diff --git a/egs/librispeech/ASR/.run_adapter.sh.swp b/egs/librispeech/ASR/.run_adapter.sh.swp index da3bbf8ed..c40213102 100644 Binary files a/egs/librispeech/ASR/.run_adapter.sh.swp and b/egs/librispeech/ASR/.run_adapter.sh.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index 45364a317..7c49f0092 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index 3a09386a6..fd77b7fbc 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -41,6 +41,7 @@ class TransformerEncoderAdapter(TransformerEncoder): for p in self.adapters.parameters(): #p.data = nn.Parameter(torch.zeros(p.size()).to('cuda')) p.data = nn.Parameter(torch.randn(p.size()).to('cuda')/10000.) + print(p) def forward(self, x, padding_mask=None, layer=None, tgt_layer=None): x, layer_results = self.extract_features_with_adapter(