add random combiner for training deeper model

This commit is contained in:
yaozengwei 2022-07-18 11:50:35 +08:00
parent 8bd700cff2
commit 9bb0c7988f
4 changed files with 315 additions and 18 deletions

View File

@ -116,7 +116,7 @@ from beam_search import (
greedy_search_batch,
modified_beam_search,
)
from train import get_params, get_transducer_model
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
@ -302,6 +302,8 @@ def get_parser():
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
add_model_arguments(parser)
return parser
@ -354,13 +356,6 @@ def decode_one_batch(
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
# feature_lens += params.left_context
# feature = torch.nn.functional.pad(
# feature,
# pad=(0, 0, 0, params.left_context),
# value=LOG_EPS,
# )
encoder_out, encoder_out_lens = model.encoder(
x=feature, x_lens=feature_lens
)

View File

@ -15,7 +15,7 @@
# limitations under the License.
import copy
from typing import Tuple
from typing import List, Optional, Tuple
import torch
from encoder_interface import EncoderInterface
@ -47,6 +47,9 @@ class RNN(EncoderInterface):
Dropout rate (default=0.1).
layer_dropout (float):
Dropout value for model-level warmup (default=0.075).
aux_layer_period (int):
Peroid of auxiliary layers used for randomly combined during training.
If not larger than 0, will not use the random combiner.
"""
def __init__(
@ -58,6 +61,7 @@ class RNN(EncoderInterface):
num_encoder_layers: int = 12,
dropout: float = 0.1,
layer_dropout: float = 0.075,
aux_layer_period: int = 3,
) -> None:
super(RNN, self).__init__()
@ -79,7 +83,19 @@ class RNN(EncoderInterface):
encoder_layer = RNNEncoderLayer(
d_model, dim_feedforward, dropout, layer_dropout
)
self.encoder = RNNEncoder(encoder_layer, num_encoder_layers)
self.encoder = RNNEncoder(
encoder_layer,
num_encoder_layers,
aux_layers=list(
range(
num_encoder_layers // 3,
num_encoder_layers - 1,
aux_layer_period,
)
)
if aux_layer_period > 0
else None,
)
def forward(
self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0
@ -306,13 +322,31 @@ class RNNEncoder(nn.Module):
The number of sub-encoder-layers in the encoder (required).
"""
def __init__(self, encoder_layer: nn.Module, num_layers: int) -> None:
def __init__(
self,
encoder_layer: nn.Module,
num_layers: int,
aux_layers: Optional[List[int]] = None,
) -> None:
super(RNNEncoder, self).__init__()
self.layers = nn.ModuleList(
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
)
self.num_layers = num_layers
self.use_random_combiner = False
if aux_layers is not None:
assert len(set(aux_layers)) == len(aux_layers)
assert num_layers - 1 not in aux_layers
self.use_random_combiner = True
self.aux_layers = aux_layers + [num_layers - 1]
self.combiner = RandomCombine(
num_inputs=len(self.aux_layers),
final_weight=0.5,
pure_prob=0.333,
stddev=2.0,
)
def forward(self, src: torch.Tensor, warmup: float = 1.0) -> torch.Tensor:
"""
Pass the input through the encoder layer in turn.
@ -328,8 +362,16 @@ class RNNEncoder(nn.Module):
"""
output = src
for layer_index, mod in enumerate(self.layers):
outputs = []
for i, mod in enumerate(self.layers):
output = mod(output, warmup=warmup)
if self.use_random_combiner:
if i in self.aux_layers:
outputs.append(output)
if self.use_random_combiner:
output = self.combiner(outputs)
return output
@ -459,6 +501,244 @@ class Conv2dSubsampling(nn.Module):
return x
class RandomCombine(nn.Module):
"""
This module combines a list of Tensors, all with the same shape, to
produce a single output of that same shape which, in training time,
is a random combination of all the inputs; but which in test time
will be just the last input.
The idea is that the list of Tensors will be a list of outputs of multiple
conformer layers. This has a similar effect as iterated loss. (See:
DEJA-VU: DOUBLE FEATURE PRESENTATION AND ITERATED LOSS IN DEEP TRANSFORMER
NETWORKS).
"""
def __init__(
self,
num_inputs: int,
final_weight: float = 0.5,
pure_prob: float = 0.5,
stddev: float = 2.0,
) -> None:
"""
Args:
num_inputs:
The number of tensor inputs, which equals the number of layers'
outputs that are fed into this module. E.g. in an 18-layer neural
net if we output layers 16, 12, 18, num_inputs would be 3.
final_weight:
The amount of weight or probability we assign to the
final layer when randomly choosing layers or when choosing
continuous layer weights.
pure_prob:
The probability, on each frame, with which we choose
only a single layer to output (rather than an interpolation)
stddev:
A standard deviation that we add to log-probs for computing
randomized weights.
The method of choosing which layers, or combinations of layers, to use,
is conceptually as follows::
With probability `pure_prob`::
With probability `final_weight`: choose final layer,
Else: choose random non-final layer.
Else::
Choose initial log-weights that correspond to assigning
weight `final_weight` to the final layer and equal
weights to other layers; then add Gaussian noise
with variance `stddev` to these log-weights, and normalize
to weights (note: the average weight assigned to the
final layer here will not be `final_weight` if stddev>0).
"""
super().__init__()
assert 0 <= pure_prob <= 1, pure_prob
assert 0 < final_weight < 1, final_weight
assert num_inputs >= 1
self.num_inputs = num_inputs
self.final_weight = final_weight
self.pure_prob = pure_prob
self.stddev = stddev
self.final_log_weight = (
torch.tensor(
(final_weight / (1 - final_weight)) * (self.num_inputs - 1)
)
.log()
.item()
)
def forward(self, inputs: List[torch.Tensor]) -> torch.Tensor:
"""Forward function.
Args:
inputs:
A list of Tensor, e.g. from various layers of a transformer.
All must be the same shape, of (*, num_channels)
Returns:
A Tensor of shape (*, num_channels). In test mode
this is just the final input.
"""
num_inputs = self.num_inputs
assert len(inputs) == num_inputs
if not self.training or torch.jit.is_scripting():
return inputs[-1]
# Shape of weights: (*, num_inputs)
num_channels = inputs[0].shape[-1]
num_frames = inputs[0].numel() // num_channels
ndim = inputs[0].ndim
# stacked_inputs: (num_frames, num_channels, num_inputs)
stacked_inputs = torch.stack(inputs, dim=ndim).reshape(
(num_frames, num_channels, num_inputs)
)
# weights: (num_frames, num_inputs)
weights = self._get_random_weights(
inputs[0].dtype, inputs[0].device, num_frames
)
weights = weights.reshape(num_frames, num_inputs, 1)
# ans: (num_frames, num_channels, 1)
ans = torch.matmul(stacked_inputs, weights)
# ans: (*, num_channels)
ans = ans.reshape(inputs[0].shape[:-1] + (num_channels,))
# The following if causes errors for torch script in torch 1.6.0
# if __name__ == "__main__":
# # for testing only...
# print("Weights = ", weights.reshape(num_frames, num_inputs))
return ans
def _get_random_weights(
self, dtype: torch.dtype, device: torch.device, num_frames: int
) -> torch.Tensor:
"""Return a tensor of random weights, of shape
`(num_frames, self.num_inputs)`,
Args:
dtype:
The data-type desired for the answer, e.g. float, double.
device:
The device needed for the answer.
num_frames:
The number of sets of weights desired
Returns:
A tensor of shape (num_frames, self.num_inputs), such that
`ans.sum(dim=1)` is all ones.
"""
pure_prob = self.pure_prob
if pure_prob == 0.0:
return self._get_random_mixed_weights(dtype, device, num_frames)
elif pure_prob == 1.0:
return self._get_random_pure_weights(dtype, device, num_frames)
else:
p = self._get_random_pure_weights(dtype, device, num_frames)
m = self._get_random_mixed_weights(dtype, device, num_frames)
return torch.where(
torch.rand(num_frames, 1, device=device) < self.pure_prob, p, m
)
def _get_random_pure_weights(
self, dtype: torch.dtype, device: torch.device, num_frames: int
):
"""Return a tensor of random one-hot weights, of shape
`(num_frames, self.num_inputs)`,
Args:
dtype:
The data-type desired for the answer, e.g. float, double.
device:
The device needed for the answer.
num_frames:
The number of sets of weights desired.
Returns:
A one-hot tensor of shape `(num_frames, self.num_inputs)`, with
exactly one weight equal to 1.0 on each frame.
"""
final_prob = self.final_weight
# final contains self.num_inputs - 1 in all elements
final = torch.full((num_frames,), self.num_inputs - 1, device=device)
# nonfinal contains random integers in [0..num_inputs - 2], these are for non-final weights. # noqa
nonfinal = torch.randint(
self.num_inputs - 1, (num_frames,), device=device
)
indexes = torch.where(
torch.rand(num_frames, device=device) < final_prob, final, nonfinal
)
ans = torch.nn.functional.one_hot(
indexes, num_classes=self.num_inputs
).to(dtype=dtype)
return ans
def _get_random_mixed_weights(
self, dtype: torch.dtype, device: torch.device, num_frames: int
):
"""Return a tensor of random one-hot weights, of shape
`(num_frames, self.num_inputs)`,
Args:
dtype:
The data-type desired for the answer, e.g. float, double.
device:
The device needed for the answer.
num_frames:
The number of sets of weights desired.
Returns:
A tensor of shape (num_frames, self.num_inputs), which elements
in [0..1] that sum to one over the second axis, i.e.
`ans.sum(dim=1)` is all ones.
"""
logprobs = (
torch.randn(num_frames, self.num_inputs, dtype=dtype, device=device)
* self.stddev
)
logprobs[:, -1] += self.final_log_weight
return logprobs.softmax(dim=1)
def _test_random_combine(final_weight: float, pure_prob: float, stddev: float):
print(
f"_test_random_combine: final_weight={final_weight}, pure_prob={pure_prob}, stddev={stddev}" # noqa
)
num_inputs = 3
num_channels = 50
m = RandomCombine(
num_inputs=num_inputs,
final_weight=final_weight,
pure_prob=pure_prob,
stddev=stddev,
)
x = [torch.ones(3, 4, num_channels) for _ in range(num_inputs)]
y = m(x)
assert y.shape == x[0].shape
assert torch.allclose(y, x[0]) # .. since actually all ones.
def _test_random_combine_main():
_test_random_combine(0.999, 0, 0.0)
_test_random_combine(0.5, 0, 0.0)
_test_random_combine(0.999, 0, 0.0)
_test_random_combine(0.5, 0, 0.3)
_test_random_combine(0.5, 1, 0.3)
_test_random_combine(0.5, 0.5, 0.3)
feature_dim = 50
c = RNN(num_features=feature_dim, d_model=128)
batch_size = 5
seq_len = 20
# Just make sure the forward pass runs.
f = c(
torch.randn(batch_size, seq_len, feature_dim),
torch.full((batch_size,), seq_len, dtype=torch.int64),
)
f # to remove flake8 warnings
if __name__ == "__main__":
feature_dim = 50
m = RNN(num_features=feature_dim, d_model=128)
@ -470,3 +750,5 @@ if __name__ == "__main__":
torch.full((batch_size,), seq_len, dtype=torch.int64),
warmup=0.5,
)
_test_random_combine_main()

View File

@ -42,7 +42,7 @@ from decode_stream import DecodeStream
from kaldifeat import Fbank, FbankOptions
from lhotse import CutSet
from torch.nn.utils.rnn import pad_sequence
from train import get_params, get_transducer_model
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
@ -177,6 +177,8 @@ def get_parser():
help="The number of streams that can be decoded parallel.",
)
add_model_arguments(parser)
return parser
@ -434,9 +436,7 @@ def decode_dataset(
decode_results = []
# Contain decode streams currently running.
decode_streams = []
initial_states = model.encoder.get_init_state(
params.left_context, device=device
)
initial_states = model.encoder.get_init_states(device=device)
for num, cut in enumerate(cuts):
# each utterance has a DecodeStream.
decode_stream = DecodeStream(

View File

@ -57,12 +57,12 @@ import torch
import torch.multiprocessing as mp
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from lstm import RNN
from decoder import Decoder
from joiner import Joiner
from lhotse.cut import Cut
from lhotse.dataset.sampling.base import CutSampler
from lhotse.utils import fix_random_seed
from lstm import RNN
from model import Transducer
from optim import Eden, Eve
from torch import Tensor
@ -86,6 +86,24 @@ LRSchedulerType = Union[
]
def add_model_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--num-encoder-layers",
type=int,
default=20,
help="Number of RNN encoder layers..",
)
parser.add_argument(
"--aux-layer-period",
type=int,
default=3,
help="""Peroid of auxiliary layers used for randomly combined during training.
If not larger than 0, will not use the random combiner.
""",
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
@ -279,6 +297,8 @@ def get_parser():
help="Whether to use half precision training.",
)
add_model_arguments(parser)
return parser
@ -341,7 +361,6 @@ def get_params() -> AttributeDict:
"subsampling_factor": 4,
"encoder_dim": 512,
"dim_feedforward": 2048,
"num_encoder_layers": 12,
# parameters for decoder
"decoder_dim": 512,
# parameters for joiner
@ -363,6 +382,7 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
d_model=params.encoder_dim,
dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers,
aux_layer_period=params.aux_layer_period,
)
return encoder