | --epoch 25 --avg 7 |
|
||||||
|
| nbest | 2.88 | 6.5 | --epoch 25 --avg 7 |
|
||||||
|
| nbest-rescoring | 2.71 | 6.1 | --epoch 25 --avg 7 |
|
||||||
|
| whole-lattice-rescoring | 2.71 | 6.04 | --epoch 25 --avg 7 |
|
||||||
|
|
||||||
|
The training command is:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./conformer_ctc3/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 25 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--exp-dir conformer_ctc3/full \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 300 \
|
||||||
|
--master-port 12345
|
||||||
|
```
|
||||||
|
|
||||||
|
The tensorboard log can be found at
|
||||||
|
<https://tensorboard.dev/experiment/4jbxIQ2SQIaQeRqsR6bOSA>
|
||||||
|
|
||||||
|
The decoding command using different methods is:
|
||||||
|
```bash
|
||||||
|
for method in ctc-decoding 1best nbest nbest-rescoring whole-lattice-rescoring; do
|
||||||
|
./conformer_ctc3/decode.py \
|
||||||
|
--epoch 25 \
|
||||||
|
--avg 7 \
|
||||||
|
--exp-dir conformer_ctc3/exp \
|
||||||
|
--max-duration 300 \
|
||||||
|
--decoding-method $method \
|
||||||
|
--manifest-dir data/fbank \
|
||||||
|
--lm-dir data/lm \
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
|
Pretrained models, training logs, decoding logs, and decoding results
|
||||||
|
are available at
|
||||||
|
<https://huggingface.co/Zengwei/icefall-asr-librispeech-conformer-ctc3-2022-11-27>
|
||||||
|
|
||||||
|
The command to train a streaming model with symbol delay penalty is:
|
||||||
|
```bash
|
||||||
|
./conformer_ctc3/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--exp-dir conformer_ctc3/exp \
|
||||||
|
--full-libri 1 \
|
||||||
|
--dynamic-chunk-training 1 \
|
||||||
|
--causal-convolution 1 \
|
||||||
|
--short-chunk-size 25 \
|
||||||
|
--num-left-chunks 4 \
|
||||||
|
--max-duration 300 \
|
||||||
|
--delay-penalty 0.1
|
||||||
|
```
|
||||||
|
To evaluate symbol delay, you should:
|
||||||
|
(1) Generate cuts with word-time alignments:
|
||||||
|
```bash
|
||||||
|
./local/add_alignment_librispeech.py \
|
||||||
|
--alignments-dir data/alignment \
|
||||||
|
--cuts-in-dir data/fbank \
|
||||||
|
--cuts-out-dir data/fbank_ali
|
||||||
|
```
|
||||||
|
(2) Set the argument "--manifest-dir data/fbank_ali" while decoding.
|
||||||
|
For example:
|
||||||
|
```bash
|
||||||
|
./conformer_ctc3/decode.py \
|
||||||
|
--epoch 25 \
|
||||||
|
--avg 7 \
|
||||||
|
--exp-dir ./conformer_ctc3/exp \
|
||||||
|
--max-duration 300 \
|
||||||
|
--decoding-method ctc-decoding \
|
||||||
|
--simulate-streaming 1 \
|
||||||
|
--causal-convolution 1 \
|
||||||
|
--decode-chunk-size 16 \
|
||||||
|
--left-context 64 \
|
||||||
|
--manifest-dir data/fbank_ali
|
||||||
|
```
|
||||||
|
Note: It supports to calculate symbol delay with following decoding methods:
|
||||||
|
- ctc-greedy-search
|
||||||
|
- ctc-decoding
|
||||||
|
- 1best
|
||||||
|
|
||||||
|
|
||||||
### pruned_transducer_stateless8 (zipformer + multidataset)
|
### pruned_transducer_stateless8 (zipformer + multidataset)
|
||||||
|
|
||||||
See <https://github.com/k2-fsa/icefall/pull/675> for more details.
|
See <https://github.com/k2-fsa/icefall/pull/675> for more details.
|
||||||
@ -7,21 +187,25 @@ See <https://github.com/k2-fsa/icefall/pull/675> for more details.
|
|||||||
[pruned_transducer_stateless8](./pruned_transducer_stateless8)
|
[pruned_transducer_stateless8](./pruned_transducer_stateless8)
|
||||||
|
|
||||||
The tensorboard log can be found at
|
The tensorboard log can be found at
|
||||||
<https://tensorboard.dev/experiment/y6kAPnN3S3OwvQxQqKQzsQ>
|
<https://tensorboard.dev/experiment/3e9AfOcgRwOXpLQlZvHZrQ>
|
||||||
|
|
||||||
You can find a pretrained model, training logs, decoding logs, and decoding
|
You can find a pretrained model, training logs, decoding logs, and decoding
|
||||||
results at:
|
results at:
|
||||||
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14>
|
<https://huggingface.co/WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02>
|
||||||
|
|
||||||
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
|
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
|
||||||
|
|
||||||
Number of model parameters: 70369391, i.e., 70.37 M
|
Number of model parameters: 70369391, i.e., 70.37 M
|
||||||
|
|
||||||
| | test-clean | test-other | comment |
|
| decoding method | test-clean | test-other | comment |
|
||||||
|----------------------|------------|-------------|----------------------------------------|
|
|----------------------|------------|------------|--------------------|
|
||||||
| greedy search | 1.87 | 4.38 | --epoch 16 --avg 2 --max-duration 600 |
|
| greedy_search | 1.81 | 4.18 | --epoch 20 --avg 4 |
|
||||||
| modified beam search | 1.81 | 4.34 | --epoch 16 --avg 2 --max-duration 600 |
|
| fast_beam_search | 1.82 | 4.15 | --epoch 20 --avg 4 |
|
||||||
| fast beam search | 1.91 | 4.33 | --epoch 16 --avg 2 --max-duration 600 |
|
| modified_beam_search | 1.78 | **4.08** | --epoch 20 --avg 4 |
|
||||||
|
| greedy_search | 1.84 | 4.3 | --epoch 19 --avg 8 |
|
||||||
|
| fast_beam_search |**1.77** | 4.25 | --epoch 19 --avg 8 |
|
||||||
|
| modified_beam_search | 1.81 | 4.16 | --epoch 19 --avg 8 |
|
||||||
|
|
||||||
|
|
||||||
The training commands are:
|
The training commands are:
|
||||||
```bash
|
```bash
|
||||||
@ -41,9 +225,9 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
|||||||
|
|
||||||
The decoding commands are:
|
The decoding commands are:
|
||||||
```bash
|
```bash
|
||||||
for m in greedy_search fast_beam_search modified_beam_search ; do
|
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||||
for epoch in 16; do
|
for epoch in $(seq 20 -1 10); do
|
||||||
for avg in 2; do
|
for avg in $(seq 9 -1 1); do
|
||||||
./pruned_transducer_stateless8/decode.py \
|
./pruned_transducer_stateless8/decode.py \
|
||||||
--epoch $epoch \
|
--epoch $epoch \
|
||||||
--avg $avg \
|
--avg $avg \
|
||||||
@ -115,7 +299,6 @@ done
|
|||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### LibriSpeech BPE training results (Pruned Stateless LSTM RNN-T + gradient filter)
|
### LibriSpeech BPE training results (Pruned Stateless LSTM RNN-T + gradient filter)
|
||||||
|
|
||||||
#### [lstm_transducer_stateless3](./lstm_transducer_stateless3)
|
#### [lstm_transducer_stateless3](./lstm_transducer_stateless3)
|
||||||
@ -218,6 +401,7 @@ The WERs are:
|
|||||||
| greedy search (max sym per frame 1) | 2.78 | 7.36 | --iter 468000 --avg 16 |
|
| greedy search (max sym per frame 1) | 2.78 | 7.36 | --iter 468000 --avg 16 |
|
||||||
| modified_beam_search | 2.73 | 7.15 | --iter 468000 --avg 16 |
|
| modified_beam_search | 2.73 | 7.15 | --iter 468000 --avg 16 |
|
||||||
| modified_beam_search + RNNLM shallow fusion | 2.42 | 6.46 | --iter 468000 --avg 16 |
|
| modified_beam_search + RNNLM shallow fusion | 2.42 | 6.46 | --iter 468000 --avg 16 |
|
||||||
|
| modified_beam_search + RNNLM shallow fusion | 2.28 | 5.94 | --iter 468000 --avg 16 |
|
||||||
| fast_beam_search | 2.76 | 7.31 | --iter 468000 --avg 16 |
|
| fast_beam_search | 2.76 | 7.31 | --iter 468000 --avg 16 |
|
||||||
| greedy search (max sym per frame 1) | 2.77 | 7.35 | --iter 472000 --avg 18 |
|
| greedy search (max sym per frame 1) | 2.77 | 7.35 | --iter 472000 --avg 18 |
|
||||||
| modified_beam_search | 2.75 | 7.08 | --iter 472000 --avg 18 |
|
| modified_beam_search | 2.75 | 7.08 | --iter 472000 --avg 18 |
|
||||||
@ -293,6 +477,32 @@ for iter in 472000; do
|
|||||||
done
|
done
|
||||||
done
|
done
|
||||||
|
|
||||||
|
You may also decode using LODR + RNNLM shallow fusion. This decoding method is proposed in <https://arxiv.org/pdf/2203.16776.pdf>.
|
||||||
|
It subtracts the internal language model score during shallow fusion, which is approximated by a bi-gram model. The bi-gram can be
|
||||||
|
generated by `generate-lm.sh`, or you may download it from <https://huggingface.co/marcoyang/librispeech_bigram>.
|
||||||
|
|
||||||
|
The decoding command is as follows:
|
||||||
|
|
||||||
|
for iter in 472000; do
|
||||||
|
for avg in 8 10 12 14 16 18; do
|
||||||
|
./lstm_transducer_stateless2/decode.py \
|
||||||
|
--iter $iter \
|
||||||
|
--avg $avg \
|
||||||
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search_rnnlm_LODR \
|
||||||
|
--beam 4 \
|
||||||
|
--rnn-lm-scale 0.4 \
|
||||||
|
--rnn-lm-exp-dir /path/to/RNNLM \
|
||||||
|
--rnn-lm-epoch 99 \
|
||||||
|
--rnn-lm-avg 1 \
|
||||||
|
--rnn-lm-num-layers 3 \
|
||||||
|
--rnn-lm-tie-weights 1 \
|
||||||
|
--token-ngram 2 \
|
||||||
|
--ngram-lm-scale -0.16
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
||||||
Pretrained models, training logs, decoding logs, and decoding results
|
Pretrained models, training logs, decoding logs, and decoding results
|
||||||
are available at
|
are available at
|
||||||
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03>
|
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03>
|
||||||
@ -1812,6 +2022,8 @@ subset so that the gigaspeech dataloader never exhausts.
|
|||||||
|-------------------------------------|------------|------------|---------------------------------------------|
|
|-------------------------------------|------------|------------|---------------------------------------------|
|
||||||
| greedy search (max sym per frame 1) | 2.03 | 4.70 | --iter 1224000 --avg 14 --max-duration 600 |
|
| greedy search (max sym per frame 1) | 2.03 | 4.70 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||||
| modified beam search | 2.00 | 4.63 | --iter 1224000 --avg 14 --max-duration 600 |
|
| modified beam search | 2.00 | 4.63 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||||
|
| modified beam search + rnnlm shallow fusion | 1.94 | 4.2 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||||
|
| modified beam search + LODR | 1.83 | 4.03 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||||
| fast beam search | 2.10 | 4.68 | --iter 1224000 --avg 14 --max-duration 600 |
|
| fast beam search | 2.10 | 4.68 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||||
|
|
||||||
The training commands are:
|
The training commands are:
|
||||||
@ -1857,6 +2069,64 @@ for iter in 1224000; do
|
|||||||
done
|
done
|
||||||
done
|
done
|
||||||
```
|
```
|
||||||
|
You may also decode using shallow fusion with external RNNLM. To do so you need to
|
||||||
|
download a well-trained RNNLM from this link <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
rnn_lm_scale=0.3
|
||||||
|
|
||||||
|
for iter in 1224000; do
|
||||||
|
for avg in 14; do
|
||||||
|
for method in modified_beam_search_rnnlm_shallow_fusion ; do
|
||||||
|
./pruned_transducer_stateless3/decode.py \
|
||||||
|
--iter $iter \
|
||||||
|
--avg $avg \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp-0.9/ \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $method \
|
||||||
|
--max-sym-per-frame 1 \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 32 \
|
||||||
|
--rnn-lm-scale $rnn_lm_scale \
|
||||||
|
--rnn-lm-exp-dir /path/to/RNNLM \
|
||||||
|
--rnn-lm-epoch 99 \
|
||||||
|
--rnn-lm-avg 1 \
|
||||||
|
--rnn-lm-num-layers 3 \
|
||||||
|
--rnn-lm-tie-weights 1
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
|
If you want to try out with LODR decoding, use the following command. This assums you have a bi-gram LM trained on LibriSpeech text. You can also download the bi-gram LM from here <https://huggingface.co/marcoyang/librispeech_bigram/tree/main> and put it under the directory `data/lang_bpe_500`.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
rnn_lm_scale=0.4
|
||||||
|
|
||||||
|
for iter in 1224000; do
|
||||||
|
for avg in 14; do
|
||||||
|
for method in modified_beam_search_rnnlm_LODR ; do
|
||||||
|
./pruned_transducer_stateless3/decode.py \
|
||||||
|
--iter $iter \
|
||||||
|
--avg $avg \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp-0.9/ \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $method \
|
||||||
|
--max-sym-per-frame 1 \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 32 \
|
||||||
|
--rnn-lm-scale $rnn_lm_scale \
|
||||||
|
--rnn-lm-exp-dir /path/to/RNNLM \
|
||||||
|
--rnn-lm-epoch 99 \
|
||||||
|
--rnn-lm-avg 1 \
|
||||||
|
--rnn-lm-num-layers 3 \
|
||||||
|
--rnn-lm-tie-weights 1 \
|
||||||
|
--tokens-ngram 2 \
|
||||||
|
--ngram-lm-scale -0.14
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
The pretrained models, training logs, decoding logs, and decoding results
|
The pretrained models, training logs, decoding logs, and decoding results
|
||||||
can be found at
|
can be found at
|
||||||
|
@ -687,10 +687,10 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
train_cuts = librispeech.train_clean_100_cuts()
|
|
||||||
if params.full_libri:
|
if params.full_libri:
|
||||||
train_cuts += librispeech.train_clean_360_cuts()
|
train_cuts = librispeech.train_all_shuf_cuts()
|
||||||
train_cuts += librispeech.train_other_500_cuts()
|
else:
|
||||||
|
train_cuts = librispeech.train_clean_100_cuts()
|
||||||
|
|
||||||
def remove_short_and_long_utt(c: Cut):
|
def remove_short_and_long_utt(c: Cut):
|
||||||
# Keep only utterances with duration between 1 second and 20 seconds
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
@ -928,10 +928,10 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
train_cuts = librispeech.train_clean_100_cuts()
|
|
||||||
if params.full_libri:
|
if params.full_libri:
|
||||||
train_cuts += librispeech.train_clean_360_cuts()
|
train_cuts = librispeech.train_all_shuf_cuts()
|
||||||
train_cuts += librispeech.train_other_500_cuts()
|
else:
|
||||||
|
train_cuts = librispeech.train_clean_100_cuts()
|
||||||
|
|
||||||
def remove_short_and_long_utt(c: Cut):
|
def remove_short_and_long_utt(c: Cut):
|
||||||
# Keep only utterances with duration between 1 second and 20 seconds
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
1
egs/librispeech/ASR/conformer_ctc3/__init__.py
Symbolic link
1
egs/librispeech/ASR/conformer_ctc3/__init__.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/__init__.py
|
1
egs/librispeech/ASR/conformer_ctc3/asr_datamodule.py
Symbolic link
1
egs/librispeech/ASR/conformer_ctc3/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/asr_datamodule.py
|
1
egs/librispeech/ASR/conformer_ctc3/conformer.py
Symbolic link
1
egs/librispeech/ASR/conformer_ctc3/conformer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/conformer.py
|
1004
egs/librispeech/ASR/conformer_ctc3/decode.py
Executable file
1004
egs/librispeech/ASR/conformer_ctc3/decode.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/librispeech/ASR/conformer_ctc3/encoder_interface.py
Symbolic link
1
egs/librispeech/ASR/conformer_ctc3/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/encoder_interface.py
|
292
egs/librispeech/ASR/conformer_ctc3/export.py
Executable file
292
egs/librispeech/ASR/conformer_ctc3/export.py
Executable file
@ -0,0 +1,292 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
(1) Export to torchscript model using torch.jit.trace()
|
||||||
|
|
||||||
|
./conformer_ctc3/export.py \
|
||||||
|
--exp-dir ./conformer_ctc3/exp \
|
||||||
|
--lang-dir data/lang_bpe_500 \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 10 \
|
||||||
|
--jit-trace 1
|
||||||
|
|
||||||
|
It will generates the file: `jit_trace.pt`.
|
||||||
|
|
||||||
|
(2) Export `model.state_dict()`
|
||||||
|
|
||||||
|
./conformer_ctc3/export.py \
|
||||||
|
--exp-dir ./conformer_ctc3/exp \
|
||||||
|
--lang-dir data/lang_bpe_500 \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 10
|
||||||
|
|
||||||
|
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
||||||
|
load it by `icefall.checkpoint.load_checkpoint()`.
|
||||||
|
|
||||||
|
To use the generated file with `conformer_ctc3/decode.py`,
|
||||||
|
you can do:
|
||||||
|
|
||||||
|
cd /path/to/exp_dir
|
||||||
|
ln -s pretrained.pt epoch-9999.pt
|
||||||
|
|
||||||
|
cd /path/to/egs/librispeech/ASR
|
||||||
|
./conformer_ctc3/decode.py \
|
||||||
|
--exp-dir ./conformer_ctc3/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 100 \
|
||||||
|
--lang-dir data/lang_bpe_500
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
|
from train import add_model_arguments, get_ctc_model, get_params
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for averaging.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless4/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default="data/lang_bpe_500",
|
||||||
|
help="The lang dir containing word table and LG graph",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit-trace",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to save a model after applying torch.jit.script.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--streaming-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to export a streaming model, if the models in exp-dir
|
||||||
|
are streaming model, this should be True.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
num_classes = max_token_id + 1 # +1 for the blank
|
||||||
|
params.vocab_size = num_classes
|
||||||
|
|
||||||
|
if params.streaming_model:
|
||||||
|
assert params.causal_convolution
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_ctc_model(params)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.jit_trace:
|
||||||
|
# TODO: will support streaming mode
|
||||||
|
assert not params.streaming_model
|
||||||
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
|
|
||||||
|
logging.info("Using torch.jit.trace()")
|
||||||
|
|
||||||
|
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
||||||
|
x_lens = torch.tensor([100], dtype=torch.int64)
|
||||||
|
traced_model = torch.jit.trace(model, (x, x_lens))
|
||||||
|
|
||||||
|
filename = params.exp_dir / "jit_trace.pt"
|
||||||
|
traced_model.save(str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
else:
|
||||||
|
logging.info("Not using torch.jit.trace()")
|
||||||
|
# Save it using a format so that it can be loaded
|
||||||
|
# by :func:`load_checkpoint`
|
||||||
|
filename = params.exp_dir / "pretrained.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
410
egs/librispeech/ASR/conformer_ctc3/jit_pretrained.py
Executable file
410
egs/librispeech/ASR/conformer_ctc3/jit_pretrained.py
Executable file
@ -0,0 +1,410 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Mingshuang Luo,)
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage (for non-streaming mode):
|
||||||
|
|
||||||
|
(1) ctc-decoding
|
||||||
|
./conformer_ctc3/pretrained.py \
|
||||||
|
--nn-model-filename ./conformer_ctc3/exp/cpu_jit.pt \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--method ctc-decoding \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(2) 1best
|
||||||
|
./conformer_ctc3/pretrained.py \
|
||||||
|
--nn-model-filename ./conformer_ctc3/exp/cpu_jit.pt \
|
||||||
|
--HLG data/lang_bpe_500/HLG.pt \
|
||||||
|
--words-file data/lang_bpe_500/words.txt \
|
||||||
|
--method 1best \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(3) nbest-rescoring
|
||||||
|
./conformer_ctc3/pretrained.py \
|
||||||
|
--nn-model-filename ./conformer_ctc3/exp/cpu_jit.pt \
|
||||||
|
--HLG data/lang_bpe_500/HLG.pt \
|
||||||
|
--words-file data/lang_bpe_500/words.txt \
|
||||||
|
--G data/lm/G_4_gram.pt \
|
||||||
|
--method nbest-rescoring \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(4) whole-lattice-rescoring
|
||||||
|
./conformer_ctc3/pretrained.py \
|
||||||
|
--nn-model-filename ./conformer_ctc3/exp/cpu_jit.pt \
|
||||||
|
--HLG data/lang_bpe_500/HLG.pt \
|
||||||
|
--words-file data/lang_bpe_500/words.txt \
|
||||||
|
--G data/lm/G_4_gram.pt \
|
||||||
|
--method whole-lattice-rescoring \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from decode import get_decoding_params
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_params
|
||||||
|
|
||||||
|
from icefall.decode import (
|
||||||
|
get_lattice,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_n_best_list,
|
||||||
|
rescore_with_whole_lattice,
|
||||||
|
)
|
||||||
|
from icefall.utils import get_texts
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the torchscript model.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--words-file",
|
||||||
|
type=str,
|
||||||
|
help="""Path to words.txt.
|
||||||
|
Used only when method is not ctc-decoding.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--HLG",
|
||||||
|
type=str,
|
||||||
|
help="""Path to HLG.pt.
|
||||||
|
Used only when method is not ctc-decoding.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
help="""Path to bpe.model.
|
||||||
|
Used only when method is ctc-decoding.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="1best",
|
||||||
|
help="""Decoding method.
|
||||||
|
Possible values are:
|
||||||
|
(0) ctc-decoding - Use CTC decoding. It uses a sentence
|
||||||
|
piece model, i.e., lang_dir/bpe.model, to convert
|
||||||
|
word pieces to words. It needs neither a lexicon
|
||||||
|
nor an n-gram LM.
|
||||||
|
(1) 1best - Use the best path as decoding output. Only
|
||||||
|
the transformer encoder output is used for decoding.
|
||||||
|
We call it HLG decoding.
|
||||||
|
(2) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||||
|
rescore them with an LM, the path with
|
||||||
|
the highest score is the decoding result.
|
||||||
|
We call it HLG decoding + n-gram LM rescoring.
|
||||||
|
(3) whole-lattice-rescoring - Use an LM to rescore the
|
||||||
|
decoding lattice and then use 1best to decode the
|
||||||
|
rescored lattice.
|
||||||
|
We call it HLG decoding + n-gram LM rescoring.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--G",
|
||||||
|
type=str,
|
||||||
|
help="""An LM for rescoring.
|
||||||
|
Used only when method is
|
||||||
|
whole-lattice-rescoring or nbest-rescoring.
|
||||||
|
It's usually a 4-gram LM.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="""
|
||||||
|
Used only when method is attention-decoder.
|
||||||
|
It specifies the size of n-best list.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=1.3,
|
||||||
|
help="""
|
||||||
|
Used only when method is whole-lattice-rescoring and nbest-rescoring.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
(Note: You need to tune it on a dataset.)
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""
|
||||||
|
Used only when method is nbest-rescoring.
|
||||||
|
It specifies the scale for lattice.scores when
|
||||||
|
extracting n-best lists. A smaller value results in
|
||||||
|
more unique number of paths with the risk of missing
|
||||||
|
the best path.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-classes",
|
||||||
|
type=int,
|
||||||
|
default=500,
|
||||||
|
help="""
|
||||||
|
Vocab size in the BPE model.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert sample_rate == expected_sample_rate, (
|
||||||
|
f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}"
|
||||||
|
)
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
# add decoding params
|
||||||
|
params.update(get_decoding_params())
|
||||||
|
params.update(vars(args))
|
||||||
|
params.vocab_size = params.num_classes
|
||||||
|
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
model = torch.jit.load(args.model_filename)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
|
nnet_output, _ = model(features, feature_lengths)
|
||||||
|
|
||||||
|
batch_size = nnet_output.shape[0]
|
||||||
|
supervision_segments = torch.tensor(
|
||||||
|
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||||
|
dtype=torch.int32,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method == "ctc-decoding":
|
||||||
|
logging.info("Use CTC decoding")
|
||||||
|
bpe_model = spm.SentencePieceProcessor()
|
||||||
|
bpe_model.load(params.bpe_model)
|
||||||
|
max_token_id = params.num_classes - 1
|
||||||
|
|
||||||
|
H = k2.ctc_topo(
|
||||||
|
max_token=max_token_id,
|
||||||
|
modified=False,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
decoding_graph=H,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
token_ids = get_texts(best_path)
|
||||||
|
hyps = bpe_model.decode(token_ids)
|
||||||
|
hyps = [s.split() for s in hyps]
|
||||||
|
elif params.method in [
|
||||||
|
"1best",
|
||||||
|
"nbest-rescoring",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
]:
|
||||||
|
logging.info(f"Loading HLG from {params.HLG}")
|
||||||
|
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
if not hasattr(HLG, "lm_scores"):
|
||||||
|
# For whole-lattice-rescoring and attention-decoder
|
||||||
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
|
if params.method in [
|
||||||
|
"nbest-rescoring",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
]:
|
||||||
|
logging.info(f"Loading G from {params.G}")
|
||||||
|
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
|
||||||
|
G = G.to(device)
|
||||||
|
if params.method == "whole-lattice-rescoring":
|
||||||
|
# Add epsilon self-loops to G as we will compose
|
||||||
|
# it with the whole lattice later
|
||||||
|
G = k2.add_epsilon_self_loops(G)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
|
||||||
|
# G.lm_scores is used to replace HLG.lm_scores during
|
||||||
|
# LM rescoring.
|
||||||
|
G.lm_scores = G.scores.clone()
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
decoding_graph=HLG,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method == "1best":
|
||||||
|
logging.info("Use HLG decoding")
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
if params.method == "nbest-rescoring":
|
||||||
|
logging.info("Use HLG decoding + LM rescoring")
|
||||||
|
best_path_dict = rescore_with_n_best_list(
|
||||||
|
lattice=lattice,
|
||||||
|
G=G,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
lm_scale_list=[params.ngram_lm_scale],
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
best_path = next(iter(best_path_dict.values()))
|
||||||
|
elif params.method == "whole-lattice-rescoring":
|
||||||
|
logging.info("Use HLG decoding + LM rescoring")
|
||||||
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=[params.ngram_lm_scale],
|
||||||
|
)
|
||||||
|
best_path = next(iter(best_path_dict.values()))
|
||||||
|
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||||
|
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported decoding method: {params.method}")
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
words = " ".join(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
1
egs/librispeech/ASR/conformer_ctc3/lstmp.py
Symbolic link
1
egs/librispeech/ASR/conformer_ctc3/lstmp.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../lstm_transducer_stateless2/lstmp.py
|
122
egs/librispeech/ASR/conformer_ctc3/model.py
Normal file
122
egs/librispeech/ASR/conformer_ctc3/model.py
Normal file
@ -0,0 +1,122 @@
|
|||||||
|
# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Wei Kang,
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import math
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from encoder_interface import EncoderInterface
|
||||||
|
from scaling import ScaledLinear
|
||||||
|
|
||||||
|
|
||||||
|
class CTCModel(nn.Module):
|
||||||
|
"""It implements https://www.cs.toronto.edu/~graves/icml_2006.pdf
|
||||||
|
"Connectionist Temporal Classification: Labelling Unsegmented
|
||||||
|
Sequence Data with Recurrent Neural Networks"
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder: EncoderInterface,
|
||||||
|
encoder_dim: int,
|
||||||
|
vocab_size: int,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder:
|
||||||
|
It is the transcription network in the paper. Its accepts
|
||||||
|
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
||||||
|
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
|
||||||
|
`logit_lens` of shape (N,).
|
||||||
|
encoder_dim:
|
||||||
|
The feature embedding dimension.
|
||||||
|
vocab_size:
|
||||||
|
The vocabulary size.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||||
|
|
||||||
|
self.encoder = encoder
|
||||||
|
self.ctc_output_module = nn.Sequential(
|
||||||
|
nn.Dropout(p=0.1),
|
||||||
|
ScaledLinear(encoder_dim, vocab_size),
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_ctc_output(
|
||||||
|
self,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
delay_penalty: float = 0.0,
|
||||||
|
blank_threshold: float = 0.99,
|
||||||
|
):
|
||||||
|
"""Compute ctc log-prob and optionally (delay_penalty > 0) apply delay penalty.
|
||||||
|
We first split utterance into sub-utterances according to the
|
||||||
|
blank probs, and then add sawtooth-like "blank-bonus" values to
|
||||||
|
the blank probs.
|
||||||
|
See https://github.com/k2-fsa/icefall/pull/669 for details.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoder_out:
|
||||||
|
A tensor with shape of (N, T, C).
|
||||||
|
delay_penalty:
|
||||||
|
A constant used to scale the delay penalty score.
|
||||||
|
blank_threshold:
|
||||||
|
The threshold used to split utterance into sub-utterances.
|
||||||
|
"""
|
||||||
|
output = self.ctc_output_module(encoder_out)
|
||||||
|
log_prob = nn.functional.log_softmax(output, dim=-1)
|
||||||
|
|
||||||
|
if self.training and delay_penalty > 0:
|
||||||
|
T_arange = torch.arange(encoder_out.shape[1]).to(device=encoder_out.device)
|
||||||
|
# split into sub-utterances using the blank-id
|
||||||
|
mask = log_prob[:, :, 0] >= math.log(blank_threshold) # (B, T)
|
||||||
|
mask[:, 0] = True
|
||||||
|
cummax_out = (T_arange * mask).cummax(dim=-1)[0] # (B, T)
|
||||||
|
# the sawtooth "blank-bonus" value
|
||||||
|
penalty = T_arange - cummax_out # (B, T)
|
||||||
|
penalty_all = torch.zeros_like(log_prob)
|
||||||
|
penalty_all[:, :, 0] = delay_penalty * penalty
|
||||||
|
# apply latency penalty on probs
|
||||||
|
log_prob = log_prob + penalty_all
|
||||||
|
|
||||||
|
return log_prob
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
x_lens: torch.Tensor,
|
||||||
|
warmup: float = 1.0,
|
||||||
|
delay_penalty: float = 0.0,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A 3-D tensor of shape (N, T, C).
|
||||||
|
x_lens:
|
||||||
|
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||||
|
before padding.
|
||||||
|
warmup: a floating point value which increases throughout training;
|
||||||
|
values >= 1.0 are fully warmed up and have all modules present.
|
||||||
|
delay_penalty:
|
||||||
|
A constant used to scale the delay penalty score.
|
||||||
|
"""
|
||||||
|
encoder_out, encoder_out_lens = self.encoder(x, x_lens, warmup=warmup)
|
||||||
|
assert torch.all(encoder_out_lens > 0)
|
||||||
|
nnet_output = self.get_ctc_output(encoder_out, delay_penalty=delay_penalty)
|
||||||
|
return nnet_output, encoder_out_lens
|
1
egs/librispeech/ASR/conformer_ctc3/optim.py
Symbolic link
1
egs/librispeech/ASR/conformer_ctc3/optim.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/optim.py
|
458
egs/librispeech/ASR/conformer_ctc3/pretrained.py
Executable file
458
egs/librispeech/ASR/conformer_ctc3/pretrained.py
Executable file
@ -0,0 +1,458 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Mingshuang Luo,)
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage (for non-streaming mode):
|
||||||
|
|
||||||
|
(1) ctc-decoding
|
||||||
|
./conformer_ctc3/pretrained.py \
|
||||||
|
--checkpoint conformer_ctc3/exp/pretrained.pt \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--method ctc-decoding \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
test_wavs/1089-134686-0001.wav
|
||||||
|
|
||||||
|
(2) 1best
|
||||||
|
./conformer_ctc3/pretrained.py \
|
||||||
|
--checkpoint conformer_ctc3/exp/pretrained.pt \
|
||||||
|
--HLG data/lang_bpe_500/HLG.pt \
|
||||||
|
--words-file data/lang_bpe_500/words.txt \
|
||||||
|
--method 1best \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
test_wavs/1089-134686-0001.wav
|
||||||
|
|
||||||
|
(3) nbest-rescoring
|
||||||
|
./conformer_ctc3/pretrained.py \
|
||||||
|
--checkpoint conformer_ctc3/exp/pretrained.pt \
|
||||||
|
--HLG data/lang_bpe_500/HLG.pt \
|
||||||
|
--words-file data/lang_bpe_500/words.txt \
|
||||||
|
--G data/lm/G_4_gram.pt \
|
||||||
|
--method nbest-rescoring \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
test_wavs/1089-134686-0001.wav
|
||||||
|
|
||||||
|
(4) whole-lattice-rescoring
|
||||||
|
./conformer_ctc3/pretrained.py \
|
||||||
|
--checkpoint conformer_ctc3/exp/pretrained.pt \
|
||||||
|
--HLG data/lang_bpe_500/HLG.pt \
|
||||||
|
--words-file data/lang_bpe_500/words.txt \
|
||||||
|
--G data/lm/G_4_gram.pt \
|
||||||
|
--method whole-lattice-rescoring \
|
||||||
|
--sample-rate 16000 \
|
||||||
|
test_wavs/1089-134686-0001.wav
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from decode import get_decoding_params
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_ctc_model, get_params
|
||||||
|
|
||||||
|
from icefall.decode import (
|
||||||
|
get_lattice,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_n_best_list,
|
||||||
|
rescore_with_whole_lattice,
|
||||||
|
)
|
||||||
|
from icefall.utils import get_texts, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--words-file",
|
||||||
|
type=str,
|
||||||
|
help="""Path to words.txt.
|
||||||
|
Used only when method is not ctc-decoding.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--HLG",
|
||||||
|
type=str,
|
||||||
|
help="""Path to HLG.pt.
|
||||||
|
Used only when method is not ctc-decoding.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
help="""Path to bpe.model.
|
||||||
|
Used only when method is ctc-decoding.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="1best",
|
||||||
|
help="""Decoding method.
|
||||||
|
Possible values are:
|
||||||
|
(0) ctc-decoding - Use CTC decoding. It uses a sentence
|
||||||
|
piece model, i.e., lang_dir/bpe.model, to convert
|
||||||
|
word pieces to words. It needs neither a lexicon
|
||||||
|
nor an n-gram LM.
|
||||||
|
(1) 1best - Use the best path as decoding output. Only
|
||||||
|
the transformer encoder output is used for decoding.
|
||||||
|
We call it HLG decoding.
|
||||||
|
(2) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||||
|
rescore them with an LM, the path with
|
||||||
|
the highest score is the decoding result.
|
||||||
|
We call it HLG decoding + n-gram LM rescoring.
|
||||||
|
(3) whole-lattice-rescoring - Use an LM to rescore the
|
||||||
|
decoding lattice and then use 1best to decode the
|
||||||
|
rescored lattice.
|
||||||
|
We call it HLG decoding + n-gram LM rescoring.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--G",
|
||||||
|
type=str,
|
||||||
|
help="""An LM for rescoring.
|
||||||
|
Used only when method is
|
||||||
|
whole-lattice-rescoring or nbest-rescoring.
|
||||||
|
It's usually a 4-gram LM.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="""
|
||||||
|
Used only when method is attention-decoder.
|
||||||
|
It specifies the size of n-best list.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=1.3,
|
||||||
|
help="""
|
||||||
|
Used only when method is whole-lattice-rescoring and nbest-rescoring.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
(Note: You need to tune it on a dataset.)
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""
|
||||||
|
Used only when method is nbest-rescoring.
|
||||||
|
It specifies the scale for lattice.scores when
|
||||||
|
extracting n-best lists. A smaller value results in
|
||||||
|
more unique number of paths with the risk of missing
|
||||||
|
the best path.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-classes",
|
||||||
|
type=int,
|
||||||
|
default=500,
|
||||||
|
help="""
|
||||||
|
Vocab size in the BPE model.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--simulate-streaming",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to simulate streaming in decoding, this is a good way to
|
||||||
|
test a streaming model.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decode-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="The chunk size for decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--left-context",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="left context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert sample_rate == expected_sample_rate, (
|
||||||
|
f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}"
|
||||||
|
)
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
# add decoding params
|
||||||
|
params.update(get_decoding_params())
|
||||||
|
params.update(vars(args))
|
||||||
|
params.vocab_size = params.num_classes
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
assert (
|
||||||
|
params.causal_convolution
|
||||||
|
), "Decoding in streaming requires causal convolution"
|
||||||
|
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_ctc_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"], strict=False)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
|
# model forward
|
||||||
|
if params.simulate_streaming:
|
||||||
|
encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lengths,
|
||||||
|
chunk_size=params.decode_chunk_size,
|
||||||
|
left_context=params.left_context,
|
||||||
|
simulate_streaming=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=features, x_lens=feature_lengths
|
||||||
|
)
|
||||||
|
nnet_output = model.get_ctc_output(encoder_out)
|
||||||
|
|
||||||
|
batch_size = nnet_output.shape[0]
|
||||||
|
supervision_segments = torch.tensor(
|
||||||
|
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||||
|
dtype=torch.int32,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method == "ctc-decoding":
|
||||||
|
logging.info("Use CTC decoding")
|
||||||
|
bpe_model = spm.SentencePieceProcessor()
|
||||||
|
bpe_model.load(params.bpe_model)
|
||||||
|
max_token_id = params.num_classes - 1
|
||||||
|
|
||||||
|
H = k2.ctc_topo(
|
||||||
|
max_token=max_token_id,
|
||||||
|
modified=False,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
decoding_graph=H,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
token_ids = get_texts(best_path)
|
||||||
|
hyps = bpe_model.decode(token_ids)
|
||||||
|
hyps = [s.split() for s in hyps]
|
||||||
|
elif params.method in [
|
||||||
|
"1best",
|
||||||
|
"nbest-rescoring",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
]:
|
||||||
|
logging.info(f"Loading HLG from {params.HLG}")
|
||||||
|
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
if not hasattr(HLG, "lm_scores"):
|
||||||
|
# For whole-lattice-rescoring and attention-decoder
|
||||||
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
|
if params.method in [
|
||||||
|
"nbest-rescoring",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
]:
|
||||||
|
logging.info(f"Loading G from {params.G}")
|
||||||
|
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
|
||||||
|
G = G.to(device)
|
||||||
|
if params.method == "whole-lattice-rescoring":
|
||||||
|
# Add epsilon self-loops to G as we will compose
|
||||||
|
# it with the whole lattice later
|
||||||
|
G = k2.add_epsilon_self_loops(G)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
|
||||||
|
# G.lm_scores is used to replace HLG.lm_scores during
|
||||||
|
# LM rescoring.
|
||||||
|
G.lm_scores = G.scores.clone()
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
decoding_graph=HLG,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method == "1best":
|
||||||
|
logging.info("Use HLG decoding")
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
if params.method == "nbest-rescoring":
|
||||||
|
logging.info("Use HLG decoding + LM rescoring")
|
||||||
|
best_path_dict = rescore_with_n_best_list(
|
||||||
|
lattice=lattice,
|
||||||
|
G=G,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
lm_scale_list=[params.ngram_lm_scale],
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
best_path = next(iter(best_path_dict.values()))
|
||||||
|
elif params.method == "whole-lattice-rescoring":
|
||||||
|
logging.info("Use HLG decoding + LM rescoring")
|
||||||
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=[params.ngram_lm_scale],
|
||||||
|
)
|
||||||
|
best_path = next(iter(best_path_dict.values()))
|
||||||
|
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||||
|
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported decoding method: {params.method}")
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
words = " ".join(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
1
egs/librispeech/ASR/conformer_ctc3/scaling.py
Symbolic link
1
egs/librispeech/ASR/conformer_ctc3/scaling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/scaling.py
|
1
egs/librispeech/ASR/conformer_ctc3/scaling_converter.py
Symbolic link
1
egs/librispeech/ASR/conformer_ctc3/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless3/scaling_converter.py
|
82
egs/librispeech/ASR/conformer_ctc3/test_model.py
Executable file
82
egs/librispeech/ASR/conformer_ctc3/test_model.py
Executable file
@ -0,0 +1,82 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
To run this file, do:
|
||||||
|
|
||||||
|
cd icefall/egs/librispeech/ASR
|
||||||
|
python ./conformer_ctc3/test_model.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from train import get_params, get_ctc_model
|
||||||
|
|
||||||
|
|
||||||
|
def test_model():
|
||||||
|
params = get_params()
|
||||||
|
params.vocab_size = 500
|
||||||
|
params.blank_id = 0
|
||||||
|
params.context_size = 2
|
||||||
|
params.unk_id = 2
|
||||||
|
|
||||||
|
params.dynamic_chunk_training = False
|
||||||
|
params.short_chunk_size = 25
|
||||||
|
params.num_left_chunks = 4
|
||||||
|
params.causal_convolution = False
|
||||||
|
|
||||||
|
model = get_ctc_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
print(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
features = torch.randn(2, 100, 80)
|
||||||
|
feature_lengths = torch.full((2,), 100)
|
||||||
|
model(x=features, x_lens=feature_lengths)
|
||||||
|
|
||||||
|
|
||||||
|
def test_model_streaming():
|
||||||
|
params = get_params()
|
||||||
|
params.vocab_size = 500
|
||||||
|
params.blank_id = 0
|
||||||
|
params.context_size = 2
|
||||||
|
params.unk_id = 2
|
||||||
|
|
||||||
|
params.dynamic_chunk_training = True
|
||||||
|
params.short_chunk_size = 25
|
||||||
|
params.num_left_chunks = 4
|
||||||
|
params.causal_convolution = True
|
||||||
|
|
||||||
|
model = get_ctc_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
print(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
features = torch.randn(2, 100, 80)
|
||||||
|
feature_lengths = torch.full((2,), 100)
|
||||||
|
encoder_out, _ = model.encoder(x=features, x_lens=feature_lengths)
|
||||||
|
model.get_ctc_output(encoder_out)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test_model()
|
||||||
|
test_model_streaming()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1109
egs/librispeech/ASR/conformer_ctc3/train.py
Executable file
1109
egs/librispeech/ASR/conformer_ctc3/train.py
Executable file
File diff suppressed because it is too large
Load Diff
@ -970,10 +970,10 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
train_cuts = librispeech.train_clean_100_cuts()
|
|
||||||
if params.full_libri:
|
if params.full_libri:
|
||||||
train_cuts += librispeech.train_clean_360_cuts()
|
train_cuts = librispeech.train_all_shuf_cuts()
|
||||||
train_cuts += librispeech.train_other_500_cuts()
|
else:
|
||||||
|
train_cuts = librispeech.train_clean_100_cuts()
|
||||||
|
|
||||||
def remove_short_and_long_utt(c: Cut):
|
def remove_short_and_long_utt(c: Cut):
|
||||||
# Keep only utterances with duration between 1 second and 20 seconds
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
1798
egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer2.py
Normal file
1798
egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer2.py
Normal file
File diff suppressed because it is too large
Load Diff
335
egs/librispeech/ASR/conv_emformer_transducer_stateless2/export-for-ncnn.py
Executable file
335
egs/librispeech/ASR/conv_emformer_transducer_stateless2/export-for-ncnn.py
Executable file
@ -0,0 +1,335 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./conv_emformer_transducer_stateless2/export-for-ncnn.py \
|
||||||
|
--exp-dir ./conv_emformer_transducer_stateless2/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 10 \
|
||||||
|
--use-averaged-model=True \
|
||||||
|
--num-encoder-layers 12 \
|
||||||
|
--chunk-length 32 \
|
||||||
|
--cnn-module-kernel 31 \
|
||||||
|
--left-context-length 32 \
|
||||||
|
--right-context-length 8 \
|
||||||
|
--memory-size 32 \
|
||||||
|
|
||||||
|
cd ./conv_emformer_transducer_stateless2/exp
|
||||||
|
pnnx encoder_jit_trace-pnnx.pt
|
||||||
|
pnnx decoder_jit_trace-pnnx.pt
|
||||||
|
pnnx joiner_jit_trace-pnnx.pt
|
||||||
|
|
||||||
|
You can find converted models at
|
||||||
|
https://huggingface.co/csukuangfj/sherpa-ncnn-conv-emformer-transducer-2022-12-04
|
||||||
|
|
||||||
|
See ./streaming-ncnn-decode.py
|
||||||
|
and
|
||||||
|
https://github.com/k2-fsa/sherpa-ncnn
|
||||||
|
for usage.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
|
from train2 import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for averaging.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to save a model after applying torch.jit.script.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def export_encoder_model_jit_trace(
|
||||||
|
encoder_model: torch.nn.Module,
|
||||||
|
encoder_filename: str,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given encoder model with torch.jit.trace()
|
||||||
|
|
||||||
|
Note: The warmup argument is fixed to 1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoder_model:
|
||||||
|
The input encoder model
|
||||||
|
encoder_filename:
|
||||||
|
The filename to save the exported model.
|
||||||
|
"""
|
||||||
|
chunk_length = encoder_model.chunk_length # before subsampling
|
||||||
|
right_context_length = encoder_model.right_context_length # before subsampling
|
||||||
|
pad_length = right_context_length + 2 * 4 + 3
|
||||||
|
s = f"chunk_length: {chunk_length}, "
|
||||||
|
s += f"right_context_length: {right_context_length}\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
T = chunk_length + pad_length
|
||||||
|
|
||||||
|
x = torch.zeros(1, T, 80, dtype=torch.float32)
|
||||||
|
states = encoder_model.init_states()
|
||||||
|
states = encoder_model.init_states()
|
||||||
|
|
||||||
|
traced_model = torch.jit.trace(encoder_model, (x, states))
|
||||||
|
traced_model.save(encoder_filename)
|
||||||
|
logging.info(f"Saved to {encoder_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
def export_decoder_model_jit_trace(
|
||||||
|
decoder_model: torch.nn.Module,
|
||||||
|
decoder_filename: str,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given decoder model with torch.jit.trace()
|
||||||
|
|
||||||
|
Note: The argument need_pad is fixed to False.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
decoder_model:
|
||||||
|
The input decoder model
|
||||||
|
decoder_filename:
|
||||||
|
The filename to save the exported model.
|
||||||
|
"""
|
||||||
|
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
|
||||||
|
need_pad = torch.tensor([False])
|
||||||
|
|
||||||
|
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
|
||||||
|
traced_model.save(decoder_filename)
|
||||||
|
logging.info(f"Saved to {decoder_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
def export_joiner_model_jit_trace(
|
||||||
|
joiner_model: torch.nn.Module,
|
||||||
|
joiner_filename: str,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given joiner model with torch.jit.trace()
|
||||||
|
|
||||||
|
Note: The argument project_input is fixed to True. A user should not
|
||||||
|
project the encoder_out/decoder_out by himself/herself. The exported joiner
|
||||||
|
will do that for the user.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
joiner_model:
|
||||||
|
The input joiner model
|
||||||
|
joiner_filename:
|
||||||
|
The filename to save the exported model.
|
||||||
|
|
||||||
|
"""
|
||||||
|
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
|
||||||
|
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
|
||||||
|
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
||||||
|
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
||||||
|
|
||||||
|
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
|
||||||
|
traced_model.save(joiner_filename)
|
||||||
|
logging.info(f"Saved to {joiner_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
|
logging.info("Using torch.jit.trace()")
|
||||||
|
|
||||||
|
logging.info("Exporting encoder")
|
||||||
|
encoder_filename = params.exp_dir / "encoder_jit_trace-pnnx.pt"
|
||||||
|
export_encoder_model_jit_trace(model.encoder, encoder_filename)
|
||||||
|
|
||||||
|
logging.info("Exporting decoder")
|
||||||
|
decoder_filename = params.exp_dir / "decoder_jit_trace-pnnx.pt"
|
||||||
|
export_decoder_model_jit_trace(model.decoder, decoder_filename)
|
||||||
|
|
||||||
|
logging.info("Exporting joiner")
|
||||||
|
joiner_filename = params.exp_dir / "joiner_jit_trace-pnnx.pt"
|
||||||
|
export_joiner_model_jit_trace(model.joiner, joiner_filename)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
292
egs/librispeech/ASR/conv_emformer_transducer_stateless2/jit_pretrained.py
Executable file
292
egs/librispeech/ASR/conv_emformer_transducer_stateless2/jit_pretrained.py
Executable file
@ -0,0 +1,292 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# flake8: noqa
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
This script loads torchscript models exported by `torch.jit.trace()`
|
||||||
|
and uses them to decode waves.
|
||||||
|
You can use the following command to get the exported models:
|
||||||
|
|
||||||
|
./conv_emformer_transducer_stateless2/export-for-ncnn.py \
|
||||||
|
--exp-dir ./conv_emformer_transducer_stateless2/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 10
|
||||||
|
|
||||||
|
Usage of this script:
|
||||||
|
|
||||||
|
./conv_emformer_transducer_stateless2/jit_pretrained.py \
|
||||||
|
--encoder-model-filename ./conv_emformer_transducer_stateless2/exp/encoder_jit_trace-pnnx.pt \
|
||||||
|
--decoder-model-filename ./conv_emformer_transducer_stateless2/exp/decoder_jit_trace-pnnx.pt \
|
||||||
|
--joiner-model-filename ./conv_emformer_transducer_stateless2/exp/joiner_jit_trace-pnnx.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import kaldifeat
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from typing import Optional, List
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the encoder torchscript model. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoder-model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the decoder torchscript model. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--joiner-model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the joiner torchscript model. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
help="""Path to bpe.model.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_file",
|
||||||
|
type=str,
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="Context size of the decoder model",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert (
|
||||||
|
sample_rate == expected_sample_rate
|
||||||
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
decoder: torch.jit.ScriptModule,
|
||||||
|
joiner: torch.jit.ScriptModule,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
decoder_out: Optional[torch.Tensor] = None,
|
||||||
|
hyp: Optional[List[int]] = None,
|
||||||
|
):
|
||||||
|
assert encoder_out.ndim == 2
|
||||||
|
context_size = 2
|
||||||
|
blank_id = 0
|
||||||
|
|
||||||
|
if decoder_out is None:
|
||||||
|
assert hyp is None, hyp
|
||||||
|
hyp = [blank_id] * context_size
|
||||||
|
decoder_input = torch.tensor(hyp, dtype=torch.int32).unsqueeze(0)
|
||||||
|
# decoder_input.shape (1,, 1 context_size)
|
||||||
|
decoder_out = decoder(decoder_input, torch.tensor([0])).squeeze(1)
|
||||||
|
else:
|
||||||
|
assert decoder_out.ndim == 2
|
||||||
|
assert hyp is not None, hyp
|
||||||
|
|
||||||
|
T = encoder_out.size(0)
|
||||||
|
for i in range(T):
|
||||||
|
cur_encoder_out = encoder_out[i : i + 1]
|
||||||
|
joiner_out = joiner(cur_encoder_out, decoder_out).squeeze(0)
|
||||||
|
y = joiner_out.argmax(dim=0).item()
|
||||||
|
|
||||||
|
if y != blank_id:
|
||||||
|
hyp.append(y)
|
||||||
|
decoder_input = hyp[-context_size:]
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(decoder_input, dtype=torch.int32).unsqueeze(0)
|
||||||
|
decoder_out = decoder(decoder_input, torch.tensor([0])).squeeze(1)
|
||||||
|
|
||||||
|
return hyp, decoder_out
|
||||||
|
|
||||||
|
|
||||||
|
def create_streaming_feature_extractor(sample_rate) -> OnlineFeature:
|
||||||
|
"""Create a CPU streaming feature extractor.
|
||||||
|
|
||||||
|
At present, we assume it returns a fbank feature extractor with
|
||||||
|
fixed options. In the future, we will support passing in the options
|
||||||
|
from outside.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a CPU streaming feature extractor.
|
||||||
|
"""
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = "cpu"
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = sample_rate
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
return OnlineFbank(opts)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
encoder = torch.jit.load(args.encoder_model_filename)
|
||||||
|
decoder = torch.jit.load(args.decoder_model_filename)
|
||||||
|
joiner = torch.jit.load(args.joiner_model_filename)
|
||||||
|
|
||||||
|
encoder.eval()
|
||||||
|
decoder.eval()
|
||||||
|
joiner.eval()
|
||||||
|
|
||||||
|
encoder.to(device)
|
||||||
|
decoder.to(device)
|
||||||
|
joiner.to(device)
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(args.bpe_model)
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
online_fbank = create_streaming_feature_extractor(args.sample_rate)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {args.sound_file}")
|
||||||
|
wave_samples = read_sound_files(
|
||||||
|
filenames=[args.sound_file],
|
||||||
|
expected_sample_rate=args.sample_rate,
|
||||||
|
)[0]
|
||||||
|
logging.info(wave_samples.shape)
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
chunk_length = encoder.chunk_length
|
||||||
|
right_context_length = encoder.right_context_length
|
||||||
|
|
||||||
|
# Assume the subsampling factor is 4
|
||||||
|
pad_length = right_context_length + 2 * 4 + 3
|
||||||
|
T = chunk_length + pad_length
|
||||||
|
|
||||||
|
logging.info(f"chunk_length: {chunk_length}")
|
||||||
|
logging.info(f"right_context_length: {right_context_length}")
|
||||||
|
|
||||||
|
states = encoder.init_states(device)
|
||||||
|
logging.info(f"num layers: {len(states)//4}")
|
||||||
|
|
||||||
|
tail_padding = torch.zeros(int(0.3 * args.sample_rate), dtype=torch.float32)
|
||||||
|
|
||||||
|
wave_samples = torch.cat([wave_samples, tail_padding])
|
||||||
|
|
||||||
|
chunk = int(0.25 * args.sample_rate) # 0.2 second
|
||||||
|
num_processed_frames = 0
|
||||||
|
|
||||||
|
hyp = None
|
||||||
|
decoder_out = None
|
||||||
|
|
||||||
|
start = 0
|
||||||
|
while start < wave_samples.numel():
|
||||||
|
logging.info(f"{start}/{wave_samples.numel()}")
|
||||||
|
end = min(start + chunk, wave_samples.numel())
|
||||||
|
samples = wave_samples[start:end]
|
||||||
|
start += chunk
|
||||||
|
online_fbank.accept_waveform(
|
||||||
|
sampling_rate=args.sample_rate,
|
||||||
|
waveform=samples,
|
||||||
|
)
|
||||||
|
while online_fbank.num_frames_ready - num_processed_frames >= T:
|
||||||
|
frames = []
|
||||||
|
for i in range(T):
|
||||||
|
frames.append(online_fbank.get_frame(num_processed_frames + i))
|
||||||
|
num_processed_frames += chunk_length
|
||||||
|
frames = torch.cat(frames, dim=0).unsqueeze(0)
|
||||||
|
# TODO(fangjun): remove x_lens
|
||||||
|
x_lens = torch.tensor([T])
|
||||||
|
encoder_out, _, states = encoder(frames, x_lens, states)
|
||||||
|
|
||||||
|
hyp, decoder_out = greedy_search(
|
||||||
|
decoder, joiner, encoder_out.squeeze(0), decoder_out, hyp
|
||||||
|
)
|
||||||
|
|
||||||
|
context_size = 2
|
||||||
|
|
||||||
|
logging.info(args.sound_file)
|
||||||
|
logging.info(sp.decode(hyp[context_size:]))
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(4)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
torch._C._jit_set_profiling_executor(False)
|
||||||
|
torch._C._jit_set_profiling_mode(False)
|
||||||
|
torch._C._set_graph_executor_optimize(False)
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
1
egs/librispeech/ASR/conv_emformer_transducer_stateless2/lstmp.py
Symbolic link
1
egs/librispeech/ASR/conv_emformer_transducer_stateless2/lstmp.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../lstm_transducer_stateless2/lstmp.py
|
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless3/scaling_converter.py
|
387
egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming-ncnn-decode.py
Executable file
387
egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming-ncnn-decode.py
Executable file
@ -0,0 +1,387 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py \
|
||||||
|
--tokens ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/tokens.txt \
|
||||||
|
--encoder-param-filename ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/encoder_jit_trace-epoch-30-avg-10-pnnx.ncnn.param \
|
||||||
|
--encoder-bin-filename ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/encoder_jit_trace-epoch-30-avg-10-pnnx.ncnn.bin \
|
||||||
|
--decoder-param-filename ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/decoder_jit_trace-epoch-30-avg-10-pnnx.ncnn.param \
|
||||||
|
--decoder-bin-filename ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/decoder_jit_trace-epoch-30-avg-10-pnnx.ncnn.bin \
|
||||||
|
--joiner-param-filename ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/joiner_jit_trace-epoch-30-avg-10-pnnx.ncnn.param \
|
||||||
|
--joiner-bin-filename ./sherpa-ncnn-conv-emformer-transducer-2022-12-04/joiner_jit_trace-epoch-30-avg-10-pnnx.ncnn.bin \
|
||||||
|
./sherpa-ncnn-conv-emformer-transducer-2022-12-04/test_wavs/1089-134686-0001.wav
|
||||||
|
|
||||||
|
You can find pretrained models at
|
||||||
|
https://huggingface.co/csukuangfj/sherpa-ncnn-conv-emformer-transducer-2022-12-04
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import ncnn
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=str,
|
||||||
|
help="Path to tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-param-filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to encoder.ncnn.param",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-bin-filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to encoder.ncnn.bin",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoder-param-filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to decoder.ncnn.param",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoder-bin-filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to decoder.ncnn.bin",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--joiner-param-filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to joiner.ncnn.param",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--joiner-bin-filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to joiner.ncnn.bin",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_filename",
|
||||||
|
type=str,
|
||||||
|
help="Path to foo.wav",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
class Model:
|
||||||
|
def __init__(self, args):
|
||||||
|
self.init_encoder(args)
|
||||||
|
self.init_decoder(args)
|
||||||
|
self.init_joiner(args)
|
||||||
|
|
||||||
|
self.num_layers = 12
|
||||||
|
self.memory_size = 32
|
||||||
|
self.d_model = 512
|
||||||
|
self.cnn_module_kernel = 31
|
||||||
|
|
||||||
|
self.left_context_length = 32 // 4 # after subsampling
|
||||||
|
self.chunk_length = 32 # before subsampling
|
||||||
|
right_context_length = 8 # before subsampling
|
||||||
|
pad_length = right_context_length + 2 * 4 + 3
|
||||||
|
self.T = self.chunk_length + pad_length
|
||||||
|
print("T", self.T, self.chunk_length)
|
||||||
|
|
||||||
|
def get_init_states(self) -> List[torch.Tensor]:
|
||||||
|
states = []
|
||||||
|
|
||||||
|
for i in range(self.num_layers):
|
||||||
|
s0 = torch.zeros(self.memory_size, self.d_model)
|
||||||
|
s1 = torch.zeros(self.left_context_length, self.d_model)
|
||||||
|
s2 = torch.zeros(self.left_context_length, self.d_model)
|
||||||
|
s3 = torch.zeros(self.d_model, self.cnn_module_kernel - 1)
|
||||||
|
states.extend([s0, s1, s2, s3])
|
||||||
|
|
||||||
|
return states
|
||||||
|
|
||||||
|
def init_encoder(self, args):
|
||||||
|
encoder_net = ncnn.Net()
|
||||||
|
encoder_net.opt.use_packing_layout = False
|
||||||
|
encoder_net.opt.use_fp16_storage = False
|
||||||
|
encoder_param = args.encoder_param_filename
|
||||||
|
encoder_model = args.encoder_bin_filename
|
||||||
|
|
||||||
|
encoder_net.load_param(encoder_param)
|
||||||
|
encoder_net.load_model(encoder_model)
|
||||||
|
|
||||||
|
self.encoder_net = encoder_net
|
||||||
|
|
||||||
|
def init_decoder(self, args):
|
||||||
|
decoder_param = args.decoder_param_filename
|
||||||
|
decoder_model = args.decoder_bin_filename
|
||||||
|
|
||||||
|
decoder_net = ncnn.Net()
|
||||||
|
|
||||||
|
decoder_net.load_param(decoder_param)
|
||||||
|
decoder_net.load_model(decoder_model)
|
||||||
|
|
||||||
|
self.decoder_net = decoder_net
|
||||||
|
|
||||||
|
def init_joiner(self, args):
|
||||||
|
joiner_param = args.joiner_param_filename
|
||||||
|
joiner_model = args.joiner_bin_filename
|
||||||
|
joiner_net = ncnn.Net()
|
||||||
|
joiner_net.load_param(joiner_param)
|
||||||
|
joiner_net.load_model(joiner_model)
|
||||||
|
|
||||||
|
self.joiner_net = joiner_net
|
||||||
|
|
||||||
|
def run_encoder(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
states: List[torch.Tensor],
|
||||||
|
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A tensor of shape (T, C)
|
||||||
|
states:
|
||||||
|
A list of tensors. len(states) == self.num_layers * 4
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing:
|
||||||
|
- encoder_out, a tensor of shape (T, encoder_dim).
|
||||||
|
- next_states, a list of tensors containing the next states
|
||||||
|
"""
|
||||||
|
with self.encoder_net.create_extractor() as ex:
|
||||||
|
ex.set_num_threads(4)
|
||||||
|
ex.input("in0", ncnn.Mat(x.numpy()).clone())
|
||||||
|
|
||||||
|
# layer0 in2-in5
|
||||||
|
# layer1 in6-in9
|
||||||
|
for i in range(self.num_layers):
|
||||||
|
offset = 1 + i * 4
|
||||||
|
name = f"in{offset}"
|
||||||
|
# (32, 1, 512) -> (32, 512)
|
||||||
|
ex.input(name, ncnn.Mat(states[i * 4 + 0].numpy()).clone())
|
||||||
|
|
||||||
|
name = f"in{offset+1}"
|
||||||
|
# (8, 1, 512) -> (8, 512)
|
||||||
|
ex.input(name, ncnn.Mat(states[i * 4 + 1].numpy()).clone())
|
||||||
|
|
||||||
|
name = f"in{offset+2}"
|
||||||
|
# (8, 1, 512) -> (8, 512)
|
||||||
|
ex.input(name, ncnn.Mat(states[i * 4 + 2].numpy()).clone())
|
||||||
|
|
||||||
|
name = f"in{offset+3}"
|
||||||
|
# (1, 512, 2) -> (512, 2)
|
||||||
|
ex.input(name, ncnn.Mat(states[i * 4 + 3].numpy()).clone())
|
||||||
|
|
||||||
|
import pdb
|
||||||
|
|
||||||
|
# pdb.set_trace()
|
||||||
|
ret, ncnn_out0 = ex.extract("out0")
|
||||||
|
# assert ret == 0, ret
|
||||||
|
encoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
|
||||||
|
|
||||||
|
out_states: List[torch.Tensor] = []
|
||||||
|
for i in range(4 * self.num_layers):
|
||||||
|
name = f"out{i+1}"
|
||||||
|
ret, ncnn_out_state = ex.extract(name)
|
||||||
|
assert ret == 0, ret
|
||||||
|
ncnn_out_state = torch.from_numpy(ncnn_out_state.numpy())
|
||||||
|
out_states.append(ncnn_out_state)
|
||||||
|
|
||||||
|
return encoder_out, out_states
|
||||||
|
|
||||||
|
def run_decoder(self, decoder_input):
|
||||||
|
assert decoder_input.dtype == torch.int32
|
||||||
|
|
||||||
|
with self.decoder_net.create_extractor() as ex:
|
||||||
|
ex.set_num_threads(4)
|
||||||
|
ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone())
|
||||||
|
ret, ncnn_out0 = ex.extract("out0")
|
||||||
|
assert ret == 0, ret
|
||||||
|
decoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
|
||||||
|
return decoder_out
|
||||||
|
|
||||||
|
def run_joiner(self, encoder_out, decoder_out):
|
||||||
|
with self.joiner_net.create_extractor() as ex:
|
||||||
|
ex.set_num_threads(4)
|
||||||
|
ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone())
|
||||||
|
ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone())
|
||||||
|
ret, ncnn_out0 = ex.extract("out0")
|
||||||
|
assert ret == 0, ret
|
||||||
|
joiner_out = torch.from_numpy(ncnn_out0.numpy()).clone()
|
||||||
|
return joiner_out
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert (
|
||||||
|
sample_rate == expected_sample_rate
|
||||||
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def create_streaming_feature_extractor() -> OnlineFeature:
|
||||||
|
"""Create a CPU streaming feature extractor.
|
||||||
|
|
||||||
|
At present, we assume it returns a fbank feature extractor with
|
||||||
|
fixed options. In the future, we will support passing in the options
|
||||||
|
from outside.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a CPU streaming feature extractor.
|
||||||
|
"""
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = "cpu"
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
return OnlineFbank(opts)
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
model: Model,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
decoder_out: Optional[torch.Tensor] = None,
|
||||||
|
hyp: Optional[List[int]] = None,
|
||||||
|
):
|
||||||
|
context_size = 2
|
||||||
|
blank_id = 0
|
||||||
|
|
||||||
|
if decoder_out is None:
|
||||||
|
assert hyp is None, hyp
|
||||||
|
hyp = [blank_id] * context_size
|
||||||
|
decoder_input = torch.tensor(hyp, dtype=torch.int32) # (1, context_size)
|
||||||
|
decoder_out = model.run_decoder(decoder_input).squeeze(0)
|
||||||
|
else:
|
||||||
|
assert decoder_out.ndim == 1
|
||||||
|
assert hyp is not None, hyp
|
||||||
|
|
||||||
|
T = encoder_out.size(0)
|
||||||
|
for t in range(T):
|
||||||
|
cur_encoder_out = encoder_out[t]
|
||||||
|
|
||||||
|
joiner_out = model.run_joiner(cur_encoder_out, decoder_out)
|
||||||
|
y = joiner_out.argmax(dim=0).item()
|
||||||
|
if y != blank_id:
|
||||||
|
hyp.append(y)
|
||||||
|
decoder_input = hyp[-context_size:]
|
||||||
|
decoder_input = torch.tensor(decoder_input, dtype=torch.int32)
|
||||||
|
decoder_out = model.run_decoder(decoder_input).squeeze(0)
|
||||||
|
|
||||||
|
return hyp, decoder_out
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
|
||||||
|
model = Model(args)
|
||||||
|
|
||||||
|
sound_file = args.sound_filename
|
||||||
|
|
||||||
|
sample_rate = 16000
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
online_fbank = create_streaming_feature_extractor()
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {sound_file}")
|
||||||
|
wave_samples = read_sound_files(
|
||||||
|
filenames=[sound_file],
|
||||||
|
expected_sample_rate=sample_rate,
|
||||||
|
)[0]
|
||||||
|
logging.info(wave_samples.shape)
|
||||||
|
|
||||||
|
tail_padding = torch.zeros(int(0.3 * sample_rate), dtype=torch.float32)
|
||||||
|
|
||||||
|
wave_samples = torch.cat([wave_samples, tail_padding])
|
||||||
|
|
||||||
|
states = model.get_init_states()
|
||||||
|
|
||||||
|
hyp = None
|
||||||
|
decoder_out = None
|
||||||
|
|
||||||
|
num_processed_frames = 0
|
||||||
|
segment = model.T
|
||||||
|
offset = model.chunk_length
|
||||||
|
|
||||||
|
chunk = int(1 * sample_rate) # 0.2 second
|
||||||
|
|
||||||
|
start = 0
|
||||||
|
while start < wave_samples.numel():
|
||||||
|
end = min(start + chunk, wave_samples.numel())
|
||||||
|
samples = wave_samples[start:end]
|
||||||
|
start += chunk
|
||||||
|
|
||||||
|
online_fbank.accept_waveform(
|
||||||
|
sampling_rate=sample_rate,
|
||||||
|
waveform=samples,
|
||||||
|
)
|
||||||
|
while online_fbank.num_frames_ready - num_processed_frames >= segment:
|
||||||
|
frames = []
|
||||||
|
for i in range(segment):
|
||||||
|
frames.append(online_fbank.get_frame(num_processed_frames + i))
|
||||||
|
num_processed_frames += offset
|
||||||
|
frames = torch.cat(frames, dim=0)
|
||||||
|
encoder_out, states = model.run_encoder(frames, states)
|
||||||
|
hyp, decoder_out = greedy_search(model, encoder_out, decoder_out, hyp)
|
||||||
|
|
||||||
|
symbol_table = k2.SymbolTable.from_file(args.tokens)
|
||||||
|
|
||||||
|
context_size = 2
|
||||||
|
text = ""
|
||||||
|
for i in hyp[context_size:]:
|
||||||
|
text += symbol_table[i]
|
||||||
|
text = text.replace("▁", " ").strip()
|
||||||
|
|
||||||
|
logging.info(sound_file)
|
||||||
|
logging.info(text)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
main()
|
@ -970,10 +970,10 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
train_cuts = librispeech.train_clean_100_cuts()
|
|
||||||
if params.full_libri:
|
if params.full_libri:
|
||||||
train_cuts += librispeech.train_clean_360_cuts()
|
train_cuts = librispeech.train_all_shuf_cuts()
|
||||||
train_cuts += librispeech.train_other_500_cuts()
|
else:
|
||||||
|
train_cuts = librispeech.train_clean_100_cuts()
|
||||||
|
|
||||||
def remove_short_and_long_utt(c: Cut):
|
def remove_short_and_long_utt(c: Cut):
|
||||||
# Keep only utterances with duration between 1 second and 20 seconds
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
1128
egs/librispeech/ASR/conv_emformer_transducer_stateless2/train2.py
Executable file
1128
egs/librispeech/ASR/conv_emformer_transducer_stateless2/train2.py
Executable file
File diff suppressed because it is too large
Load Diff
184
egs/librispeech/ASR/local/compile_hlg_using_openfst.py
Executable file
184
egs/librispeech/ASR/local/compile_hlg_using_openfst.py
Executable file
@ -0,0 +1,184 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script takes as input lang_dir and generates HLG from
|
||||||
|
|
||||||
|
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
|
||||||
|
- L, the lexicon, built from lang_dir/L_disambig.fst
|
||||||
|
|
||||||
|
Caution: We use a lexicon that contains disambiguation symbols
|
||||||
|
|
||||||
|
- G, the LM, built from data/lm/G_3_gram.fst.txt
|
||||||
|
|
||||||
|
The generated HLG is saved in $lang_dir/HLG_fst.pt
|
||||||
|
|
||||||
|
So when to use this script instead of ./local/compile_hlg.py ?
|
||||||
|
If you have a very large G, ./local/compile_hlg.py may throw OOM for
|
||||||
|
determinization. In that case, you can use this script to compile HLG.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifst
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Input and output directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def compile_HLG(lang_dir: str) -> kaldifst.StdVectorFst:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lang_dir:
|
||||||
|
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
An FST representing HLG.
|
||||||
|
"""
|
||||||
|
|
||||||
|
L = kaldifst.StdVectorFst.read(f"{lang_dir}/L_disambig.fst")
|
||||||
|
logging.info("Arc sort L")
|
||||||
|
kaldifst.arcsort(L, sort_type="olabel")
|
||||||
|
logging.info(f"L: #states {L.num_states}")
|
||||||
|
|
||||||
|
G_filename_txt = "data/lm/G_3_gram.fst.txt"
|
||||||
|
G_filename_binary = "data/lm/G_3_gram.fst"
|
||||||
|
if Path(G_filename_binary).is_file():
|
||||||
|
logging.info(f"Loading {G_filename_binary}")
|
||||||
|
G = kaldifst.StdVectorFst.read(G_filename_binary)
|
||||||
|
else:
|
||||||
|
logging.info(f"Loading {G_filename_txt}")
|
||||||
|
with open(G_filename_txt) as f:
|
||||||
|
G = kaldifst.compile(s=f.read(), acceptor=False)
|
||||||
|
logging.info(f"Saving G to {G_filename_binary}")
|
||||||
|
G.write(G_filename_binary)
|
||||||
|
|
||||||
|
logging.info("Arc sort G")
|
||||||
|
kaldifst.arcsort(G, sort_type="ilabel")
|
||||||
|
|
||||||
|
logging.info(f"G: #states {G.num_states}")
|
||||||
|
|
||||||
|
logging.info("Compose L and G and connect LG")
|
||||||
|
LG = kaldifst.compose(L, G, connect=True)
|
||||||
|
logging.info(f"LG: #states {LG.num_states}")
|
||||||
|
|
||||||
|
logging.info("Determinizestar LG")
|
||||||
|
kaldifst.determinize_star(LG)
|
||||||
|
logging.info(f"LG after determinize_star: #states {LG.num_states}")
|
||||||
|
|
||||||
|
logging.info("Minimize encoded LG")
|
||||||
|
kaldifst.minimize_encoded(LG)
|
||||||
|
logging.info(f"LG after minimize_encoded: #states {LG.num_states}")
|
||||||
|
|
||||||
|
logging.info("Converting LG to k2 format")
|
||||||
|
LG = k2.Fsa.from_openfst(LG.to_str(is_acceptor=False), acceptor=False)
|
||||||
|
logging.info(f"LG in k2: #states: {LG.shape[0]}, #arcs: {LG.num_arcs}")
|
||||||
|
|
||||||
|
lexicon = Lexicon(lang_dir)
|
||||||
|
|
||||||
|
first_token_disambig_id = lexicon.token_table["#0"]
|
||||||
|
first_word_disambig_id = lexicon.word_table["#0"]
|
||||||
|
logging.info(f"token id for #0: {first_token_disambig_id}")
|
||||||
|
logging.info(f"word id for #0: {first_word_disambig_id}")
|
||||||
|
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
modified = False
|
||||||
|
logging.info(
|
||||||
|
f"Building ctc_topo. modified: {modified}, max_token_id: {max_token_id}"
|
||||||
|
)
|
||||||
|
|
||||||
|
H = k2.ctc_topo(max_token_id, modified=modified)
|
||||||
|
logging.info(f"H: #states: {H.shape[0]}, #arcs: {H.num_arcs}")
|
||||||
|
|
||||||
|
logging.info("Removing disambiguation symbols on LG")
|
||||||
|
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||||
|
LG.aux_labels[LG.aux_labels >= first_word_disambig_id] = 0
|
||||||
|
|
||||||
|
# See https://github.com/k2-fsa/k2/issues/874
|
||||||
|
# for why we need to set LG.properties to None
|
||||||
|
LG.__dict__["_properties"] = None
|
||||||
|
|
||||||
|
logging.info("Removing epsilons from LG")
|
||||||
|
LG = k2.remove_epsilon(LG)
|
||||||
|
logging.info(
|
||||||
|
f"LG after k2.remove_epsilon: #states: {LG.shape[0]}, #arcs: {LG.num_arcs}"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Connecting LG after removing epsilons")
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
||||||
|
logging.info(f"LG after k2.connect: #states: {LG.shape[0]}, #arcs: {LG.num_arcs}")
|
||||||
|
|
||||||
|
logging.info("Arc sorting LG")
|
||||||
|
LG = k2.arc_sort(LG)
|
||||||
|
|
||||||
|
logging.info("Composing H and LG")
|
||||||
|
|
||||||
|
HLG = k2.compose(H, LG, inner_labels="tokens")
|
||||||
|
logging.info(
|
||||||
|
f"HLG after k2.compose: #states: {HLG.shape[0]}, #arcs: {HLG.num_arcs}"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Connecting HLG")
|
||||||
|
HLG = k2.connect(HLG)
|
||||||
|
logging.info(
|
||||||
|
f"HLG after k2.connect: #states: {HLG.shape[0]}, #arcs: {HLG.num_arcs}"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Arc sorting LG")
|
||||||
|
HLG = k2.arc_sort(HLG)
|
||||||
|
|
||||||
|
return HLG
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
|
filename = lang_dir / "HLG_fst.pt"
|
||||||
|
|
||||||
|
if filename.is_file():
|
||||||
|
logging.info(f"{filename} already exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
HLG = compile_HLG(lang_dir)
|
||||||
|
logging.info(f"Saving HLG to {filename}")
|
||||||
|
torch.save(HLG.as_dict(), filename)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
main()
|
@ -89,6 +89,9 @@ def main():
|
|||||||
bos_id=-1,
|
bos_id=-1,
|
||||||
eos_id=-1,
|
eos_id=-1,
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
print(f"{model_file} exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
||||||
|
|
||||||
|
@ -954,10 +954,10 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
train_cuts = librispeech.train_clean_100_cuts()
|
|
||||||
if params.full_libri:
|
if params.full_libri:
|
||||||
train_cuts += librispeech.train_clean_360_cuts()
|
train_cuts = librispeech.train_all_shuf_cuts()
|
||||||
train_cuts += librispeech.train_other_500_cuts()
|
else:
|
||||||
|
train_cuts = librispeech.train_clean_100_cuts()
|
||||||
|
|
||||||
def remove_short_and_long_utt(c: Cut):
|
def remove_short_and_long_utt(c: Cut):
|
||||||
# Keep only utterances with duration between 1 second and 20 seconds
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
@ -107,8 +107,25 @@ Usage:
|
|||||||
--rnn-lm-avg 1 \
|
--rnn-lm-avg 1 \
|
||||||
--rnn-lm-num-layers 3 \
|
--rnn-lm-num-layers 3 \
|
||||||
--rnn-lm-tie-weights 1
|
--rnn-lm-tie-weights 1
|
||||||
"""
|
|
||||||
|
|
||||||
|
(9) modified beam search with RNNLM shallow fusion + LODR
|
||||||
|
./lstm_transducer_stateless2/decode.py \
|
||||||
|
--epoch 35 \
|
||||||
|
--avg 15 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||||
|
--decoding-method modified_beam_search_rnnlm_LODR \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 4 \
|
||||||
|
--rnn-lm-scale 0.4 \
|
||||||
|
--rnn-lm-exp-dir /path/to/RNNLM/exp \
|
||||||
|
--rnn-lm-epoch 99 \
|
||||||
|
--rnn-lm-avg 1 \
|
||||||
|
--rnn-lm-num-layers 3 \
|
||||||
|
--rnn-lm-tie-weights 1 \
|
||||||
|
--tokens-ngram 2 \
|
||||||
|
--ngram-lm-scale -0.16 \
|
||||||
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
@ -132,6 +149,7 @@ from beam_search import (
|
|||||||
greedy_search_batch,
|
greedy_search_batch,
|
||||||
modified_beam_search,
|
modified_beam_search,
|
||||||
modified_beam_search_ngram_rescoring,
|
modified_beam_search_ngram_rescoring,
|
||||||
|
modified_beam_search_rnnlm_LODR,
|
||||||
modified_beam_search_rnnlm_shallow_fusion,
|
modified_beam_search_rnnlm_shallow_fusion,
|
||||||
)
|
)
|
||||||
from librispeech import LibriSpeech
|
from librispeech import LibriSpeech
|
||||||
@ -235,7 +253,8 @@ def get_parser():
|
|||||||
- fast_beam_search_nbest_oracle
|
- fast_beam_search_nbest_oracle
|
||||||
- fast_beam_search_nbest_LG
|
- fast_beam_search_nbest_LG
|
||||||
- modified_beam_search_ngram_rescoring
|
- modified_beam_search_ngram_rescoring
|
||||||
- modified_beam_search_rnnlm_shallow_fusion # for rnn lm shallow fusion
|
- modified_beam_search_rnnlm_shallow_fusion
|
||||||
|
- modified_beam_search_rnnlm_LODR
|
||||||
If you use fast_beam_search_nbest_LG, you have to specify
|
If you use fast_beam_search_nbest_LG, you have to specify
|
||||||
`--lang-dir`, which should contain `LG.pt`.
|
`--lang-dir`, which should contain `LG.pt`.
|
||||||
""",
|
""",
|
||||||
@ -394,7 +413,8 @@ def get_parser():
|
|||||||
type=int,
|
type=int,
|
||||||
default=3,
|
default=3,
|
||||||
help="""Token Ngram used for rescoring.
|
help="""Token Ngram used for rescoring.
|
||||||
Used only when the decoding method is modified_beam_search_ngram_rescoring""",
|
Used only when the decoding method is
|
||||||
|
modified_beam_search_ngram_rescoring""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -402,7 +422,8 @@ def get_parser():
|
|||||||
type=int,
|
type=int,
|
||||||
default=500,
|
default=500,
|
||||||
help="""ID of the backoff symbol.
|
help="""ID of the backoff symbol.
|
||||||
Used only when the decoding method is modified_beam_search_ngram_rescoring""",
|
Used only when the decoding method is
|
||||||
|
modified_beam_search_ngram_rescoring""",
|
||||||
)
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
@ -572,6 +593,20 @@ def decode_one_batch(
|
|||||||
)
|
)
|
||||||
for hyp in sp.decode(hyp_tokens):
|
for hyp in sp.decode(hyp_tokens):
|
||||||
hyps.append(hyp.split())
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "modified_beam_search_rnnlm_LODR":
|
||||||
|
hyp_tokens = modified_beam_search_rnnlm_LODR(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
sp=sp,
|
||||||
|
LODR_lm=ngram_lm,
|
||||||
|
LODR_lm_scale=ngram_lm_scale,
|
||||||
|
rnnlm=rnnlm,
|
||||||
|
rnnlm_scale=rnnlm_scale,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
else:
|
else:
|
||||||
batch_size = encoder_out.size(0)
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
@ -760,6 +795,7 @@ def main():
|
|||||||
"fast_beam_search_nbest_LG",
|
"fast_beam_search_nbest_LG",
|
||||||
"fast_beam_search_nbest_oracle",
|
"fast_beam_search_nbest_oracle",
|
||||||
"modified_beam_search",
|
"modified_beam_search",
|
||||||
|
"modified_beam_search_rnnlm_LODR",
|
||||||
"modified_beam_search_ngram_rescoring",
|
"modified_beam_search_ngram_rescoring",
|
||||||
"modified_beam_search_rnnlm_shallow_fusion",
|
"modified_beam_search_rnnlm_shallow_fusion",
|
||||||
)
|
)
|
||||||
@ -788,6 +824,9 @@ def main():
|
|||||||
if "rnnlm" in params.decoding_method:
|
if "rnnlm" in params.decoding_method:
|
||||||
params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
|
params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
|
||||||
|
|
||||||
|
if "LODR" in params.decoding_method:
|
||||||
|
params.suffix += "-LODR"
|
||||||
|
|
||||||
if params.use_averaged_model:
|
if params.use_averaged_model:
|
||||||
params.suffix += "-use-averaged-model"
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
@ -901,7 +940,7 @@ def main():
|
|||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
# only load N-gram LM when needed
|
# only load N-gram LM when needed
|
||||||
if "ngram" in params.decoding_method:
|
if "ngram" in params.decoding_method or "LODR" in params.decoding_method:
|
||||||
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
|
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
|
||||||
logging.info(f"lm filename: {lm_filename}")
|
logging.info(f"lm filename: {lm_filename}")
|
||||||
ngram_lm = NgramLm(
|
ngram_lm = NgramLm(
|
||||||
@ -910,6 +949,7 @@ def main():
|
|||||||
is_binary=False,
|
is_binary=False,
|
||||||
)
|
)
|
||||||
logging.info(f"num states: {ngram_lm.lm.num_states}")
|
logging.info(f"num states: {ngram_lm.lm.num_states}")
|
||||||
|
ngram_lm_scale = params.ngram_lm_scale
|
||||||
else:
|
else:
|
||||||
ngram_lm = None
|
ngram_lm = None
|
||||||
ngram_lm_scale = None
|
ngram_lm_scale = None
|
||||||
@ -933,7 +973,6 @@ def main():
|
|||||||
)
|
)
|
||||||
rnn_lm_model.to(device)
|
rnn_lm_model.to(device)
|
||||||
rnn_lm_model.eval()
|
rnn_lm_model.eval()
|
||||||
|
|
||||||
else:
|
else:
|
||||||
rnn_lm_model = None
|
rnn_lm_model = None
|
||||||
rnn_lm_scale = 0.0
|
rnn_lm_scale = 0.0
|
||||||
|
@ -1108,10 +1108,10 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
|
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
|
||||||
|
|
||||||
train_cuts = librispeech.train_clean_100_cuts()
|
|
||||||
if params.full_libri:
|
if params.full_libri:
|
||||||
train_cuts += librispeech.train_clean_360_cuts()
|
train_cuts = librispeech.train_all_shuf_cuts()
|
||||||
train_cuts += librispeech.train_other_500_cuts()
|
else:
|
||||||
|
train_cuts = librispeech.train_clean_100_cuts()
|
||||||
|
|
||||||
train_cuts = filter_short_and_long_utterances(train_cuts, sp)
|
train_cuts = filter_short_and_long_utterances(train_cuts, sp)
|
||||||
|
|
||||||
|
@ -1,5 +1,8 @@
|
|||||||
#!/usr/bin/env bash
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
set -eou pipefail
|
set -eou pipefail
|
||||||
|
|
||||||
nj=15
|
nj=15
|
||||||
@ -41,9 +44,9 @@ dl_dir=$PWD/download
|
|||||||
# It will generate data/lang_bpe_xxx,
|
# It will generate data/lang_bpe_xxx,
|
||||||
# data/lang_bpe_yyy if the array contains xxx, yyy
|
# data/lang_bpe_yyy if the array contains xxx, yyy
|
||||||
vocab_sizes=(
|
vocab_sizes=(
|
||||||
5000
|
# 5000
|
||||||
2000
|
# 2000
|
||||||
1000
|
# 1000
|
||||||
500
|
500
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -120,6 +123,11 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|||||||
touch data/fbank/.librispeech.done
|
touch data/fbank/.librispeech.done
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
cat <(gunzip -c data/fbank/librispeech_cuts_train-clean-100.jsonl.gz) \
|
||||||
|
<(gunzip -c data/fbank/librispeech_cuts_train-clean-360.jsonl.gz) \
|
||||||
|
<(gunzip -c data/fbank/librispeech_cuts_train-other-500.jsonl.gz) | \
|
||||||
|
shuf | gzip -c > data/fbank/librispeech_cuts_train-all-shuf.jsonl.gz
|
||||||
|
|
||||||
if [ ! -e data/fbank/.librispeech-validated.done ]; then
|
if [ ! -e data/fbank/.librispeech-validated.done ]; then
|
||||||
log "Validating data/fbank for LibriSpeech"
|
log "Validating data/fbank for LibriSpeech"
|
||||||
parts=(
|
parts=(
|
||||||
@ -160,6 +168,22 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|||||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||||
./local/prepare_lang.py --lang-dir $lang_dir
|
./local/prepare_lang.py --lang-dir $lang_dir
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L.fst ]; then
|
||||||
|
log "Converting L.pt to L.fst"
|
||||||
|
./shared/convert-k2-to-openfst.py \
|
||||||
|
--olabels aux_labels \
|
||||||
|
$lang_dir/L.pt \
|
||||||
|
$lang_dir/L.fst
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L_disambig.fst ]; then
|
||||||
|
log "Converting L_disambig.pt to L_disambig.fst"
|
||||||
|
./shared/convert-k2-to-openfst.py \
|
||||||
|
--olabels aux_labels \
|
||||||
|
$lang_dir/L_disambig.pt \
|
||||||
|
$lang_dir/disambig_L.fst
|
||||||
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
|
||||||
@ -200,6 +224,22 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|||||||
--lexicon $lang_dir/lexicon.txt \
|
--lexicon $lang_dir/lexicon.txt \
|
||||||
--bpe-model $lang_dir/bpe.model
|
--bpe-model $lang_dir/bpe.model
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L.fst ]; then
|
||||||
|
log "Converting L.pt to L.fst"
|
||||||
|
./shared/convert-k2-to-openfst.py \
|
||||||
|
--olabels aux_labels \
|
||||||
|
$lang_dir/L.pt \
|
||||||
|
$lang_dir/L.fst
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L_disambig.fst ]; then
|
||||||
|
log "Converting L_disambig.pt to L_disambig.fst"
|
||||||
|
./shared/convert-k2-to-openfst.py \
|
||||||
|
--olabels aux_labels \
|
||||||
|
$lang_dir/L_disambig.pt \
|
||||||
|
$lang_dir/L_disambig.fst
|
||||||
|
fi
|
||||||
done
|
done
|
||||||
fi
|
fi
|
||||||
|
|
||||||
@ -262,10 +302,13 @@ fi
|
|||||||
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||||
log "Stage 9: Compile HLG"
|
log "Stage 9: Compile HLG"
|
||||||
./local/compile_hlg.py --lang-dir data/lang_phone
|
./local/compile_hlg.py --lang-dir data/lang_phone
|
||||||
|
./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone
|
||||||
|
|
||||||
for vocab_size in ${vocab_sizes[@]}; do
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
lang_dir=data/lang_bpe_${vocab_size}
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
./local/compile_hlg.py --lang-dir $lang_dir
|
./local/compile_hlg.py --lang-dir $lang_dir
|
||||||
|
|
||||||
|
./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
|
||||||
done
|
done
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
@ -882,10 +882,10 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
train_cuts = librispeech.train_clean_100_cuts()
|
|
||||||
if params.full_libri:
|
if params.full_libri:
|
||||||
train_cuts += librispeech.train_clean_360_cuts()
|
train_cuts = librispeech.train_all_shuf_cuts()
|
||||||
train_cuts += librispeech.train_other_500_cuts()
|
else:
|
||||||
|
train_cuts = librispeech.train_clean_100_cuts()
|
||||||
|
|
||||||
def remove_short_and_long_utt(c: Cut):
|
def remove_short_and_long_utt(c: Cut):
|
||||||
# Keep only utterances with duration between 1 second and 20 seconds
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
@ -873,10 +873,10 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
train_cuts = librispeech.train_clean_100_cuts()
|
|
||||||
if params.full_libri:
|
if params.full_libri:
|
||||||
train_cuts += librispeech.train_clean_360_cuts()
|
train_cuts = librispeech.train_all_shuf_cuts()
|
||||||
train_cuts += librispeech.train_other_500_cuts()
|
else:
|
||||||
|
train_cuts = librispeech.train_clean_100_cuts()
|
||||||
|
|
||||||
def remove_short_and_long_utt(c: Cut):
|
def remove_short_and_long_utt(c: Cut):
|
||||||
# Keep only utterances with duration between 1 second and 20 seconds
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user