Add Shallow fusion in modified_beam_search (#630)

* Add utility for shallow fusion

* test batch size == 1 without shallow fusion

* Use shallow fusion for modified-beam-search

* Modified beam search with ngram rescoring

* Fix code according to review

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
This commit is contained in:
ezerhouni 2022-10-21 10:44:56 +02:00 committed by GitHub
parent c30b8d3a1c
commit 9b671e1c21
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 476 additions and 0 deletions

View File

@ -0,0 +1,20 @@
#!/usr/bin/env bash
lang_dir=data/lang_bpe_500
for ngram in 2 3 5; do
if [ ! -f $lang_dir/${ngram}gram.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order ${ngram} \
-text $lang_dir/transcript_tokens.txt \
-lm $lang_dir/${ngram}gram.arpa
fi
if [ ! -f $lang_dir/${ngram}gram.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="$lang_dir/tokens.txt" \
--disambig-symbol='#0' \
--max-order=${ngram} \
$lang_dir/${ngram}gram.arpa > $lang_dir/${ngram}gram.fst.txt
fi
done

View File

@ -115,10 +115,12 @@ from beam_search import (
greedy_search, greedy_search,
greedy_search_batch, greedy_search_batch,
modified_beam_search, modified_beam_search,
modified_beam_search_ngram_rescoring,
) )
from librispeech import LibriSpeech from librispeech import LibriSpeech
from train import add_model_arguments, get_params, get_transducer_model from train import add_model_arguments, get_params, get_transducer_model
from icefall import NgramLm
from icefall.checkpoint import ( from icefall.checkpoint import (
average_checkpoints, average_checkpoints,
average_checkpoints_with_averaged_model, average_checkpoints_with_averaged_model,
@ -214,6 +216,7 @@ def get_parser():
- fast_beam_search_nbest - fast_beam_search_nbest
- fast_beam_search_nbest_oracle - fast_beam_search_nbest_oracle
- fast_beam_search_nbest_LG - fast_beam_search_nbest_LG
- modified_beam_search_ngram_rescoring
If you use fast_beam_search_nbest_LG, you have to specify If you use fast_beam_search_nbest_LG, you have to specify
`--lang-dir`, which should contain `LG.pt`. `--lang-dir`, which should contain `LG.pt`.
""", """,
@ -303,6 +306,22 @@ def get_parser():
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
) )
parser.add_argument(
"--tokens-ngram",
type=int,
default=3,
help="""Token Ngram used for rescoring.
Used only when the decoding method is modified_beam_search_ngram_rescoring""",
)
parser.add_argument(
"--backoff-id",
type=int,
default=500,
help="""ID of the backoff symbol.
Used only when the decoding method is modified_beam_search_ngram_rescoring""",
)
add_model_arguments(parser) add_model_arguments(parser)
return parser return parser
@ -315,6 +334,8 @@ def decode_one_batch(
batch: dict, batch: dict,
word_table: Optional[k2.SymbolTable] = None, word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None, decoding_graph: Optional[k2.Fsa] = None,
ngram_lm: Optional[NgramLm] = None,
ngram_lm_scale: float = 1.0,
) -> Dict[str, List[List[str]]]: ) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the """Decode one batch and return the result in a dict. The dict has the
following format: following format:
@ -448,6 +469,17 @@ def decode_one_batch(
) )
for hyp in sp.decode(hyp_tokens): for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split()) hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search_ngram_rescoring":
hyp_tokens = modified_beam_search_ngram_rescoring(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else: else:
batch_size = encoder_out.size(0) batch_size = encoder_out.size(0)
@ -497,6 +529,8 @@ def decode_dataset(
sp: spm.SentencePieceProcessor, sp: spm.SentencePieceProcessor,
word_table: Optional[k2.SymbolTable] = None, word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None, decoding_graph: Optional[k2.Fsa] = None,
ngram_lm: Optional[NgramLm] = None,
ngram_lm_scale: float = 1.0,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: ) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset. """Decode dataset.
@ -546,6 +580,8 @@ def decode_dataset(
decoding_graph=decoding_graph, decoding_graph=decoding_graph,
word_table=word_table, word_table=word_table,
batch=batch, batch=batch,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
) )
for name, hyps in hyps_dict.items(): for name, hyps in hyps_dict.items():
@ -631,6 +667,7 @@ def main():
"fast_beam_search_nbest_LG", "fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle", "fast_beam_search_nbest_oracle",
"modified_beam_search", "modified_beam_search",
"modified_beam_search_ngram_rescoring",
) )
params.res_dir = params.exp_dir / params.decoding_method params.res_dir = params.exp_dir / params.decoding_method
@ -655,6 +692,7 @@ def main():
else: else:
params.suffix += f"-context-{params.context_size}" params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
if params.use_averaged_model: if params.use_averaged_model:
params.suffix += "-use-averaged-model" params.suffix += "-use-averaged-model"
@ -768,6 +806,15 @@ def main():
model.to(device) model.to(device)
model.eval() model.eval()
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
logging.info(f"lm filename: {lm_filename}")
ngram_lm = NgramLm(
str(params.lang_dir / lm_filename),
backoff_id=params.backoff_id,
is_binary=False,
)
logging.info(f"num states: {ngram_lm.lm.num_states}")
if "fast_beam_search" in params.decoding_method: if "fast_beam_search" in params.decoding_method:
if params.decoding_method == "fast_beam_search_nbest_LG": if params.decoding_method == "fast_beam_search_nbest_LG":
lexicon = Lexicon(params.lang_dir) lexicon = Lexicon(params.lang_dir)
@ -812,6 +859,8 @@ def main():
sp=sp, sp=sp,
word_table=word_table, word_table=word_table,
decoding_graph=decoding_graph, decoding_graph=decoding_graph,
ngram_lm=ngram_lm,
ngram_lm_scale=params.ngram_lm_scale,
) )
save_results( save_results(

View File

@ -23,6 +23,7 @@ import sentencepiece as spm
import torch import torch
from model import Transducer from model import Transducer
from icefall import NgramLm, NgramLmStateCost
from icefall.decode import Nbest, one_best_decoding from icefall.decode import Nbest, one_best_decoding
from icefall.utils import add_eos, add_sos, get_texts from icefall.utils import add_eos, add_sos, get_texts
@ -656,6 +657,8 @@ class Hypothesis:
# It contains only one entry. # It contains only one entry.
log_prob: torch.Tensor log_prob: torch.Tensor
state_cost: Optional[NgramLmStateCost] = None
@property @property
def key(self) -> str: def key(self) -> str:
"""Return a string representation of self.ys""" """Return a string representation of self.ys"""
@ -1539,3 +1542,173 @@ def fast_beam_search_with_nbest_rnn_rescoring(
ans[key] = hyps ans[key] = hyps
return ans return ans
def modified_beam_search_ngram_rescoring(
model: Transducer,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ngram_lm: NgramLm,
ngram_lm_scale: float,
beam: int = 4,
temperature: float = 1.0,
) -> List[List[int]]:
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
Args:
model:
The transducer model.
encoder_out:
Output from the encoder. Its shape is (N, T, C).
encoder_out_lens:
A 1-D tensor of shape (N,), containing number of valid frames in
encoder_out before padding.
beam:
Number of active paths during the beam search.
temperature:
Softmax temperature.
Returns:
Return a list-of-list of token IDs. ans[i] is the decoding results
for the i-th utterance.
"""
assert encoder_out.ndim == 3, encoder_out.shape
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
blank_id = model.decoder.blank_id
unk_id = getattr(model, "unk_id", blank_id)
context_size = model.decoder.context_size
device = next(model.parameters()).device
lm_scale = ngram_lm_scale
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
B = [HypothesisList() for _ in range(N)]
for i in range(N):
B[i].add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
state_cost=NgramLmStateCost(ngram_lm),
)
)
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
offset = 0
finalized_B = []
for batch_size in batch_size_list:
start = offset
end = offset + batch_size
current_encoder_out = encoder_out.data[start:end]
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
offset = end
finalized_B = B[batch_size:] + finalized_B
B = B[:batch_size]
hyps_shape = get_hyps_shape(B).to(device)
A = [list(b) for b in B]
B = [HypothesisList() for _ in range(batch_size)]
ys_log_probs = torch.cat(
[
hyp.log_prob.reshape(1, 1) + hyp.state_cost.lm_score * lm_scale
for hyps in A
for hyp in hyps
]
) # (num_hyps, 1)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
device=device,
dtype=torch.int64,
) # (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
decoder_out = model.joiner.decoder_proj(decoder_out)
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
# as index, so we use `to(torch.int64)` below.
current_encoder_out = torch.index_select(
current_encoder_out,
dim=0,
index=hyps_shape.row_ids(1).to(torch.int64),
) # (num_hyps, 1, 1, encoder_out_dim)
logits = model.joiner(
current_encoder_out,
decoder_out,
project_input=False,
) # (num_hyps, 1, 1, vocab_size)
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
log_probs = (logits / temperature).log_softmax(
dim=-1
) # (num_hyps, vocab_size)
log_probs.add_(ys_log_probs)
vocab_size = log_probs.size(-1)
log_probs = log_probs.reshape(-1)
row_splits = hyps_shape.row_splits(1) * vocab_size
log_probs_shape = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=log_probs.numel()
)
ragged_log_probs = k2.RaggedTensor(
shape=log_probs_shape, value=log_probs
)
for i in range(batch_size):
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
topk_token_indexes = (topk_indexes % vocab_size).tolist()
for k in range(len(topk_hyp_indexes)):
hyp_idx = topk_hyp_indexes[k]
hyp = A[i][hyp_idx]
new_ys = hyp.ys[:]
new_token = topk_token_indexes[k]
if new_token not in (blank_id, unk_id):
new_ys.append(new_token)
state_cost = hyp.state_cost.forward_one_step(new_token)
else:
state_cost = hyp.state_cost
# We only keep AM scores in new_hyp.log_prob
new_log_prob = (
topk_log_probs[k] - hyp.state_cost.lm_score * lm_scale
)
new_hyp = Hypothesis(
ys=new_ys, log_prob=new_log_prob, state_cost=state_cost
)
B[i].add(new_hyp)
B = B + finalized_B
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
sorted_ans = [h.ys[context_size:] for h in best_hyps]
ans = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
return ans

View File

@ -65,3 +65,5 @@ from .utils import (
subsequent_chunk_mask, subsequent_chunk_mask,
write_error_stats, write_error_stats,
) )
from .ngram_lm import NgramLm, NgramLmStateCost

164
icefall/ngram_lm.py Normal file
View File

@ -0,0 +1,164 @@
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import List, Optional, Tuple
import kaldifst
class NgramLm:
def __init__(
self,
fst_filename: str,
backoff_id: int,
is_binary: bool = False,
):
"""
Args:
fst_filename:
Path to the FST.
backoff_id:
ID of the backoff symbol.
is_binary:
True if the given file is a binary FST.
"""
if is_binary:
lm = kaldifst.StdVectorFst.read(fst_filename)
else:
with open(fst_filename, "r") as f:
lm = kaldifst.compile(f.read(), acceptor=False)
if not lm.is_ilabel_sorted:
kaldifst.arcsort(lm, sort_type="ilabel")
self.lm = lm
self.backoff_id = backoff_id
def _process_backoff_arcs(
self,
state: int,
cost: float,
) -> List[Tuple[int, float]]:
"""Similar to ProcessNonemitting() from Kaldi, this function
returns the list of states reachable from the given state via
backoff arcs.
Args:
state:
The input state.
cost:
The cost of reaching the given state from the start state.
Returns:
Return a list, where each element contains a tuple with two entries:
- next_state
- cost of next_state
If there is no backoff arc leaving the input state, then return
an empty list.
"""
ans = []
next_state, next_cost = self._get_next_state_and_cost_without_backoff(
state=state,
label=self.backoff_id,
)
if next_state is None:
return ans
ans.append((next_state, next_cost + cost))
ans += self._process_backoff_arcs(next_state, next_cost + cost)
return ans
def _get_next_state_and_cost_without_backoff(
self, state: int, label: int
) -> Tuple[int, float]:
"""TODO: Add doc."""
arc_iter = kaldifst.ArcIterator(self.lm, state)
num_arcs = self.lm.num_arcs(state)
# The LM is arc sorted by ilabel, so we use binary search below.
left = 0
right = num_arcs - 1
while left <= right:
mid = (left + right) // 2
arc_iter.seek(mid)
arc = arc_iter.value
if arc.ilabel < label:
left = mid + 1
elif arc.ilabel > label:
right = mid - 1
else:
return arc.nextstate, arc.weight.value
return None, None
def get_next_state_and_cost(
self,
state: int,
label: int,
) -> Tuple[List[int], List[float]]:
states = [state]
costs = [0]
extra_states_costs = self._process_backoff_arcs(
state=state,
cost=0,
)
for s, c in extra_states_costs:
states.append(s)
costs.append(c)
next_states = []
next_costs = []
for s, c in zip(states, costs):
ns, nc = self._get_next_state_and_cost_without_backoff(s, label)
if ns:
next_states.append(ns)
next_costs.append(c + nc)
return next_states, next_costs
class NgramLmStateCost:
def __init__(self, ngram_lm: NgramLm, state_cost: Optional[dict] = None):
assert ngram_lm.lm.start == 0, ngram_lm.lm.start
self.ngram_lm = ngram_lm
if state_cost is not None:
self.state_cost = state_cost
else:
self.state_cost = defaultdict(lambda: float("inf"))
# At the very beginning, we are at the start state with cost 0
self.state_cost[0] = 0.0
def forward_one_step(self, label: int) -> "NgramLmStateCost":
state_cost = defaultdict(lambda: float("inf"))
for s, c in self.state_cost.items():
next_states, next_costs = self.ngram_lm.get_next_state_and_cost(
s,
label,
)
for ns, nc in zip(next_states, next_costs):
state_cost[ns] = min(state_cost[ns], c + nc)
return NgramLmStateCost(ngram_lm=self.ngram_lm, state_cost=state_cost)
@property
def lm_score(self) -> float:
if len(self.state_cost) == 0:
return float("-inf")
return -1 * min(self.state_cost.values())

68
test/test_ngram_lm.py Executable file
View File

@ -0,0 +1,68 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import graphviz
import kaldifst
from icefall import NgramLm, NgramLmStateCost
def generate_fst(filename: str):
s = """
3 5 1 1 3.00464
3 0 3 0 5.75646
0 1 1 1 12.0533
0 2 2 2 7.95954
0 9.97787
1 4 2 2 3.35436
1 0 3 0 7.59853
2 0 3 0
4 2 3 0 7.43735
4 0.551239
5 4 2 2 0.804938
5 1 3 0 9.67086
"""
fst = kaldifst.compile(s=s, acceptor=False)
fst.write(filename)
fst_dot = kaldifst.draw(fst, acceptor=False, portrait=True)
source = graphviz.Source(fst_dot)
source.render(outfile=f"{filename}.svg")
def main():
filename = "test.fst"
generate_fst(filename)
ngram_lm = NgramLm(filename, backoff_id=3, is_binary=True)
for label in [1, 2, 3, 4, 5]:
print("---label---", label)
p = ngram_lm.get_next_state_and_cost(state=5, label=label)
print(p)
print("---")
state_cost = NgramLmStateCost(ngram_lm)
s0 = state_cost.forward_one_step(1)
print(s0.state_cost)
s1 = s0.forward_one_step(2)
print(s1.state_cost)
s2 = s1.forward_one_step(2)
print(s2.state_cost)
if __name__ == "__main__":
main()