message formatting

This commit is contained in:
Guo Liyong 2022-11-26 21:48:17 +08:00
parent 89c3982a07
commit 9cf79cac3f
2 changed files with 45 additions and 41 deletions

View File

@ -42,7 +42,7 @@ class BatchedOptimizer(Optimizer):
super(BatchedOptimizer, self).__init__(params, defaults) super(BatchedOptimizer, self).__init__(params, defaults)
@contextlib.contextmanager @contextlib.contextmanager
def batched_params(self, param_group, group_params_names=None): def batched_params(self, param_group, group_params_names):
""" """
This function returns (technically, yields) a list of This function returns (technically, yields) a list of
of tuples (p, state), where of tuples (p, state), where
@ -85,7 +85,9 @@ class BatchedOptimizer(Optimizer):
batches_names[key].append(named_p) batches_names[key].append(named_p)
batches_names_keys = list(batches_names.keys()) batches_names_keys = list(batches_names.keys())
sorted_idx = sorted(range(len(batches_names)), key=lambda i: batches_names_keys[i]) sorted_idx = sorted(
range(len(batches_names)), key=lambda i: batches_names_keys[i]
)
batches_names = [batches_names[batches_names_keys[idx]] for idx in sorted_idx] batches_names = [batches_names[batches_names_keys[idx]] for idx in sorted_idx]
batches = [batches[batches_names_keys[idx]] for idx in sorted_idx] batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
@ -174,7 +176,7 @@ class ScaledAdam(BatchedOptimizer):
size_update_period=4, size_update_period=4,
clipping_update_period=100, clipping_update_period=100,
parameters_names=None, parameters_names=None,
show_dominant_parameters=False, show_dominant_parameters=True,
): ):
defaults = dict( defaults = dict(
@ -381,42 +383,52 @@ class ScaledAdam(BatchedOptimizer):
return ans return ans
def _show_gradient_dominating_parameter(self, pairs, tot_sumsq): def _show_gradient_dominating_parameter(self, pairs, tot_sumsq):
# ori means calculated with state["param_rms"] all_sumsq_orig = {}
# cur means calculated with "param_rms" of current param.
# bt is short batch
# all_sumsq_ori_rms
all_sumsq_ori = {}
all_sumsq_cur = {}
for (p, state, batch_param_names) in pairs: for (p, state, batch_param_names) in pairs:
# p is a stacked batch parameters. # p is a stacked batch parameters.
grad = p.grad batch_grad = p.grad
if p.numel() == p.shape[0]: # a batch of scalars if p.numel() == p.shape[0]: # a batch of scalars
batch_sumsq_ori = grad**2 # sum() to change shape [1] to [] batch_sumsq_orig = batch_grad**2
batch_sumsq_cur = batch_sumsq_ori # sum() to change shape [1] to []
# Dummpy values used by following `zip` statement. # Dummpy values used by following `zip` statement.
batch_rms_ori = torch.zeros(p.shape[0]) batch_rms_orig = torch.ones(p.shape[0])
batch_rms_cur = batch_rms_ori
else: else:
batch_rms_ori = state["param_rms"] batch_rms_orig = state["param_rms"]
batch_sumsq_ori = ((grad * batch_rms_ori) ** 2).sum(dim=list(range(1, grad.ndim))) batch_sumsq_orig = ((batch_grad * batch_rms_orig) ** 2).sum(
dim=list(range(1, batch_grad.ndim))
)
batch_rms_cur = (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt() for name, sumsq_orig, rms, grad in zip(
batch_sumsq_cur = ((grad * batch_rms_cur) ** 2).sum(dim=list(range(1, grad.ndim))) batch_param_names, batch_sumsq_orig, batch_rms_orig, batch_grad
):
for name, sumsq_ori, sumsq_cur in zip( proportion_orig = sumsq_orig / tot_sumsq
batch_param_names, batch_sumsq_ori, batch_sumsq_cur): all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
proportion_ori = sumsq_ori / tot_sumsq assert torch.isclose(
proportion_cur = sumsq_cur / tot_sumsq sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
torch.tensor(1.0),
all_sumsq_ori[name] = (proportion_ori, sumsq_ori) )
all_sumsq_cur[name] = (proportion_cur, sumsq_cur) sorted_by_proportion = {
k: v
for rms_type, all_sumsq in zip(("ori", "cur"), (all_sumsq_ori, all_sumsq_cur)): for k, v in sorted(
sorted_by_proportion = {k: v for k, v in sorted(all_sumsq.items(), key=lambda item: item[1][0], reverse=True)} all_sumsq_orig.items(), key=lambda item: item[1][0], reverse=True
)
}
dominant_param_name = next(iter(sorted_by_proportion)) dominant_param_name = next(iter(sorted_by_proportion))
dominant_proportion, dominant_sumsq = sorted_by_proportion[dominant_param_name] (
logging.info(f"Dominant sumsq with {rms_type}_rms: {dominant_param_name} {dominant_proportion} {dominant_sumsq} {tot_sumsq}") dominant_proportion,
dominant_sumsq,
dominant_rms,
dominant_grad,
) = sorted_by_proportion[dominant_param_name]
logging.info(
f"Parameter Dominanting tot_sumsq {dominant_param_name}"
f" with proportion {dominant_proportion:.2f},"
f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
f"={dominant_sumsq:.3e},"
f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
f" orig_rms_sq={(dominant_rms**2).item():.3e}"
)
def _step_one_batch( def _step_one_batch(
self, group: dict, p: Tensor, state: dict, clipping_scale: float self, group: dict, p: Tensor, state: dict, clipping_scale: float

View File

@ -368,13 +368,6 @@ def get_parser():
help="Whether to use half precision training.", help="Whether to use half precision training.",
) )
parser.add_argument(
"--show-dominant-parameters",
type=str2bool,
default=False,
help="Whether to show dominant parameters.",
)
add_model_arguments(parser) add_model_arguments(parser)
return parser return parser
@ -998,8 +991,7 @@ def run(rank, world_size, args):
parameters_names = [] parameters_names = []
parameters_names.append([name_param_pair[0] for name_param_pair in model.named_parameters()]) parameters_names.append([name_param_pair[0] for name_param_pair in model.named_parameters()])
optimizer = ScaledAdam(model.parameters(), lr=params.base_lr, optimizer = ScaledAdam(model.parameters(), lr=params.base_lr,
clipping_scale=2.0, parameters_names=parameters_names, clipping_scale=2.0, parameters_names=parameters_names)
show_dominant_parameters=params.show_dominant_parameters)
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)