mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Add tests for Joiner
This commit is contained in:
parent
50d2281524
commit
9b62bfb062
@ -55,6 +55,9 @@ class Joiner(nn.Module):
|
|||||||
|
|
||||||
N = encoder_out.size(0)
|
N = encoder_out.size(0)
|
||||||
|
|
||||||
|
encoder_out_len = encoder_out_len.tolist()
|
||||||
|
decoder_out_len = decoder_out_len.tolist()
|
||||||
|
|
||||||
encoder_out_list = [
|
encoder_out_list = [
|
||||||
encoder_out[i, : encoder_out_len[i], :] for i in range(N)
|
encoder_out[i, : encoder_out_len[i], :] for i in range(N)
|
||||||
]
|
]
|
||||||
|
|||||||
57
egs/librispeech/ASR/transducer_stateless/test_joiner.py
Executable file
57
egs/librispeech/ASR/transducer_stateless/test_joiner.py
Executable file
@ -0,0 +1,57 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
To run this file, do:
|
||||||
|
|
||||||
|
cd icefall/egs/librispeech/ASR
|
||||||
|
python ./transducer_stateless/test_joiner.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from joiner import Joiner
|
||||||
|
|
||||||
|
|
||||||
|
def test_joiner():
|
||||||
|
device = torch.device("cpu")
|
||||||
|
input_dim = 3
|
||||||
|
output_dim = 5
|
||||||
|
joiner = Joiner(input_dim, output_dim)
|
||||||
|
joiner.to(device)
|
||||||
|
|
||||||
|
encoder_out = torch.rand(3, 10, input_dim, device=device)
|
||||||
|
decoder_out = torch.rand(3, 8, input_dim, device=device)
|
||||||
|
|
||||||
|
encoder_out_len = torch.tensor([5, 10, 3], device=device)
|
||||||
|
decoder_out_len = torch.tensor([6, 8, 7], device=device)
|
||||||
|
|
||||||
|
out = joiner(
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
decoder_out=decoder_out,
|
||||||
|
encoder_out_len=encoder_out_len,
|
||||||
|
decoder_out_len=decoder_out_len,
|
||||||
|
)
|
||||||
|
assert out.size(0) == (encoder_out_len * decoder_out_len).sum()
|
||||||
|
assert out.size(1) == output_dim
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test_joiner()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
Loading…
x
Reference in New Issue
Block a user