fix misc line

This commit is contained in:
root 2024-08-14 15:47:28 +09:00
parent 814d3ac702
commit 9b13eac946

View File

@ -371,7 +371,6 @@ def get_parser():
modified_beam_search_LODR.
""",
)
<<<<<<< HEAD
parser.add_argument(
"--skip-scoring",
@ -631,9 +630,9 @@ def decode_one_batch(
elif "modified_beam_search" in params.decoding_method:
prefix += f"_beam-size-{params.beam_size}"
if params.decoding_method in (
"modified_beam_search_lm_rescore",
"modified_beam_search_lm_rescore_LODR",
):
"modified_beam_search_lm_rescore",
"modified_beam_search_lm_rescore_LODR",
):
ans = dict()
assert ans_dict is not None
for key, hyps in ans_dict.items():
@ -650,17 +649,17 @@ def decode_one_batch(
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
context_graph: Optional[ContextGraph] = None,
LM: Optional[LmScorer] = None,
ngram_lm=None,
ngram_lm_scale: float = 0.0,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
context_graph: Optional[ContextGraph] = None,
LM: Optional[LmScorer] = None,
ngram_lm=None,
ngram_lm_scale: float = 0.0,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
Args:
@ -703,17 +702,17 @@ def decode_dataset(
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
context_graph=context_graph,
word_table=word_table,
batch=batch,
LM=LM,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
)
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
context_graph=context_graph,
word_table=word_table,
batch=batch,
LM=LM,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
)
for name, hyps in hyps_dict.items():
this_batch = []
@ -734,10 +733,10 @@ def decode_dataset(
def save_asr_output(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
"""
Save text produced by ASR.
"""
@ -752,10 +751,10 @@ def save_asr_output(
def save_wer_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str], Tuple]]],
):
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str], Tuple]]],
):
"""
Save WER and per-utterance word alignments.
"""
@ -766,8 +765,8 @@ def save_wer_results(
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
with open(errs_filename, "w", encoding="utf8") as fd:
wer = write_error_stats(
fd, f"{test_set_name}-{key}", results, enable_log=True
)
fd, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info(f"Wrote detailed error stats to {errs_filename}")
@ -804,18 +803,18 @@ def main():
set_caching_enabled(True) # lhotse
assert params.decoding_method in (
"greedy_search",
"beam_search",
"fast_beam_search",
"fast_beam_search_nbest",
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
"modified_beam_search_LODR",
"modified_beam_search_lm_shallow_fusion",
"modified_beam_search_lm_rescore",
"modified_beam_search_lm_rescore_LODR",
)
"greedy_search",
"beam_search",
"fast_beam_search",
"fast_beam_search_nbest",
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
"modified_beam_search_LODR",
"modified_beam_search_lm_shallow_fusion",
"modified_beam_search_lm_rescore",
"modified_beam_search_lm_rescore_LODR",
)
params.res_dir = params.exp_dir / params.decoding_method
if os.path.exists(params.context_file):
@ -830,11 +829,11 @@ def main():
if params.causal:
assert (
"," not in params.chunk_size
), "chunk_size should be one value in decoding."
"," not in params.chunk_size
), "chunk_size should be one value in decoding."
assert (
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
params.suffix += f"_chunk-{params.chunk_size}"
params.suffix += f"_left-context-{params.left_context_frames}"
@ -850,9 +849,9 @@ def main():
elif "beam_search" in params.decoding_method:
params.suffix += f"__{params.decoding_method}__beam-size-{params.beam_size}"
if params.decoding_method in (
"modified_beam_search",
"modified_beam_search_LODR",
):
"modified_beam_search",
"modified_beam_search_LODR",
):
if params.has_contexts:
params.suffix += f"-context-score-{params.context_score}"
else:
@ -864,8 +863,8 @@ def main():
if "LODR" in params.decoding_method:
params.suffix += (
f"_LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}"
)
f"_LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}"
)
if params.use_averaged_model:
params.suffix += "_use-averaged-model"
@ -895,18 +894,18 @@ def main():
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
@ -924,32 +923,32 @@ def main():
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
@ -957,34 +956,34 @@ def main():
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
# only load the neural network LM if required
if params.use_shallow_fusion or params.decoding_method in (
"modified_beam_search_lm_rescore",
"modified_beam_search_lm_rescore_LODR",
"modified_beam_search_lm_shallow_fusion",
"modified_beam_search_LODR",
):
"modified_beam_search_lm_rescore",
"modified_beam_search_lm_rescore_LODR",
"modified_beam_search_lm_shallow_fusion",
"modified_beam_search_LODR",
):
LM = LmScorer(
lm_type=params.lm_type,
params=params,
device=device,
lm_scale=params.lm_scale,
)
lm_type=params.lm_type,
params=params,
device=device,
lm_scale=params.lm_scale,
)
LM.to(device)
LM.eval()
else:
@ -1010,10 +1009,10 @@ def main():
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
logging.info(f"Loading token level lm: {lm_filename}")
ngram_lm = NgramLm(
str(params.lang_dir / lm_filename),
backoff_id=params.backoff_id,
is_binary=False,
)
str(params.lang_dir / lm_filename),
backoff_id=params.backoff_id,
is_binary=False,
)
logging.info(f"num states: {ngram_lm.lm.num_states}")
ngram_lm_scale = params.ngram_lm_scale
else:
@ -1027,8 +1026,8 @@ def main():
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
)
torch.load(lg_filename, map_location=device)
)
decoding_graph.scores *= params.ngram_lm_scale
else:
word_table = None
@ -1067,17 +1066,17 @@ def main():
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
sp=sp,
word_table=word_table,
decoding_graph=decoding_graph,
context_graph=context_graph,
LM=LM,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
)
dl=test_dl,
params=params,
model=model,
sp=sp,
word_table=word_table,
decoding_graph=decoding_graph,
context_graph=context_graph,
LM=LM,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
)
save_asr_output(
params=params,