mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Add Shallow fusion in modified_beam_search (#630)
* Add utility for shallow fusion * test batch size == 1 without shallow fusion * Use shallow fusion for modified-beam-search * Modified beam search with ngram rescoring * Fix code according to review Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
This commit is contained in:
parent
c30b8d3a1c
commit
9b671e1c21
20
egs/librispeech/ASR/generate-lm.sh
Executable file
20
egs/librispeech/ASR/generate-lm.sh
Executable file
@ -0,0 +1,20 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
lang_dir=data/lang_bpe_500
|
||||||
|
|
||||||
|
for ngram in 2 3 5; do
|
||||||
|
if [ ! -f $lang_dir/${ngram}gram.arpa ]; then
|
||||||
|
./shared/make_kn_lm.py \
|
||||||
|
-ngram-order ${ngram} \
|
||||||
|
-text $lang_dir/transcript_tokens.txt \
|
||||||
|
-lm $lang_dir/${ngram}gram.arpa
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/${ngram}gram.fst.txt ]; then
|
||||||
|
python3 -m kaldilm \
|
||||||
|
--read-symbol-table="$lang_dir/tokens.txt" \
|
||||||
|
--disambig-symbol='#0' \
|
||||||
|
--max-order=${ngram} \
|
||||||
|
$lang_dir/${ngram}gram.arpa > $lang_dir/${ngram}gram.fst.txt
|
||||||
|
fi
|
||||||
|
done
|
@ -115,10 +115,12 @@ from beam_search import (
|
|||||||
greedy_search,
|
greedy_search,
|
||||||
greedy_search_batch,
|
greedy_search_batch,
|
||||||
modified_beam_search,
|
modified_beam_search,
|
||||||
|
modified_beam_search_ngram_rescoring,
|
||||||
)
|
)
|
||||||
from librispeech import LibriSpeech
|
from librispeech import LibriSpeech
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall import NgramLm
|
||||||
from icefall.checkpoint import (
|
from icefall.checkpoint import (
|
||||||
average_checkpoints,
|
average_checkpoints,
|
||||||
average_checkpoints_with_averaged_model,
|
average_checkpoints_with_averaged_model,
|
||||||
@ -214,6 +216,7 @@ def get_parser():
|
|||||||
- fast_beam_search_nbest
|
- fast_beam_search_nbest
|
||||||
- fast_beam_search_nbest_oracle
|
- fast_beam_search_nbest_oracle
|
||||||
- fast_beam_search_nbest_LG
|
- fast_beam_search_nbest_LG
|
||||||
|
- modified_beam_search_ngram_rescoring
|
||||||
If you use fast_beam_search_nbest_LG, you have to specify
|
If you use fast_beam_search_nbest_LG, you have to specify
|
||||||
`--lang-dir`, which should contain `LG.pt`.
|
`--lang-dir`, which should contain `LG.pt`.
|
||||||
""",
|
""",
|
||||||
@ -303,6 +306,22 @@ def get_parser():
|
|||||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens-ngram",
|
||||||
|
type=int,
|
||||||
|
default=3,
|
||||||
|
help="""Token Ngram used for rescoring.
|
||||||
|
Used only when the decoding method is modified_beam_search_ngram_rescoring""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--backoff-id",
|
||||||
|
type=int,
|
||||||
|
default=500,
|
||||||
|
help="""ID of the backoff symbol.
|
||||||
|
Used only when the decoding method is modified_beam_search_ngram_rescoring""",
|
||||||
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -315,6 +334,8 @@ def decode_one_batch(
|
|||||||
batch: dict,
|
batch: dict,
|
||||||
word_table: Optional[k2.SymbolTable] = None,
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
ngram_lm: Optional[NgramLm] = None,
|
||||||
|
ngram_lm_scale: float = 1.0,
|
||||||
) -> Dict[str, List[List[str]]]:
|
) -> Dict[str, List[List[str]]]:
|
||||||
"""Decode one batch and return the result in a dict. The dict has the
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
following format:
|
following format:
|
||||||
@ -448,6 +469,17 @@ def decode_one_batch(
|
|||||||
)
|
)
|
||||||
for hyp in sp.decode(hyp_tokens):
|
for hyp in sp.decode(hyp_tokens):
|
||||||
hyps.append(hyp.split())
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "modified_beam_search_ngram_rescoring":
|
||||||
|
hyp_tokens = modified_beam_search_ngram_rescoring(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
ngram_lm=ngram_lm,
|
||||||
|
ngram_lm_scale=ngram_lm_scale,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
else:
|
else:
|
||||||
batch_size = encoder_out.size(0)
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
@ -497,6 +529,8 @@ def decode_dataset(
|
|||||||
sp: spm.SentencePieceProcessor,
|
sp: spm.SentencePieceProcessor,
|
||||||
word_table: Optional[k2.SymbolTable] = None,
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
ngram_lm: Optional[NgramLm] = None,
|
||||||
|
ngram_lm_scale: float = 1.0,
|
||||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
"""Decode dataset.
|
"""Decode dataset.
|
||||||
|
|
||||||
@ -546,6 +580,8 @@ def decode_dataset(
|
|||||||
decoding_graph=decoding_graph,
|
decoding_graph=decoding_graph,
|
||||||
word_table=word_table,
|
word_table=word_table,
|
||||||
batch=batch,
|
batch=batch,
|
||||||
|
ngram_lm=ngram_lm,
|
||||||
|
ngram_lm_scale=ngram_lm_scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
for name, hyps in hyps_dict.items():
|
for name, hyps in hyps_dict.items():
|
||||||
@ -631,6 +667,7 @@ def main():
|
|||||||
"fast_beam_search_nbest_LG",
|
"fast_beam_search_nbest_LG",
|
||||||
"fast_beam_search_nbest_oracle",
|
"fast_beam_search_nbest_oracle",
|
||||||
"modified_beam_search",
|
"modified_beam_search",
|
||||||
|
"modified_beam_search_ngram_rescoring",
|
||||||
)
|
)
|
||||||
params.res_dir = params.exp_dir / params.decoding_method
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
@ -655,6 +692,7 @@ def main():
|
|||||||
else:
|
else:
|
||||||
params.suffix += f"-context-{params.context_size}"
|
params.suffix += f"-context-{params.context_size}"
|
||||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||||
|
|
||||||
if params.use_averaged_model:
|
if params.use_averaged_model:
|
||||||
params.suffix += "-use-averaged-model"
|
params.suffix += "-use-averaged-model"
|
||||||
@ -768,6 +806,15 @@ def main():
|
|||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
|
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
|
||||||
|
logging.info(f"lm filename: {lm_filename}")
|
||||||
|
ngram_lm = NgramLm(
|
||||||
|
str(params.lang_dir / lm_filename),
|
||||||
|
backoff_id=params.backoff_id,
|
||||||
|
is_binary=False,
|
||||||
|
)
|
||||||
|
logging.info(f"num states: {ngram_lm.lm.num_states}")
|
||||||
|
|
||||||
if "fast_beam_search" in params.decoding_method:
|
if "fast_beam_search" in params.decoding_method:
|
||||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
lexicon = Lexicon(params.lang_dir)
|
lexicon = Lexicon(params.lang_dir)
|
||||||
@ -812,6 +859,8 @@ def main():
|
|||||||
sp=sp,
|
sp=sp,
|
||||||
word_table=word_table,
|
word_table=word_table,
|
||||||
decoding_graph=decoding_graph,
|
decoding_graph=decoding_graph,
|
||||||
|
ngram_lm=ngram_lm,
|
||||||
|
ngram_lm_scale=params.ngram_lm_scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
save_results(
|
save_results(
|
||||||
|
@ -23,6 +23,7 @@ import sentencepiece as spm
|
|||||||
import torch
|
import torch
|
||||||
from model import Transducer
|
from model import Transducer
|
||||||
|
|
||||||
|
from icefall import NgramLm, NgramLmStateCost
|
||||||
from icefall.decode import Nbest, one_best_decoding
|
from icefall.decode import Nbest, one_best_decoding
|
||||||
from icefall.utils import add_eos, add_sos, get_texts
|
from icefall.utils import add_eos, add_sos, get_texts
|
||||||
|
|
||||||
@ -656,6 +657,8 @@ class Hypothesis:
|
|||||||
# It contains only one entry.
|
# It contains only one entry.
|
||||||
log_prob: torch.Tensor
|
log_prob: torch.Tensor
|
||||||
|
|
||||||
|
state_cost: Optional[NgramLmStateCost] = None
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def key(self) -> str:
|
def key(self) -> str:
|
||||||
"""Return a string representation of self.ys"""
|
"""Return a string representation of self.ys"""
|
||||||
@ -1539,3 +1542,173 @@ def fast_beam_search_with_nbest_rnn_rescoring(
|
|||||||
ans[key] = hyps
|
ans[key] = hyps
|
||||||
|
|
||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def modified_beam_search_ngram_rescoring(
|
||||||
|
model: Transducer,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
encoder_out_lens: torch.Tensor,
|
||||||
|
ngram_lm: NgramLm,
|
||||||
|
ngram_lm_scale: float,
|
||||||
|
beam: int = 4,
|
||||||
|
temperature: float = 1.0,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The transducer model.
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, C).
|
||||||
|
encoder_out_lens:
|
||||||
|
A 1-D tensor of shape (N,), containing number of valid frames in
|
||||||
|
encoder_out before padding.
|
||||||
|
beam:
|
||||||
|
Number of active paths during the beam search.
|
||||||
|
temperature:
|
||||||
|
Softmax temperature.
|
||||||
|
Returns:
|
||||||
|
Return a list-of-list of token IDs. ans[i] is the decoding results
|
||||||
|
for the i-th utterance.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3, encoder_out.shape
|
||||||
|
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||||
|
|
||||||
|
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
||||||
|
input=encoder_out,
|
||||||
|
lengths=encoder_out_lens.cpu(),
|
||||||
|
batch_first=True,
|
||||||
|
enforce_sorted=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
unk_id = getattr(model, "unk_id", blank_id)
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
lm_scale = ngram_lm_scale
|
||||||
|
|
||||||
|
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
||||||
|
N = encoder_out.size(0)
|
||||||
|
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
||||||
|
assert N == batch_size_list[0], (N, batch_size_list)
|
||||||
|
|
||||||
|
B = [HypothesisList() for _ in range(N)]
|
||||||
|
for i in range(N):
|
||||||
|
B[i].add(
|
||||||
|
Hypothesis(
|
||||||
|
ys=[blank_id] * context_size,
|
||||||
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||||
|
state_cost=NgramLmStateCost(ngram_lm),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
||||||
|
|
||||||
|
offset = 0
|
||||||
|
finalized_B = []
|
||||||
|
for batch_size in batch_size_list:
|
||||||
|
start = offset
|
||||||
|
end = offset + batch_size
|
||||||
|
current_encoder_out = encoder_out.data[start:end]
|
||||||
|
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
||||||
|
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
||||||
|
offset = end
|
||||||
|
|
||||||
|
finalized_B = B[batch_size:] + finalized_B
|
||||||
|
B = B[:batch_size]
|
||||||
|
|
||||||
|
hyps_shape = get_hyps_shape(B).to(device)
|
||||||
|
|
||||||
|
A = [list(b) for b in B]
|
||||||
|
B = [HypothesisList() for _ in range(batch_size)]
|
||||||
|
|
||||||
|
ys_log_probs = torch.cat(
|
||||||
|
[
|
||||||
|
hyp.log_prob.reshape(1, 1) + hyp.state_cost.lm_score * lm_scale
|
||||||
|
for hyps in A
|
||||||
|
for hyp in hyps
|
||||||
|
]
|
||||||
|
) # (num_hyps, 1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
) # (num_hyps, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
|
||||||
|
|
||||||
|
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
||||||
|
# as index, so we use `to(torch.int64)` below.
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
current_encoder_out,
|
||||||
|
dim=0,
|
||||||
|
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||||
|
) # (num_hyps, 1, 1, encoder_out_dim)
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out,
|
||||||
|
decoder_out,
|
||||||
|
project_input=False,
|
||||||
|
) # (num_hyps, 1, 1, vocab_size)
|
||||||
|
|
||||||
|
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
||||||
|
|
||||||
|
log_probs = (logits / temperature).log_softmax(
|
||||||
|
dim=-1
|
||||||
|
) # (num_hyps, vocab_size)
|
||||||
|
|
||||||
|
log_probs.add_(ys_log_probs)
|
||||||
|
vocab_size = log_probs.size(-1)
|
||||||
|
log_probs = log_probs.reshape(-1)
|
||||||
|
|
||||||
|
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||||
|
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||||
|
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||||
|
)
|
||||||
|
ragged_log_probs = k2.RaggedTensor(
|
||||||
|
shape=log_probs_shape, value=log_probs
|
||||||
|
)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||||
|
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||||
|
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||||
|
|
||||||
|
for k in range(len(topk_hyp_indexes)):
|
||||||
|
hyp_idx = topk_hyp_indexes[k]
|
||||||
|
hyp = A[i][hyp_idx]
|
||||||
|
|
||||||
|
new_ys = hyp.ys[:]
|
||||||
|
new_token = topk_token_indexes[k]
|
||||||
|
if new_token not in (blank_id, unk_id):
|
||||||
|
new_ys.append(new_token)
|
||||||
|
state_cost = hyp.state_cost.forward_one_step(new_token)
|
||||||
|
else:
|
||||||
|
state_cost = hyp.state_cost
|
||||||
|
|
||||||
|
# We only keep AM scores in new_hyp.log_prob
|
||||||
|
new_log_prob = (
|
||||||
|
topk_log_probs[k] - hyp.state_cost.lm_score * lm_scale
|
||||||
|
)
|
||||||
|
|
||||||
|
new_hyp = Hypothesis(
|
||||||
|
ys=new_ys, log_prob=new_log_prob, state_cost=state_cost
|
||||||
|
)
|
||||||
|
B[i].add(new_hyp)
|
||||||
|
|
||||||
|
B = B + finalized_B
|
||||||
|
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
||||||
|
|
||||||
|
sorted_ans = [h.ys[context_size:] for h in best_hyps]
|
||||||
|
ans = []
|
||||||
|
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
||||||
|
for i in range(N):
|
||||||
|
ans.append(sorted_ans[unsorted_indices[i]])
|
||||||
|
|
||||||
|
return ans
|
||||||
|
@ -65,3 +65,5 @@ from .utils import (
|
|||||||
subsequent_chunk_mask,
|
subsequent_chunk_mask,
|
||||||
write_error_stats,
|
write_error_stats,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
from .ngram_lm import NgramLm, NgramLmStateCost
|
||||||
|
164
icefall/ngram_lm.py
Normal file
164
icefall/ngram_lm.py
Normal file
@ -0,0 +1,164 @@
|
|||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from collections import defaultdict
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
|
import kaldifst
|
||||||
|
|
||||||
|
|
||||||
|
class NgramLm:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
fst_filename: str,
|
||||||
|
backoff_id: int,
|
||||||
|
is_binary: bool = False,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
fst_filename:
|
||||||
|
Path to the FST.
|
||||||
|
backoff_id:
|
||||||
|
ID of the backoff symbol.
|
||||||
|
is_binary:
|
||||||
|
True if the given file is a binary FST.
|
||||||
|
"""
|
||||||
|
if is_binary:
|
||||||
|
lm = kaldifst.StdVectorFst.read(fst_filename)
|
||||||
|
else:
|
||||||
|
with open(fst_filename, "r") as f:
|
||||||
|
lm = kaldifst.compile(f.read(), acceptor=False)
|
||||||
|
|
||||||
|
if not lm.is_ilabel_sorted:
|
||||||
|
kaldifst.arcsort(lm, sort_type="ilabel")
|
||||||
|
|
||||||
|
self.lm = lm
|
||||||
|
self.backoff_id = backoff_id
|
||||||
|
|
||||||
|
def _process_backoff_arcs(
|
||||||
|
self,
|
||||||
|
state: int,
|
||||||
|
cost: float,
|
||||||
|
) -> List[Tuple[int, float]]:
|
||||||
|
"""Similar to ProcessNonemitting() from Kaldi, this function
|
||||||
|
returns the list of states reachable from the given state via
|
||||||
|
backoff arcs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state:
|
||||||
|
The input state.
|
||||||
|
cost:
|
||||||
|
The cost of reaching the given state from the start state.
|
||||||
|
Returns:
|
||||||
|
Return a list, where each element contains a tuple with two entries:
|
||||||
|
- next_state
|
||||||
|
- cost of next_state
|
||||||
|
If there is no backoff arc leaving the input state, then return
|
||||||
|
an empty list.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
|
||||||
|
next_state, next_cost = self._get_next_state_and_cost_without_backoff(
|
||||||
|
state=state,
|
||||||
|
label=self.backoff_id,
|
||||||
|
)
|
||||||
|
if next_state is None:
|
||||||
|
return ans
|
||||||
|
ans.append((next_state, next_cost + cost))
|
||||||
|
ans += self._process_backoff_arcs(next_state, next_cost + cost)
|
||||||
|
return ans
|
||||||
|
|
||||||
|
def _get_next_state_and_cost_without_backoff(
|
||||||
|
self, state: int, label: int
|
||||||
|
) -> Tuple[int, float]:
|
||||||
|
"""TODO: Add doc."""
|
||||||
|
arc_iter = kaldifst.ArcIterator(self.lm, state)
|
||||||
|
num_arcs = self.lm.num_arcs(state)
|
||||||
|
|
||||||
|
# The LM is arc sorted by ilabel, so we use binary search below.
|
||||||
|
left = 0
|
||||||
|
right = num_arcs - 1
|
||||||
|
while left <= right:
|
||||||
|
mid = (left + right) // 2
|
||||||
|
arc_iter.seek(mid)
|
||||||
|
arc = arc_iter.value
|
||||||
|
if arc.ilabel < label:
|
||||||
|
left = mid + 1
|
||||||
|
elif arc.ilabel > label:
|
||||||
|
right = mid - 1
|
||||||
|
else:
|
||||||
|
return arc.nextstate, arc.weight.value
|
||||||
|
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
def get_next_state_and_cost(
|
||||||
|
self,
|
||||||
|
state: int,
|
||||||
|
label: int,
|
||||||
|
) -> Tuple[List[int], List[float]]:
|
||||||
|
states = [state]
|
||||||
|
costs = [0]
|
||||||
|
|
||||||
|
extra_states_costs = self._process_backoff_arcs(
|
||||||
|
state=state,
|
||||||
|
cost=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
for s, c in extra_states_costs:
|
||||||
|
states.append(s)
|
||||||
|
costs.append(c)
|
||||||
|
|
||||||
|
next_states = []
|
||||||
|
next_costs = []
|
||||||
|
for s, c in zip(states, costs):
|
||||||
|
ns, nc = self._get_next_state_and_cost_without_backoff(s, label)
|
||||||
|
if ns:
|
||||||
|
next_states.append(ns)
|
||||||
|
next_costs.append(c + nc)
|
||||||
|
|
||||||
|
return next_states, next_costs
|
||||||
|
|
||||||
|
|
||||||
|
class NgramLmStateCost:
|
||||||
|
def __init__(self, ngram_lm: NgramLm, state_cost: Optional[dict] = None):
|
||||||
|
assert ngram_lm.lm.start == 0, ngram_lm.lm.start
|
||||||
|
self.ngram_lm = ngram_lm
|
||||||
|
if state_cost is not None:
|
||||||
|
self.state_cost = state_cost
|
||||||
|
else:
|
||||||
|
self.state_cost = defaultdict(lambda: float("inf"))
|
||||||
|
|
||||||
|
# At the very beginning, we are at the start state with cost 0
|
||||||
|
self.state_cost[0] = 0.0
|
||||||
|
|
||||||
|
def forward_one_step(self, label: int) -> "NgramLmStateCost":
|
||||||
|
state_cost = defaultdict(lambda: float("inf"))
|
||||||
|
for s, c in self.state_cost.items():
|
||||||
|
next_states, next_costs = self.ngram_lm.get_next_state_and_cost(
|
||||||
|
s,
|
||||||
|
label,
|
||||||
|
)
|
||||||
|
for ns, nc in zip(next_states, next_costs):
|
||||||
|
state_cost[ns] = min(state_cost[ns], c + nc)
|
||||||
|
|
||||||
|
return NgramLmStateCost(ngram_lm=self.ngram_lm, state_cost=state_cost)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def lm_score(self) -> float:
|
||||||
|
if len(self.state_cost) == 0:
|
||||||
|
return float("-inf")
|
||||||
|
|
||||||
|
return -1 * min(self.state_cost.values())
|
68
test/test_ngram_lm.py
Executable file
68
test/test_ngram_lm.py
Executable file
@ -0,0 +1,68 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import graphviz
|
||||||
|
import kaldifst
|
||||||
|
|
||||||
|
from icefall import NgramLm, NgramLmStateCost
|
||||||
|
|
||||||
|
|
||||||
|
def generate_fst(filename: str):
|
||||||
|
s = """
|
||||||
|
3 5 1 1 3.00464
|
||||||
|
3 0 3 0 5.75646
|
||||||
|
0 1 1 1 12.0533
|
||||||
|
0 2 2 2 7.95954
|
||||||
|
0 9.97787
|
||||||
|
1 4 2 2 3.35436
|
||||||
|
1 0 3 0 7.59853
|
||||||
|
2 0 3 0
|
||||||
|
4 2 3 0 7.43735
|
||||||
|
4 0.551239
|
||||||
|
5 4 2 2 0.804938
|
||||||
|
5 1 3 0 9.67086
|
||||||
|
"""
|
||||||
|
fst = kaldifst.compile(s=s, acceptor=False)
|
||||||
|
fst.write(filename)
|
||||||
|
fst_dot = kaldifst.draw(fst, acceptor=False, portrait=True)
|
||||||
|
source = graphviz.Source(fst_dot)
|
||||||
|
source.render(outfile=f"{filename}.svg")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
filename = "test.fst"
|
||||||
|
generate_fst(filename)
|
||||||
|
ngram_lm = NgramLm(filename, backoff_id=3, is_binary=True)
|
||||||
|
for label in [1, 2, 3, 4, 5]:
|
||||||
|
print("---label---", label)
|
||||||
|
p = ngram_lm.get_next_state_and_cost(state=5, label=label)
|
||||||
|
print(p)
|
||||||
|
print("---")
|
||||||
|
|
||||||
|
state_cost = NgramLmStateCost(ngram_lm)
|
||||||
|
s0 = state_cost.forward_one_step(1)
|
||||||
|
print(s0.state_cost)
|
||||||
|
|
||||||
|
s1 = s0.forward_one_step(2)
|
||||||
|
print(s1.state_cost)
|
||||||
|
|
||||||
|
s2 = s1.forward_one_step(2)
|
||||||
|
print(s2.state_cost)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user