mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
init zipformer_llm_zh
This commit is contained in:
parent
dc07bba236
commit
9c8c4314de
1
egs/speech_llm/ASR_LLM/zipformer_llm_zh/asr_datamodule.py
Symbolic link
1
egs/speech_llm/ASR_LLM/zipformer_llm_zh/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../whisper_llm_zh/asr_datamodule.py
|
608
egs/speech_llm/ASR_LLM/zipformer_llm_zh/decode.py
Executable file
608
egs/speech_llm/ASR_LLM/zipformer_llm_zh/decode.py
Executable file
@ -0,0 +1,608 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
||||||
|
# Fangjun Kuang,
|
||||||
|
# Wei Kang)
|
||||||
|
# 2024 Yuekai Zhang
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
# Command for decoding using fine-tuned models:
|
||||||
|
|
||||||
|
pip install huggingface_hub['cli']
|
||||||
|
mkdir -p models/whisper models/qwen models/checkpoint
|
||||||
|
huggingface-cli download --local-dir models/checkpoint yuekai/icefall_asr_aishell_whisper_qwen2_1.5B
|
||||||
|
|
||||||
|
# For aishell fine-tuned whisper model
|
||||||
|
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
|
||||||
|
# For multi-hans fine-tuned whisper model
|
||||||
|
# huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt
|
||||||
|
|
||||||
|
huggingface-clie download --local-dir models/qwen Qwen/Qwen2-7B-Instruct
|
||||||
|
|
||||||
|
mkdir -p whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B
|
||||||
|
ln -s models/checkpoint/epoch-10-avg-5.pt whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B/epoch-999.pt
|
||||||
|
|
||||||
|
python3 ./whisper_llm_zh/decode.py \
|
||||||
|
--max-duration 80 \
|
||||||
|
--exp-dir whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B \
|
||||||
|
--speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
|
||||||
|
--llm-path-or-name models/qwen \
|
||||||
|
--epoch 999 --avg 1 \
|
||||||
|
--manifest-dir data/fbank \
|
||||||
|
--use-flash-attn True \
|
||||||
|
--use-lora True --dataset aishell
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import transformers
|
||||||
|
import whisper
|
||||||
|
from asr_datamodule import AsrDataModule
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from model import SPEECH_LLM, EncoderProjector
|
||||||
|
from multi_dataset import MultiDataset
|
||||||
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
||||||
|
from train import DEFAULT_SPEECH_TOKEN
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def average_checkpoints(
|
||||||
|
filenames: List[Path], device: torch.device = torch.device("cpu")
|
||||||
|
) -> dict:
|
||||||
|
"""Average a list of checkpoints.
|
||||||
|
The function is mainly used for deepspeed converted checkpoint averaging, which only include model state_dict.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
Filenames of the checkpoints to be averaged. We assume all
|
||||||
|
checkpoints are saved by :func:`save_checkpoint`.
|
||||||
|
device:
|
||||||
|
Move checkpoints to this device before averaging.
|
||||||
|
Returns:
|
||||||
|
Return a dict (i.e., state_dict) which is the average of all
|
||||||
|
model state dicts contained in the checkpoints.
|
||||||
|
"""
|
||||||
|
n = len(filenames)
|
||||||
|
|
||||||
|
if "model" in torch.load(filenames[0], map_location=device):
|
||||||
|
avg = torch.load(filenames[0], map_location=device)["model"]
|
||||||
|
else:
|
||||||
|
avg = torch.load(filenames[0], map_location=device)
|
||||||
|
|
||||||
|
# Identify shared parameters. Two parameters are said to be shared
|
||||||
|
# if they have the same data_ptr
|
||||||
|
uniqued: Dict[int, str] = dict()
|
||||||
|
|
||||||
|
for k, v in avg.items():
|
||||||
|
v_data_ptr = v.data_ptr()
|
||||||
|
if v_data_ptr in uniqued:
|
||||||
|
continue
|
||||||
|
uniqued[v_data_ptr] = k
|
||||||
|
|
||||||
|
uniqued_names = list(uniqued.values())
|
||||||
|
|
||||||
|
for i in range(1, n):
|
||||||
|
if "model" in torch.load(filenames[i], map_location=device):
|
||||||
|
state_dict = torch.load(filenames[i], map_location=device)["model"]
|
||||||
|
else:
|
||||||
|
state_dict = torch.load(filenames[i], map_location=device)
|
||||||
|
for k in uniqued_names:
|
||||||
|
avg[k] += state_dict[k]
|
||||||
|
|
||||||
|
for k in uniqued_names:
|
||||||
|
if avg[k].is_floating_point():
|
||||||
|
avg[k] /= n
|
||||||
|
else:
|
||||||
|
avg[k] //= n
|
||||||
|
|
||||||
|
return avg
|
||||||
|
|
||||||
|
|
||||||
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="/workspace/asr/Qwen1.5-0.5B-Chat",
|
||||||
|
help="Path or name of the large language model.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--speech-encoder-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="whisper-large-v2",
|
||||||
|
help="Path or name of the speech encoder.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-projector-ds-rate",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="Downsample rate for the encoder projector.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-flash-attn",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to use flash attention.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-lora",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to use lora fine-tuned llm checkpoint.",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=-1,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="beam-search",
|
||||||
|
help="""Decoding method.
|
||||||
|
Supported values are:
|
||||||
|
- beam-search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="beam size for beam search decoding",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="whisper/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--remove-whisper-encoder-input-length-restriction",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="replace whisper encoder forward method to remove input length restriction",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dataset",
|
||||||
|
type=str,
|
||||||
|
default="aishell",
|
||||||
|
choices=["aishell", "speechio", "wenetspeech_test_meeting", "multi_hans_zh"],
|
||||||
|
help="The dataset to decode",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
tokenizer: AutoTokenizer,
|
||||||
|
batch: dict,
|
||||||
|
) -> Dict[str, List[List[int]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: "beam-search"
|
||||||
|
- value: A list of lists. Each sublist is a list of token IDs.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
batch:
|
||||||
|
It is returned by :meth:`torch.utils.data.DataLoader.__iter__`.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "beam-search".
|
||||||
|
"""
|
||||||
|
|
||||||
|
def preprocess(
|
||||||
|
messages,
|
||||||
|
tokenizer: transformers.PreTrainedTokenizer,
|
||||||
|
max_len: int = 128,
|
||||||
|
) -> Dict:
|
||||||
|
"""Preprocesses the data for supervised fine-tuning."""
|
||||||
|
texts = []
|
||||||
|
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{''}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
||||||
|
for i, msg in enumerate(messages):
|
||||||
|
texts.append(
|
||||||
|
tokenizer.apply_chat_template(
|
||||||
|
msg,
|
||||||
|
tokenize=True,
|
||||||
|
add_generation_prompt=False,
|
||||||
|
chat_template=TEMPLATE,
|
||||||
|
padding="longest",
|
||||||
|
max_length=max_len,
|
||||||
|
truncation=True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
max_len_texts = max([len(text) for text in texts])
|
||||||
|
if tokenizer.padding_side == "right":
|
||||||
|
texts = [
|
||||||
|
text + [tokenizer.pad_token_id] * (max_len_texts - len(text))
|
||||||
|
for text in texts
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
texts = [
|
||||||
|
[tokenizer.pad_token_id] * (max_len_texts - len(text)) + text
|
||||||
|
for text in texts
|
||||||
|
]
|
||||||
|
|
||||||
|
input_ids = torch.tensor(texts, dtype=torch.int)
|
||||||
|
|
||||||
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||||
|
|
||||||
|
return input_ids, attention_mask
|
||||||
|
|
||||||
|
dtype = torch.float32
|
||||||
|
device = model.llm.device
|
||||||
|
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device, dtype=dtype).transpose(1, 2)
|
||||||
|
if not params.remove_whisper_encoder_input_length_restriction:
|
||||||
|
T = 3000
|
||||||
|
if feature.shape[2] < T:
|
||||||
|
feature = torch.cat(
|
||||||
|
[
|
||||||
|
feature,
|
||||||
|
torch.zeros(
|
||||||
|
feature.shape[0], feature.shape[1], T - feature.shape[2]
|
||||||
|
).to(device, dtype=dtype),
|
||||||
|
],
|
||||||
|
2,
|
||||||
|
)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_len = supervisions["num_frames"]
|
||||||
|
feature_len = feature_len.to(device, dtype=dtype)
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
[
|
||||||
|
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}请转写音频为文字"},
|
||||||
|
{"role": "assistant", "content": ""},
|
||||||
|
]
|
||||||
|
] * len(feature)
|
||||||
|
|
||||||
|
input_ids, attention_mask = preprocess(messages, tokenizer, max_len=128)
|
||||||
|
|
||||||
|
generated_ids = model.decode(
|
||||||
|
feature, input_ids.to(device, dtype=torch.long), attention_mask.to(device)
|
||||||
|
)
|
||||||
|
hyps = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||||
|
|
||||||
|
return {"beam-search": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
tokenizer: AutoTokenizer,
|
||||||
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
The dataloader.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "beam-search".
|
||||||
|
"""
|
||||||
|
results = []
|
||||||
|
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
texts = [list("".join(text.split())) for text in texts]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
)
|
||||||
|
|
||||||
|
for lm_scale, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_text, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
this_batch.append((cut_id, ref_text, hyp_text))
|
||||||
|
|
||||||
|
results[lm_scale].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
if batch_idx % 100 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results, char_level=True)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out CERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f,
|
||||||
|
f"{test_set_name}-{key}",
|
||||||
|
results,
|
||||||
|
enable_log=True,
|
||||||
|
compute_CER=True,
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tCER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
params.res_dir = params.exp_dir / f"{params.method}"
|
||||||
|
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
setup_logger(
|
||||||
|
params.res_dir
|
||||||
|
/ f"log-decode-{params.method}-beam{params.beam_size}-{params.suffix}"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda")
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
if params.remove_whisper_encoder_input_length_restriction:
|
||||||
|
replace_whisper_encoder_forward()
|
||||||
|
|
||||||
|
whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu")
|
||||||
|
speech_encoder = whisper_model.encoder
|
||||||
|
speech_encoder_dim = whisper_model.dims.n_audio_state
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name)
|
||||||
|
|
||||||
|
if params.use_flash_attn:
|
||||||
|
attn_implementation = "flash_attention_2"
|
||||||
|
# torch_dtype=torch.bfloat16 FIX ME
|
||||||
|
torch_dtype = torch.float16
|
||||||
|
tokenizer.padding_side = "left"
|
||||||
|
|
||||||
|
else:
|
||||||
|
attn_implementation = "eager"
|
||||||
|
torch_dtype = torch.float16
|
||||||
|
tokenizer.padding_side = "right"
|
||||||
|
|
||||||
|
llm = AutoModelForCausalLM.from_pretrained(
|
||||||
|
params.llm_path_or_name,
|
||||||
|
attn_implementation=attn_implementation,
|
||||||
|
torch_dtype=torch_dtype,
|
||||||
|
)
|
||||||
|
if params.use_lora:
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
r=64,
|
||||||
|
lora_alpha=16,
|
||||||
|
target_modules=[
|
||||||
|
"q_proj",
|
||||||
|
"k_proj",
|
||||||
|
"v_proj",
|
||||||
|
"o_proj",
|
||||||
|
"up_proj",
|
||||||
|
"gate_proj",
|
||||||
|
"down_proj",
|
||||||
|
],
|
||||||
|
task_type="CAUSAL_LM",
|
||||||
|
)
|
||||||
|
llm = get_peft_model(llm, lora_config)
|
||||||
|
llm.print_trainable_parameters()
|
||||||
|
|
||||||
|
special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]}
|
||||||
|
tokenizer.add_special_tokens(special_tokens_dict)
|
||||||
|
llm.config.pad_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
|
||||||
|
llm.config.bos_token_id = tokenizer.convert_tokens_to_ids("<|im_start|>")
|
||||||
|
llm.config.eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
||||||
|
|
||||||
|
llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids(
|
||||||
|
DEFAULT_SPEECH_TOKEN
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_projector = EncoderProjector(
|
||||||
|
speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate
|
||||||
|
)
|
||||||
|
|
||||||
|
model = SPEECH_LLM(
|
||||||
|
speech_encoder,
|
||||||
|
llm,
|
||||||
|
encoder_projector,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.avg > 1:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
assert start >= 1, start
|
||||||
|
# deepspeed converted checkpoint only contains model state_dict
|
||||||
|
filenames = [
|
||||||
|
f"{params.exp_dir}/epoch-{epoch}/pytorch_model.bin"
|
||||||
|
for epoch in range(start, params.epoch + 1)
|
||||||
|
]
|
||||||
|
avg_checkpoint = average_checkpoints(filenames)
|
||||||
|
model.load_state_dict(avg_checkpoint, strict=False)
|
||||||
|
|
||||||
|
# filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||||
|
# torch.save(avg_checkpoint, filename)
|
||||||
|
else:
|
||||||
|
checkpoint = torch.load(
|
||||||
|
f"{params.exp_dir}/epoch-{params.epoch}/pytorch_model.bin",
|
||||||
|
map_location="cpu",
|
||||||
|
)
|
||||||
|
model.load_state_dict(checkpoint, strict=False)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
|
||||||
|
data_module = AsrDataModule(args)
|
||||||
|
multi_dataset = MultiDataset(args.manifest_dir)
|
||||||
|
|
||||||
|
def remove_long_utt(c: Cut):
|
||||||
|
# Keep only utterances with duration in 30 seconds
|
||||||
|
#
|
||||||
|
if c.duration > 30.0:
|
||||||
|
logging.warning(
|
||||||
|
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
if params.dataset == "aishell":
|
||||||
|
test_sets_cuts = multi_dataset.aishell_test_cuts()
|
||||||
|
elif params.dataset == "speechio":
|
||||||
|
test_sets_cuts = multi_dataset.speechio_test_cuts()
|
||||||
|
elif params.dataset == "wenetspeech_test_meeting":
|
||||||
|
test_sets_cuts = multi_dataset.wenetspeech_test_meeting_cuts()
|
||||||
|
else:
|
||||||
|
test_sets_cuts = multi_dataset.test_cuts()
|
||||||
|
|
||||||
|
test_sets = test_sets_cuts.keys()
|
||||||
|
test_dls = [
|
||||||
|
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_long_utt))
|
||||||
|
for cuts_name in test_sets
|
||||||
|
]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dls):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
main()
|
1
egs/speech_llm/ASR_LLM/zipformer_llm_zh/ds_config_zero1.json
Symbolic link
1
egs/speech_llm/ASR_LLM/zipformer_llm_zh/ds_config_zero1.json
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../whisper_llm_zh/ds_config_zero1.json
|
285
egs/speech_llm/ASR_LLM/zipformer_llm_zh/model.py
Normal file
285
egs/speech_llm/ASR_LLM/zipformer_llm_zh/model.py
Normal file
@ -0,0 +1,285 @@
|
|||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from transformers.trainer_pt_utils import LabelSmoother
|
||||||
|
|
||||||
|
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderProjector(nn.Module):
|
||||||
|
"""
|
||||||
|
The encoder projector module. It is used to project the encoder outputs to the same dimension as the language model.
|
||||||
|
Modified from https://github.com/X-LANCE/SLAM-LLM/blob/main/src/slam_llm/models/projector.py.
|
||||||
|
Args:
|
||||||
|
encoder_dim (:obj:`int`): The dimension of the encoder outputs.
|
||||||
|
llm_dim (:obj:`int`): The dimension of the language model.
|
||||||
|
downsample_rate (:obj:`int`, `optional`, defaults to 5): The downsample rate to use.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, encoder_dim, llm_dim, downsample_rate=5):
|
||||||
|
super().__init__()
|
||||||
|
self.downsample_rate = downsample_rate
|
||||||
|
self.linear1 = nn.Linear(encoder_dim * self.downsample_rate, llm_dim)
|
||||||
|
self.relu = nn.ReLU()
|
||||||
|
self.linear2 = nn.Linear(llm_dim, llm_dim)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
|
||||||
|
batch_size, seq_len, feat_dim = x.size()
|
||||||
|
num_frames_to_discard = seq_len % self.downsample_rate
|
||||||
|
if num_frames_to_discard > 0:
|
||||||
|
x = x[:, :-num_frames_to_discard, :]
|
||||||
|
seq_len = x.size(1)
|
||||||
|
|
||||||
|
x = x.contiguous()
|
||||||
|
x = x.view(
|
||||||
|
batch_size, seq_len // self.downsample_rate, feat_dim * self.downsample_rate
|
||||||
|
)
|
||||||
|
|
||||||
|
x = self.linear1(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
x = self.linear2(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class SPEECH_LLM(nn.Module):
|
||||||
|
"""
|
||||||
|
The Speech-to-Text model. It consists of an encoder, a language model and an encoder projector.
|
||||||
|
The encoder is used to extract speech features from the input speech signal.
|
||||||
|
The encoder projector is used to project the encoder outputs to the same dimension as the language model.
|
||||||
|
The language model is used to generate the text from the speech features.
|
||||||
|
Args:
|
||||||
|
encoder (:obj:`nn.Module`): The encoder module.
|
||||||
|
llm (:obj:`nn.Module`): The language model module.
|
||||||
|
encoder_projector (:obj:`nn.Module`): The encoder projector module.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder: nn.Module,
|
||||||
|
llm: nn.Module,
|
||||||
|
encoder_projector: nn.Module,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.encoder = encoder
|
||||||
|
self.llm = llm
|
||||||
|
self.encoder_projector = encoder_projector
|
||||||
|
|
||||||
|
def _merge_input_ids_with_speech_features(
|
||||||
|
self, speech_features, inputs_embeds, input_ids, attention_mask, labels=None
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Merge the speech features with the input_ids and attention_mask. This is done by replacing the speech tokens
|
||||||
|
with the speech features and padding the input_ids to the maximum length of the speech features.
|
||||||
|
Modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py#L277.
|
||||||
|
Args:
|
||||||
|
speech_features (:obj:`torch.Tensor`): The speech features to merge with the input_ids.
|
||||||
|
inputs_embeds (:obj:`torch.Tensor`): The embeddings of the input_ids.
|
||||||
|
input_ids (:obj:`torch.Tensor`): The input ids to merge.
|
||||||
|
attention_mask (:obj:`torch.Tensor`): The attention mask to merge.
|
||||||
|
labels (:obj:`torch.Tensor`, `optional`): The labels to merge.
|
||||||
|
Returns:
|
||||||
|
:obj:`Tuple(torch.Tensor)`: The merged embeddings, attention mask, labels and position ids.
|
||||||
|
"""
|
||||||
|
num_speechs, speech_len, embed_dim = speech_features.shape
|
||||||
|
batch_size, sequence_length = input_ids.shape
|
||||||
|
left_padding = not torch.sum(
|
||||||
|
input_ids[:, -1] == torch.tensor(self.llm.config.pad_token_id)
|
||||||
|
)
|
||||||
|
# 1. Create a mask to know where special speech tokens are
|
||||||
|
special_speech_token_mask = input_ids == self.llm.config.default_speech_token_id
|
||||||
|
num_special_speech_tokens = torch.sum(special_speech_token_mask, dim=-1)
|
||||||
|
# Compute the maximum embed dimension
|
||||||
|
max_embed_dim = (
|
||||||
|
num_special_speech_tokens.max() * (speech_len - 1)
|
||||||
|
) + sequence_length
|
||||||
|
batch_indices, non_speech_indices = torch.where(
|
||||||
|
input_ids != self.llm.config.default_speech_token_id
|
||||||
|
)
|
||||||
|
|
||||||
|
# 2. Compute the positions where text should be written
|
||||||
|
# Calculate new positions for text tokens in merged speech-text sequence.
|
||||||
|
# `special_speech_token_mask` identifies speech tokens. Each speech token will be replaced by `nb_text_tokens_per_speechs - 1` text tokens.
|
||||||
|
# `torch.cumsum` computes how each speech token shifts subsequent text token positions.
|
||||||
|
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
||||||
|
new_token_positions = (
|
||||||
|
torch.cumsum((special_speech_token_mask * (speech_len - 1) + 1), -1) - 1
|
||||||
|
)
|
||||||
|
nb_speech_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
||||||
|
if left_padding:
|
||||||
|
new_token_positions += nb_speech_pad[:, None] # offset for left padding
|
||||||
|
text_to_overwrite = new_token_positions[batch_indices, non_speech_indices]
|
||||||
|
|
||||||
|
# 3. Create the full embedding, already padded to the maximum position
|
||||||
|
final_embedding = torch.zeros(
|
||||||
|
batch_size,
|
||||||
|
max_embed_dim,
|
||||||
|
embed_dim,
|
||||||
|
dtype=inputs_embeds.dtype,
|
||||||
|
device=inputs_embeds.device,
|
||||||
|
)
|
||||||
|
final_attention_mask = torch.zeros(
|
||||||
|
batch_size,
|
||||||
|
max_embed_dim,
|
||||||
|
dtype=attention_mask.dtype,
|
||||||
|
device=inputs_embeds.device,
|
||||||
|
)
|
||||||
|
if labels is not None:
|
||||||
|
final_labels = torch.full(
|
||||||
|
(batch_size, max_embed_dim),
|
||||||
|
IGNORE_TOKEN_ID,
|
||||||
|
dtype=input_ids.dtype,
|
||||||
|
device=input_ids.device,
|
||||||
|
)
|
||||||
|
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
||||||
|
# set the corresponding tensors into their correct target device.
|
||||||
|
target_device = inputs_embeds.device
|
||||||
|
batch_indices, non_speech_indices, text_to_overwrite = (
|
||||||
|
batch_indices.to(target_device),
|
||||||
|
non_speech_indices.to(target_device),
|
||||||
|
text_to_overwrite.to(target_device),
|
||||||
|
)
|
||||||
|
attention_mask = attention_mask.to(target_device)
|
||||||
|
|
||||||
|
# 4. Fill the embeddings based on the mask. If we have ["hey" "<speech>", "how", "are"]
|
||||||
|
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the speech features
|
||||||
|
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[
|
||||||
|
batch_indices, non_speech_indices
|
||||||
|
]
|
||||||
|
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[
|
||||||
|
batch_indices, non_speech_indices
|
||||||
|
]
|
||||||
|
if labels is not None:
|
||||||
|
final_labels[batch_indices, text_to_overwrite] = labels[
|
||||||
|
batch_indices, non_speech_indices
|
||||||
|
]
|
||||||
|
|
||||||
|
# 5. Fill the embeddings corresponding to the speechs. Anything that is not `text_positions` needs filling (#29835)
|
||||||
|
speech_to_overwrite = torch.full(
|
||||||
|
(batch_size, max_embed_dim),
|
||||||
|
True,
|
||||||
|
dtype=torch.bool,
|
||||||
|
device=inputs_embeds.device,
|
||||||
|
)
|
||||||
|
speech_to_overwrite[batch_indices, text_to_overwrite] = False
|
||||||
|
speech_to_overwrite &= speech_to_overwrite.cumsum(-1) - 1 >= nb_speech_pad[
|
||||||
|
:, None
|
||||||
|
].to(target_device)
|
||||||
|
|
||||||
|
if speech_to_overwrite.sum() != speech_features.shape[:-1].numel():
|
||||||
|
raise ValueError(
|
||||||
|
f"The input provided to the model are wrong. The number of speech tokens is {torch.sum(special_speech_token_mask)} while"
|
||||||
|
f" the number of speech given to the model is {num_speechs}. This prevents correct indexing and breaks batch generation."
|
||||||
|
)
|
||||||
|
|
||||||
|
final_embedding[speech_to_overwrite] = (
|
||||||
|
speech_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
||||||
|
)
|
||||||
|
final_attention_mask |= speech_to_overwrite
|
||||||
|
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_(
|
||||||
|
(final_attention_mask == 0), 1
|
||||||
|
)
|
||||||
|
|
||||||
|
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
|
||||||
|
batch_indices, pad_indices = torch.where(
|
||||||
|
input_ids == self.llm.config.pad_token_id
|
||||||
|
)
|
||||||
|
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
||||||
|
|
||||||
|
final_embedding[batch_indices, indices_to_mask] = 0
|
||||||
|
|
||||||
|
if labels is None:
|
||||||
|
final_labels = None
|
||||||
|
|
||||||
|
return final_embedding, final_attention_mask, final_labels, position_ids
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
fbank: torch.Tensor = None,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: torch.Tensor = None,
|
||||||
|
labels: torch.LongTensor = None,
|
||||||
|
):
|
||||||
|
encoder_outs = self.encoder(fbank)
|
||||||
|
|
||||||
|
speech_features = self.encoder_projector(encoder_outs)
|
||||||
|
|
||||||
|
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
||||||
|
|
||||||
|
(
|
||||||
|
inputs_embeds,
|
||||||
|
attention_mask,
|
||||||
|
labels,
|
||||||
|
_,
|
||||||
|
) = self._merge_input_ids_with_speech_features(
|
||||||
|
speech_features, inputs_embeds, input_ids, attention_mask, labels
|
||||||
|
)
|
||||||
|
|
||||||
|
model_outputs = self.llm(
|
||||||
|
inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels
|
||||||
|
)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
preds = torch.argmax(model_outputs.logits, -1)
|
||||||
|
acc = compute_accuracy(
|
||||||
|
preds.detach()[:, :-1],
|
||||||
|
labels.detach()[:, 1:],
|
||||||
|
ignore_label=IGNORE_TOKEN_ID,
|
||||||
|
)
|
||||||
|
return model_outputs, acc
|
||||||
|
|
||||||
|
def decode(
|
||||||
|
self,
|
||||||
|
fbank: torch.Tensor = None,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: torch.Tensor = None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
|
||||||
|
encoder_outs = self.encoder(fbank)
|
||||||
|
speech_features = self.encoder_projector(encoder_outs)
|
||||||
|
speech_features = speech_features.to(torch.float16)
|
||||||
|
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
||||||
|
(
|
||||||
|
inputs_embeds,
|
||||||
|
attention_mask,
|
||||||
|
_,
|
||||||
|
position_ids,
|
||||||
|
) = self._merge_input_ids_with_speech_features(
|
||||||
|
speech_features, inputs_embeds, input_ids, attention_mask
|
||||||
|
)
|
||||||
|
generated_ids = self.llm.generate(
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
max_new_tokens=kwargs.get("max_new_tokens", 200),
|
||||||
|
num_beams=kwargs.get("num_beams", 1),
|
||||||
|
do_sample=kwargs.get("do_sample", False),
|
||||||
|
min_length=kwargs.get("min_length", 1),
|
||||||
|
top_p=kwargs.get("top_p", 1.0),
|
||||||
|
repetition_penalty=kwargs.get("repetition_penalty", 1.0),
|
||||||
|
length_penalty=kwargs.get("length_penalty", 1.0),
|
||||||
|
temperature=kwargs.get("temperature", 1.0),
|
||||||
|
bos_token_id=self.llm.config.bos_token_id,
|
||||||
|
eos_token_id=self.llm.config.eos_token_id,
|
||||||
|
pad_token_id=self.llm.config.pad_token_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
return generated_ids
|
||||||
|
|
||||||
|
|
||||||
|
def compute_accuracy(pad_outputs, pad_targets, ignore_label):
|
||||||
|
"""Calculate accuracy.
|
||||||
|
Copied from https://github.com/X-LANCE/SLAM-LLM/blob/main/src/slam_llm/utils/metric.py
|
||||||
|
Args:
|
||||||
|
pad_outputs (LongTensor): Prediction tensors (B, Lmax).
|
||||||
|
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
||||||
|
ignore_label (int): Ignore label id.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
float: Accuracy value (0.0 - 1.0).
|
||||||
|
|
||||||
|
"""
|
||||||
|
mask = pad_targets != ignore_label
|
||||||
|
numerator = torch.sum(
|
||||||
|
pad_outputs.masked_select(mask) == pad_targets.masked_select(mask)
|
||||||
|
)
|
||||||
|
denominator = torch.sum(mask)
|
||||||
|
return numerator.float() / denominator.float()
|
1
egs/speech_llm/ASR_LLM/zipformer_llm_zh/multi_dataset.py
Symbolic link
1
egs/speech_llm/ASR_LLM/zipformer_llm_zh/multi_dataset.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../whisper_llm_zh/multi_dataset.py
|
815
egs/speech_llm/ASR_LLM/zipformer_llm_zh/train.py
Executable file
815
egs/speech_llm/ASR_LLM/zipformer_llm_zh/train.py
Executable file
@ -0,0 +1,815 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||||
|
# 2024 Yuekai Zhang
|
||||||
|
# 2025 Yifan Yang
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
# fine-tuning with whisper and Qwen2
|
||||||
|
pip install huggingface_hub['cli']
|
||||||
|
mkdir -p models/whisper models/qwen
|
||||||
|
|
||||||
|
# For aishell fine-tuned whisper model
|
||||||
|
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
|
||||||
|
# For multi-hans fine-tuned whisper model
|
||||||
|
# huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt
|
||||||
|
|
||||||
|
# huggingface-clie download --local-dir models/qwen Qwen/Qwen2-7B-Instruct
|
||||||
|
huggingface-clie download --local-dir models/qwen Qwen/Qwen2-1.5B-Instruct
|
||||||
|
|
||||||
|
torchrun --nproc_per_node 8 ./whisper_llm_zh/train.py \
|
||||||
|
--max-duration 200 \
|
||||||
|
--exp-dir ./whisper_llm_zh/exp_test \
|
||||||
|
--speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
|
||||||
|
--llm-path-or-name Qwen/Qwen2-1.5B-Instruct \
|
||||||
|
--manifest-dir data/fbank \
|
||||||
|
--deepspeed \
|
||||||
|
--deepspeed_config ./whisper_llm_zh/ds_config_zero1.json \
|
||||||
|
--use-flash-attn True \
|
||||||
|
--use-lora True --unfreeze-llm True
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import warnings
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, Optional, Tuple
|
||||||
|
|
||||||
|
import deepspeed
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import transformers
|
||||||
|
import whisper
|
||||||
|
from asr_datamodule import AsrDataModule
|
||||||
|
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from model import IGNORE_TOKEN_ID, SPEECH_LLM, EncoderProjector
|
||||||
|
from multi_dataset import MultiDataset
|
||||||
|
from peft import LoraConfig, get_peft_model
|
||||||
|
from torch import Tensor
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||||
|
|
||||||
|
from icefall.dist import get_rank, get_world_size
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||||
|
|
||||||
|
DEFAULT_SPEECH_TOKEN = "<speech>"
|
||||||
|
|
||||||
|
|
||||||
|
def set_batch_count(model: nn.Module, batch_count: float) -> None:
|
||||||
|
for module in model.modules():
|
||||||
|
if hasattr(module, "batch_count"):
|
||||||
|
module.batch_count = batch_count
|
||||||
|
|
||||||
|
|
||||||
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="/workspace/asr/Qwen1.5-0.5B-Chat",
|
||||||
|
help="Path or name of the large language model.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--speech-encoder-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="whisper-large-v2",
|
||||||
|
help="Path or name of the speech encoder.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-projector-ds-rate",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="Downsample rate for the encoder projector.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-flash-attn",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to use flash attention.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-lora",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to use lora to fine-tune llm.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--unfreeze-llm",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to unfreeze llm during training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=10,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Resume training from this epoch. It should be positive.
|
||||||
|
If larger than 1, it will load checkpoint from
|
||||||
|
exp-dir/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="whisper_qwen/exp",
|
||||||
|
help="""The experiment dir.
|
||||||
|
It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--pretrained-model-path",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="""The path to the pretrained model if it is not None. Training will
|
||||||
|
start from this model. e.g. ./wenetspeech/ASR/whisper/exp_large_v2/epoch-4-avg-3.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sampler-state-dict-path",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="""The path to the sampler state dict if it is not None. Training will start from this sampler state dict.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--seed",
|
||||||
|
type=int,
|
||||||
|
default=42,
|
||||||
|
help="The seed for random generators intended for reproducibility",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-fp16",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to use half precision training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-aishell",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to only use aishell1 dataset for training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser = deepspeed.add_config_arguments(parser)
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
are saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- frame_shift_ms: The frame shift in milliseconds.
|
||||||
|
- allowed_excess_duration_ratio: The allowed excess duration ratio.
|
||||||
|
- best_train_loss: The best training loss so far.
|
||||||
|
- best_valid_loss: The best validation loss so far.
|
||||||
|
- best_train_epoch: The epoch where the best training loss is achieved.
|
||||||
|
- best_valid_epoch: The epoch where the best validation loss is achieved.
|
||||||
|
- batch_idx_train: The batch index of the current batch.
|
||||||
|
- log_interval: Log training stats every `log_interval` batches.
|
||||||
|
- reset_interval: Reset the stats every `reset_interval` batches.
|
||||||
|
- valid_interval: Run validation every `valid_interval` batches.
|
||||||
|
- env_info: The environment information.
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"allowed_excess_duration_ratio": 0.1,
|
||||||
|
"subsampling_factor": 2,
|
||||||
|
"frame_shift_ms": 10,
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 50,
|
||||||
|
"reset_interval": 200,
|
||||||
|
"valid_interval": 5000,
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
tokenizer: AutoTokenizer,
|
||||||
|
model: nn.Module,
|
||||||
|
batch: dict,
|
||||||
|
is_training: bool,
|
||||||
|
) -> Tuple[Tensor, MetricsTracker]:
|
||||||
|
"""
|
||||||
|
Compute the loss for the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
tokenizer:
|
||||||
|
The tokenizer used to encode the text.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
is_training:
|
||||||
|
Whether it is training.
|
||||||
|
Returns:
|
||||||
|
Return a tuple of two elements. The first element is the loss tensor.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def preprocess(
|
||||||
|
messages,
|
||||||
|
tokenizer: transformers.PreTrainedTokenizer,
|
||||||
|
max_len: int,
|
||||||
|
) -> Dict:
|
||||||
|
"""Preprocesses the data for supervised fine-tuning."""
|
||||||
|
texts = []
|
||||||
|
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
||||||
|
for i, msg in enumerate(messages):
|
||||||
|
texts.append(
|
||||||
|
tokenizer.apply_chat_template(
|
||||||
|
msg,
|
||||||
|
tokenize=True,
|
||||||
|
chat_template=TEMPLATE,
|
||||||
|
add_generation_prompt=False,
|
||||||
|
padding="longest", # FIX me change padding to longest
|
||||||
|
max_length=max_len,
|
||||||
|
truncation=True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# padding texts to the same length, texts is a list of list, padding with tokenzier.pad_token_id
|
||||||
|
max_len_texts = max([len(text) for text in texts])
|
||||||
|
if tokenizer.padding_side == "right":
|
||||||
|
texts = [
|
||||||
|
text + [tokenizer.pad_token_id] * (max_len_texts - len(text))
|
||||||
|
for text in texts
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
texts = [
|
||||||
|
[tokenizer.pad_token_id] * (max_len_texts - len(text)) + text
|
||||||
|
for text in texts
|
||||||
|
]
|
||||||
|
input_ids = torch.tensor(texts, dtype=torch.int)
|
||||||
|
# response = tokenizer.batch_decode(input_ids, skip_special_tokens=True)[0]
|
||||||
|
target_ids = input_ids.clone()
|
||||||
|
target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID
|
||||||
|
# mask all tokens before token_id 151646 with IGNORE_TOKEN_ID
|
||||||
|
# first get the indices of the tokens
|
||||||
|
mask_prompt = True
|
||||||
|
if mask_prompt:
|
||||||
|
mask_indices = torch.where(
|
||||||
|
input_ids == tokenizer.convert_tokens_to_ids("assistant")
|
||||||
|
)
|
||||||
|
for i in range(mask_indices[0].size(0)):
|
||||||
|
row = mask_indices[0][i]
|
||||||
|
col = mask_indices[1][i]
|
||||||
|
# + 2 to skip: 'assistant', '\n'
|
||||||
|
target_ids[row, : col + 2] = IGNORE_TOKEN_ID
|
||||||
|
|
||||||
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||||
|
|
||||||
|
return input_ids, attention_mask, target_ids
|
||||||
|
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
feature = feature.transpose(1, 2) # (N, C, T)
|
||||||
|
|
||||||
|
batch_idx_train = params.batch_idx_train
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
messages = []
|
||||||
|
for i, text in enumerate(texts):
|
||||||
|
text = text.replace(" ", "")
|
||||||
|
message = [
|
||||||
|
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}请转写音频为文字"},
|
||||||
|
{"role": "assistant", "content": text},
|
||||||
|
]
|
||||||
|
messages.append(message)
|
||||||
|
|
||||||
|
input_ids, attention_mask, target_ids = preprocess(messages, tokenizer, max_len=128)
|
||||||
|
|
||||||
|
target_ids = target_ids.type(torch.LongTensor)
|
||||||
|
input_ids = input_ids.type(torch.LongTensor)
|
||||||
|
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
model_outputs, acc = model(
|
||||||
|
fbank=feature,
|
||||||
|
input_ids=input_ids.to(device),
|
||||||
|
attention_mask=attention_mask.to(device),
|
||||||
|
labels=target_ids.to(device),
|
||||||
|
)
|
||||||
|
loss = model_outputs.loss
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
info = MetricsTracker()
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
feature_lens = supervisions["num_frames"]
|
||||||
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
|
|
||||||
|
# Note: We use reduction=sum while computing the loss.
|
||||||
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
info["acc"] = (
|
||||||
|
acc * info["frames"]
|
||||||
|
) # WAR: to avoid normalization by the number of frames
|
||||||
|
|
||||||
|
return loss, info
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
tokenizer: whisper.tokenizer.Tokenizer,
|
||||||
|
model: nn.Module,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> MetricsTracker:
|
||||||
|
"""Run the validation process."""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
tot_loss = tot_loss + loss_info
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
tot_loss.reduce(loss.device)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
if loss_value < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = loss_value
|
||||||
|
|
||||||
|
return tot_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
tokenizer: AutoTokenizer,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
scheduler: torch.optim.lr_scheduler,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler, we call step() every step.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
scaler:
|
||||||
|
The scaler used for mix precision training.
|
||||||
|
model_avg:
|
||||||
|
The stored model averaged from the start of training.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
rank:
|
||||||
|
The rank of the node in DDP training. If no DDP is used, it should
|
||||||
|
be set to 0.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
model.encoder.eval()
|
||||||
|
if not params.unfreeze_llm:
|
||||||
|
model.llm.eval()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
if batch_idx % params.valid_interval == 0:
|
||||||
|
logging.info("Computing validation loss")
|
||||||
|
valid_info = compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
model=model,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
model.encoder.eval()
|
||||||
|
if not params.unfreeze_llm:
|
||||||
|
model.llm.eval()
|
||||||
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||||
|
logging.info(
|
||||||
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||||||
|
)
|
||||||
|
if tb_writer is not None:
|
||||||
|
valid_info.write_summary(
|
||||||
|
tb_writer, "train/valid_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
if batch_idx != 0:
|
||||||
|
model.save_checkpoint(
|
||||||
|
save_dir=params.exp_dir,
|
||||||
|
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||||||
|
client_state={},
|
||||||
|
exclude_frozen_parameters=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
convert_zero_checkpoint_to_fp32_state_dict(
|
||||||
|
params.exp_dir,
|
||||||
|
f"{params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}.pt",
|
||||||
|
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||||||
|
exclude_frozen_parameters=True,
|
||||||
|
)
|
||||||
|
# save sampler state dict into checkpoint
|
||||||
|
sampler_state_dict = train_dl.sampler.state_dict()
|
||||||
|
torch.save(
|
||||||
|
sampler_state_dict,
|
||||||
|
f"{params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}-sampler.pt",
|
||||||
|
)
|
||||||
|
os.system(
|
||||||
|
f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}"
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
# summary stats
|
||||||
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
|
||||||
|
# deepspeed's backward() is different from torch's backward()
|
||||||
|
# in that it does not accept a loss tensor as input.
|
||||||
|
# It computes the loss internally.
|
||||||
|
model.backward(loss)
|
||||||
|
model.step()
|
||||||
|
|
||||||
|
except: # noqa
|
||||||
|
display_and_save_batch(batch, params=params)
|
||||||
|
raise
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
try:
|
||||||
|
cur_lr = scheduler.get_last_lr()[0]
|
||||||
|
except: # noqa
|
||||||
|
cur_lr = 0.0
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, "
|
||||||
|
f"batch {batch_idx}, loss[{loss_info}], "
|
||||||
|
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||||
|
f"lr: {cur_lr:.2e}, "
|
||||||
|
)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_info.write_summary(
|
||||||
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
params.train_loss = loss_value
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
fix_random_seed(params.seed)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
|
||||||
|
replace_whisper_encoder_forward()
|
||||||
|
whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu")
|
||||||
|
speech_encoder = whisper_model.encoder
|
||||||
|
speech_encoder_dim = whisper_model.dims.n_audio_state
|
||||||
|
for name, param in speech_encoder.named_parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name)
|
||||||
|
if params.use_flash_attn:
|
||||||
|
attn_implementation = "flash_attention_2"
|
||||||
|
# torch_dtype=torch.bfloat16 FIX ME
|
||||||
|
torch_dtype = torch.float16
|
||||||
|
tokenizer.padding_side = "left"
|
||||||
|
|
||||||
|
else:
|
||||||
|
attn_implementation = "eager"
|
||||||
|
torch_dtype = torch.float16
|
||||||
|
tokenizer.padding_side = "right"
|
||||||
|
|
||||||
|
llm = AutoModelForCausalLM.from_pretrained(
|
||||||
|
params.llm_path_or_name,
|
||||||
|
attn_implementation=attn_implementation,
|
||||||
|
torch_dtype=torch_dtype,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not params.unfreeze_llm:
|
||||||
|
for name, param in llm.named_parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
else:
|
||||||
|
if params.use_lora:
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
r=64,
|
||||||
|
lora_alpha=16,
|
||||||
|
target_modules=[
|
||||||
|
"q_proj",
|
||||||
|
"k_proj",
|
||||||
|
"v_proj",
|
||||||
|
"o_proj",
|
||||||
|
"up_proj",
|
||||||
|
"gate_proj",
|
||||||
|
"down_proj",
|
||||||
|
],
|
||||||
|
lora_dropout=0.05,
|
||||||
|
task_type="CAUSAL_LM",
|
||||||
|
)
|
||||||
|
llm = get_peft_model(llm, lora_config)
|
||||||
|
llm.print_trainable_parameters()
|
||||||
|
|
||||||
|
special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]}
|
||||||
|
tokenizer.add_special_tokens(special_tokens_dict)
|
||||||
|
llm.config.pad_token_id = tokenizer.pad_token_id
|
||||||
|
llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids(
|
||||||
|
DEFAULT_SPEECH_TOKEN
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_projector = EncoderProjector(
|
||||||
|
speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate
|
||||||
|
)
|
||||||
|
|
||||||
|
model = SPEECH_LLM(
|
||||||
|
speech_encoder,
|
||||||
|
llm,
|
||||||
|
encoder_projector,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.pretrained_model_path:
|
||||||
|
checkpoint = torch.load(params.pretrained_model_path, map_location="cpu")
|
||||||
|
missing_keys, unexpected_keys = model.load_state_dict(checkpoint, strict=False)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
logging.info("Trainable parameters (excluding model.eval modules):")
|
||||||
|
for name, param in model.named_parameters():
|
||||||
|
if param.requires_grad:
|
||||||
|
logging.info(f"{name}: {param.shape}")
|
||||||
|
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
else:
|
||||||
|
device = torch.device("cpu")
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
assert params.deepspeed
|
||||||
|
logging.info("Using DeepSpeed")
|
||||||
|
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||||
|
args=params, model=model, model_parameters=model.parameters()
|
||||||
|
)
|
||||||
|
|
||||||
|
data_module = AsrDataModule(args)
|
||||||
|
multi_dataset = MultiDataset(args.manifest_dir)
|
||||||
|
|
||||||
|
def remove_short_and_long_utt(c: Cut):
|
||||||
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
#
|
||||||
|
# Caution: There is a reason to select 20.0 here. Please see
|
||||||
|
# ../local/display_manifest_statistics.py
|
||||||
|
#
|
||||||
|
# You should use ../local/display_manifest_statistics.py to get
|
||||||
|
# an utterance duration distribution for your dataset to select
|
||||||
|
# the threshold
|
||||||
|
if c.duration < 1.0 or c.duration > 20.0:
|
||||||
|
# logging.warning(
|
||||||
|
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||||
|
# )
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
if params.use_aishell:
|
||||||
|
train_cuts = multi_dataset.aishell_train_cuts()
|
||||||
|
else:
|
||||||
|
train_cuts = multi_dataset.train_cuts()
|
||||||
|
|
||||||
|
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||||
|
|
||||||
|
sampler_state_dict = None
|
||||||
|
if params.sampler_state_dict_path:
|
||||||
|
sampler_state_dict = torch.load(params.sampler_state_dict_path)
|
||||||
|
sampler_state_dict["max_duration"] = params.max_duration
|
||||||
|
|
||||||
|
train_dl = data_module.train_dataloaders(
|
||||||
|
train_cuts, sampler_state_dict=sampler_state_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.use_aishell:
|
||||||
|
valid_cuts = multi_dataset.aishell_dev_cuts()
|
||||||
|
else:
|
||||||
|
valid_cuts = multi_dataset.dev_cuts()
|
||||||
|
valid_dl = data_module.valid_dataloaders(valid_cuts)
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
logging.info(f"start training from epoch {params.start_epoch}")
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||||
|
|
||||||
|
fix_random_seed(params.seed + epoch - 1)
|
||||||
|
train_dl.sampler.set_epoch(epoch - 1)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
model.save_checkpoint(
|
||||||
|
save_dir=params.exp_dir,
|
||||||
|
tag=f"zero-epoch-{params.cur_epoch}",
|
||||||
|
client_state={},
|
||||||
|
exclude_frozen_parameters=True,
|
||||||
|
)
|
||||||
|
if rank == 0:
|
||||||
|
convert_zero_checkpoint_to_fp32_state_dict(
|
||||||
|
params.exp_dir,
|
||||||
|
f"{params.exp_dir}/epoch-{params.cur_epoch}",
|
||||||
|
tag=f"zero-epoch-{params.cur_epoch}",
|
||||||
|
exclude_frozen_parameters=True,
|
||||||
|
)
|
||||||
|
# save sampler state dict into checkpoint
|
||||||
|
sampler_state_dict = train_dl.sampler.state_dict()
|
||||||
|
torch.save(
|
||||||
|
sampler_state_dict,
|
||||||
|
f"{params.exp_dir}/epoch-{params.cur_epoch}-sampler.pt",
|
||||||
|
)
|
||||||
|
|
||||||
|
os.system(f"rm -rf {params.exp_dir}/zero-epoch-{params.cur_epoch}")
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
def display_and_save_batch(
|
||||||
|
batch: dict,
|
||||||
|
params: AttributeDict,
|
||||||
|
) -> None:
|
||||||
|
"""Display the batch statistics and save the batch into disk.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
"""
|
||||||
|
from lhotse.utils import uuid4
|
||||||
|
|
||||||
|
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
||||||
|
logging.info(f"Saving batch to {filename}")
|
||||||
|
torch.save(batch, filename)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
features = batch["inputs"]
|
||||||
|
|
||||||
|
logging.info(f"features shape: {features.shape}")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
world_size = get_world_size()
|
||||||
|
rank = get_rank()
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
warnings.filterwarnings("ignore", category=FutureWarning)
|
||||||
|
run(rank=rank, world_size=world_size, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user