mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 10:16:14 +00:00
add inference script with a pretrained model
This commit is contained in:
parent
1921692d52
commit
9c4db1b3fb
@ -1,5 +1,5 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
||||
# Copyright 2024 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -21,7 +21,6 @@ You can generate the checkpoint with the following command:
|
||||
Note: This is a example for librispeech dataset, if you are using different
|
||||
dataset, you should change the argument values according to your dataset.
|
||||
|
||||
- For non-streaming model:
|
||||
|
||||
./zipformer/export.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
@ -29,75 +28,10 @@ dataset, you should change the argument values according to your dataset.
|
||||
--epoch 30 \
|
||||
--avg 9
|
||||
|
||||
- For streaming model:
|
||||
|
||||
./zipformer/export.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--causal 1 \
|
||||
--tokens data/lang_bpe_500/tokens.txt \
|
||||
--epoch 30 \
|
||||
--avg 9
|
||||
|
||||
Usage of this script:
|
||||
|
||||
- For non-streaming model:
|
||||
|
||||
(1) greedy search
|
||||
./zipformer/pretrained.py \
|
||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||
--tokens data/lang_bpe_500/tokens.txt \
|
||||
--method greedy_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(2) modified beam search
|
||||
./zipformer/pretrained.py \
|
||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||
--method modified_beam_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(3) fast beam search
|
||||
./zipformer/pretrained.py \
|
||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||
--method fast_beam_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
- For streaming model:
|
||||
|
||||
(1) greedy search
|
||||
./zipformer/pretrained.py \
|
||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||
--causal 1 \
|
||||
--chunk-size 16 \
|
||||
--left-context-frames 128 \
|
||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||
--method greedy_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(2) modified beam search
|
||||
./zipformer/pretrained.py \
|
||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||
--causal 1 \
|
||||
--chunk-size 16 \
|
||||
--left-context-frames 128 \
|
||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||
--method modified_beam_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(3) fast beam search
|
||||
./zipformer/pretrained.py \
|
||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||
--causal 1 \
|
||||
--chunk-size 16 \
|
||||
--left-context-frames 128 \
|
||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||
--method fast_beam_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
@ -109,6 +43,7 @@ Note: ./zipformer/exp/pretrained.pt is generated by ./zipformer/export.py
|
||||
|
||||
|
||||
import argparse
|
||||
import csv
|
||||
import logging
|
||||
import math
|
||||
from typing import List
|
||||
@ -117,11 +52,6 @@ import k2
|
||||
import kaldifeat
|
||||
import torch
|
||||
import torchaudio
|
||||
from beam_search import (
|
||||
fast_beam_search_one_best,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from export import num_tokens
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
@ -144,20 +74,9 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
"--label-dict",
|
||||
type=str,
|
||||
help="""Path to tokens.txt.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
help="""class_labels_indices.csv.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -177,55 +96,6 @@ def get_parser():
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame. Used only when
|
||||
--method is greedy_search.
|
||||
""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
@ -263,12 +133,6 @@ def main():
|
||||
|
||||
params.update(vars(args))
|
||||
|
||||
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||
|
||||
params.blank_id = token_table["<blk>"]
|
||||
params.unk_id = token_table["<unk>"]
|
||||
params.vocab_size = num_tokens(token_table) + 1
|
||||
|
||||
logging.info(f"{params}")
|
||||
|
||||
device = torch.device("cpu")
|
||||
@ -277,14 +141,6 @@ def main():
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
if params.causal:
|
||||
assert (
|
||||
"," not in params.chunk_size
|
||||
), "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
|
||||
logging.info("Creating model")
|
||||
model = get_model(params)
|
||||
|
||||
@ -296,6 +152,15 @@ def main():
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
# get the label dictionary
|
||||
label_dict = {}
|
||||
with open(params.label_dict, "r") as f:
|
||||
reader = csv.reader(f, delimiter=",")
|
||||
for i, row in enumerate(reader):
|
||||
if i == 0:
|
||||
continue
|
||||
label_dict[int(row[0])] = row[2]
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
@ -320,57 +185,15 @@ def main():
|
||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||
|
||||
# model forward
|
||||
# model forward and predict the audio events
|
||||
encoder_out, encoder_out_lens = model.forward_encoder(features, feature_lengths)
|
||||
logits = model.forward_audio_tagging(encoder_out, encoder_out_lens)
|
||||
|
||||
hyps = []
|
||||
msg = f"Using {params.method}"
|
||||
logging.info(msg)
|
||||
|
||||
def token_ids_to_words(token_ids: List[int]) -> str:
|
||||
text = ""
|
||||
for i in token_ids:
|
||||
text += token_table[i]
|
||||
return text.replace("▁", " ").strip()
|
||||
|
||||
if params.method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append(token_ids_to_words(hyp))
|
||||
elif params.method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append(token_ids_to_words(hyp))
|
||||
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append(token_ids_to_words(hyp))
|
||||
else:
|
||||
raise ValueError(f"Unsupported method: {params.method}")
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
s += f"{filename}:\n{hyp}\n\n"
|
||||
logging.info(s)
|
||||
results = []
|
||||
for i, logit in enumerate(logits):
|
||||
topk_prob, topk_index = logit.sigmoid().topk(5)
|
||||
topk_labels = [label_dict[index.item()] for index in topk_index]
|
||||
print(f"Top 5 predicted labels of the {i} th audio are {topk_labels} with probability of {topk_prob.tolist()}")
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user