Change how warmup works.

This commit is contained in:
Daniel Povey 2022-03-22 15:36:20 +08:00
parent cef6348703
commit 9a8aa1f54a
3 changed files with 38 additions and 203 deletions

View File

@ -88,7 +88,7 @@ class Conformer(Transformer):
def forward(
self, x: torch.Tensor, x_lens: torch.Tensor, warmup_mode: bool = False
self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
@ -97,6 +97,10 @@ class Conformer(Transformer):
x_lens:
A tensor of shape (batch_size,) containing the number of frames in
`x` before padding.
warmup:
A floating point value that gradually increases from 0 throughout
training; when it is >= 1.0 we are "fully warmed up". It is used
to turn modules on sequentially.
Returns:
Return a tuple containing 2 tensors:
- logits, its shape is (batch_size, output_seq_len, output_dim)
@ -113,7 +117,7 @@ class Conformer(Transformer):
mask = make_pad_mask(lengths)
x = self.encoder(x, pos_emb, src_key_padding_mask=mask,
warmup_mode=warmup_mode) # (T, N, C)
warmup=warmup) # (T, N, C)
logits = self.encoder_output_layer(x)
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
@ -193,6 +197,8 @@ class ConformerEncoderLayer(nn.Module):
pos_emb: Tensor,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
warmup: float = 1.0,
position: float = 0.0
) -> Tensor:
"""
Pass the input through the encoder layer.
@ -202,6 +208,11 @@ class ConformerEncoderLayer(nn.Module):
pos_emb: Positional embedding tensor (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
warmup: controls selective activation of layers; if < 1.0, it's possible that
not all modules will be included.
position: the position of this module in the encoder stack (relates to
warmup); a value 0 <= position < 1.0.
Shape:
src: (S, N, E).
@ -210,9 +221,9 @@ class ConformerEncoderLayer(nn.Module):
src_key_padding_mask: (N, S).
S is the source sequence length, N is the batch size, E is the feature number
"""
# macaron style feed forward module
src = src + self.dropout(self.feed_forward_macaron(src))
src = torch.add(src, self.dropout(self.feed_forward_macaron(src)),
alpha=(0.0 if warmup < 0.2 * (position + 1) else 1.0))
# multi-headed self-attention module
@ -224,13 +235,16 @@ class ConformerEncoderLayer(nn.Module):
attn_mask=src_mask,
key_padding_mask=src_key_padding_mask,
)[0]
src = src + self.dropout(src_att)
src = torch.add(src, self.dropout(src_att),
alpha=(0.0 if warmup < 0.2 * (position + 2) else 1.0))
# convolution module
src = src + self.dropout(self.conv_module(src))
src = torch.add(src, self.dropout(self.conv_module(src)),
alpha=(0.0 if warmup < 0.2 * (position + 3) else 1.0))
# feed forward module
src = src + self.dropout(self.feed_forward(src))
src = torch.add(src, self.dropout(self.feed_forward(src)),
alpha=(0.0 if warmup < 0.2 * (position + 4) else 1.0))
src = self.norm_final(self.balancer(src))
@ -262,10 +276,6 @@ class ConformerEncoder(nn.Module):
assert num_layers - 1 not in aux_layers
self.num_layers = num_layers
num_channels = encoder_layer.d_model
self.combiner = RandomCombine(num_inputs=len(self.aux_layers),
final_weight=0.5,
pure_prob=0.333,
stddev=2.0)
def forward(
self,
@ -273,7 +283,7 @@ class ConformerEncoder(nn.Module):
pos_emb: Tensor,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
warmup_mode: bool = False
warmup: float = 1.0
) -> Tensor:
r"""Pass the input through the encoder layers in turn.
@ -293,7 +303,7 @@ class ConformerEncoder(nn.Module):
"""
output = src
outputs = []
num_layers = len(self.layers)
for i, mod in enumerate(self.layers):
output = mod(
@ -301,11 +311,10 @@ class ConformerEncoder(nn.Module):
pos_emb,
src_mask=mask,
src_key_padding_mask=src_key_padding_mask,
warmup=warmup,
position=(i / num_layers),
)
if i in self.aux_layers:
outputs.append(output)
output = self.combiner(outputs, warmup_mode)
return output
@ -922,187 +931,9 @@ class Identity(torch.nn.Module):
return x
class RandomCombine(torch.nn.Module):
"""
This module combines a list of Tensors, all with the same shape, to
produce a single output of that same shape which, in training time,
is a random combination of all the inputs; but which in test time
will be just the last input.
The idea is that the list of Tensors will be a list of outputs of multiple
conformer layers. This has a similar effect as iterated loss. (See:
DEJA-VU: DOUBLE FEATURE PRESENTATION AND ITERATED LOSS IN DEEP TRANSFORMER
NETWORKS).
"""
def __init__(self, num_inputs: int,
final_weight: float = 0.5,
pure_prob: float = 0.5,
stddev: float = 2.0) -> None:
"""
Args:
num_inputs: The number of tensor inputs, which equals the number of layers'
outputs that are fed into this module. E.g. in an 18-layer neural
net if we output layers 16, 12, 18, num_inputs would be 3.
final_weight: The amount of weight or probability we assign to the
final layer when randomly choosing layers or when choosing
continuous layer weights.
pure_prob: The probability, on each frame, with which we choose
only a single layer to output (rather than an interpolation)
stddev: A standard deviation that we add to log-probs for computing
randomized weights.
The method of choosing which layers,
or combinations of layers, to use, is conceptually as follows.
With probability `pure_prob`:
With probability `final_weight`: choose final layer,
Else: choose random non-final layer.
Else:
Choose initial log-weights that correspond to assigning
weight `final_weight` to the final layer and equal
weights to other layers; then add Gaussian noise
with variance `stddev` to these log-weights, and normalize
to weights (note: the average weight assigned to the
final layer here will not be `final_weight` if stddev>0).
"""
super(RandomCombine, self).__init__()
assert pure_prob >= 0 and pure_prob <= 1
assert final_weight > 0 and final_weight < 1
assert num_inputs >= 1
self.num_inputs = num_inputs
self.final_weight = final_weight
self.pure_prob = pure_prob
self.stddev= stddev
self.final_log_weight = torch.tensor((final_weight / (1 - final_weight)) * (self.num_inputs - 1)).log().item()
def forward(self, inputs: Sequence[Tensor],
warmup_mode: bool) -> Tensor:
"""
Forward function.
Args:
inputs: a list of Tensor, e.g. from various layers of a transformer.
All must be the same shape, of (*, num_channels)
Returns:
a Tensor of shape (*, num_channels). In test mode
this is just the final input.
"""
num_inputs = self.num_inputs
assert len(inputs) == num_inputs
if not (self.training and warmup_mode):
return inputs[-1]
# Shape of weights: (*, num_inputs)
num_channels = inputs[0].shape[-1]
num_frames = inputs[0].numel() // num_channels
ndim = inputs[0].ndim
# stacked_inputs: (num_frames, num_channels, num_inputs)
stacked_inputs = torch.stack(inputs, dim=ndim).reshape((num_frames,
num_channels,
num_inputs))
# weights: (num_frames, num_inputs)
weights = self._get_random_weights(inputs[0].dtype, inputs[0].device,
num_frames)
weights = weights.reshape(num_frames, num_inputs, 1)
# ans: (num_frames, num_channels, 1)
ans = torch.matmul(stacked_inputs, weights)
# ans: (*, num_channels)
ans = ans.reshape(*tuple(inputs[0].shape[:-1]), num_channels)
if __name__ == "__main__":
# for testing only...
print("Weights = ", weights.reshape(num_frames, num_inputs))
return ans
def _get_random_weights(self, dtype: torch.dtype, device: torch.device, num_frames: int) -> Tensor:
"""
Return a tensor of random weights, of shape (num_frames, self.num_inputs),
Args:
dtype: the data-type desired for the answer, e.g. float, double
device: the device needed for the answer
num_frames: the number of sets of weights desired
Returns: a tensor of shape (num_frames, self.num_inputs), such that
ans.sum(dim=1) is all ones.
"""
pure_prob = self.pure_prob
if pure_prob == 0.0:
return self._get_random_mixed_weights(dtype, device, num_frames)
elif pure_prob == 1.0:
return self._get_random_pure_weights(dtype, device, num_frames)
else:
p = self._get_random_pure_weights(dtype, device, num_frames)
m = self._get_random_mixed_weights(dtype, device, num_frames)
return torch.where(torch.rand(num_frames, 1, device=device) < self.pure_prob, p, m)
def _get_random_pure_weights(self, dtype: torch.dtype, device: torch.device, num_frames: int):
"""
Return a tensor of random one-hot weights, of shape (num_frames, self.num_inputs),
Args:
dtype: the data-type desired for the answer, e.g. float, double
device: the device needed for the answer
num_frames: the number of sets of weights desired
Returns: a one-hot tensor of shape (num_frames, self.num_inputs), with
exactly one weight equal to 1.0 on each frame.
"""
final_prob = self.final_weight
# final contains self.num_inputs - 1 in all elements
final = torch.full((num_frames,), self.num_inputs - 1, device=device)
# nonfinal contains random integers in [0..num_inputs - 2], these are for non-final weights.
nonfinal = torch.randint(self.num_inputs - 1, (num_frames,), device=device)
indexes = torch.where(torch.rand(num_frames, device=device) < final_prob,
final, nonfinal)
ans = torch.nn.functional.one_hot(indexes, num_classes=self.num_inputs).to(dtype=dtype)
return ans
def _get_random_mixed_weights(self, dtype: torch.dtype, device: torch.device, num_frames: int):
"""
Return a tensor of random one-hot weights, of shape (num_frames, self.num_inputs),
Args:
dtype: the data-type desired for the answer, e.g. float, double
device: the device needed for the answer
num_frames: the number of sets of weights desired
Returns: a tensor of shape (num_frames, self.num_inputs), which elements in [0..1] that
sum to one over the second axis, i.e. ans.sum(dim=1) is all ones.
"""
logprobs = torch.randn(num_frames, self.num_inputs, dtype=dtype, device=device) * self.stddev
logprobs[:,-1] += self.final_log_weight
return logprobs.softmax(dim=1)
def _test_random_combine(final_weight: float, pure_prob: float, stddev: float):
print(f"_test_random_combine: final_weight={final_weight}, pure_prob={pure_prob}, stddev={stddev}")
num_inputs = 3
num_channels = 50
m = RandomCombine(num_inputs=num_inputs,
final_weight=final_weight,
pure_prob=pure_prob,
stddev=stddev)
x = [ torch.ones(3, 4, num_channels) for _ in range(num_inputs) ]
y = m(x, True)
assert y.shape == x[0].shape
assert torch.allclose(y, x[0]) # .. since actually all ones.
if __name__ == '__main__':
_test_random_combine(0.999, 0, 0.0)
_test_random_combine(0.5, 0, 0.0)
_test_random_combine(0.999, 0, 0.0)
_test_random_combine(0.5, 0, 0.3)
_test_random_combine(0.5, 1, 0.3)
_test_random_combine(0.5, 0.5, 0.3)
feature_dim = 50
c = Conformer(num_features=feature_dim, output_dim=256, d_model=128, nhead=4)
batch_size = 5
@ -1110,4 +941,4 @@ if __name__ == '__main__':
# Just make sure the forward pass runs.
f = c(torch.randn(batch_size, seq_len, feature_dim),
torch.full((batch_size,), seq_len, dtype=torch.int64),
warmup_mode=True)
warmup=0.5)

View File

@ -66,7 +66,7 @@ class Transducer(nn.Module):
prune_range: int = 5,
am_scale: float = 0.0,
lm_scale: float = 0.0,
warmup_mode: bool = False
warmup: float = 1.0,
) -> torch.Tensor:
"""
Args:
@ -87,6 +87,9 @@ class Transducer(nn.Module):
lm_scale:
The scale to smooth the loss with lm (output of predictor network)
part
warmup:
A value warmup >= 0 that determines which modules are active, values
warmup > 1 "are fully warmed up" and all modules will be active.
Returns:
Return the transducer loss.
@ -102,7 +105,7 @@ class Transducer(nn.Module):
assert x.size(0) == x_lens.size(0) == y.dim0
encoder_out, x_lens = self.encoder(x, x_lens, warmup_mode=warmup_mode)
encoder_out, x_lens = self.encoder(x, x_lens, warmup=warmup)
assert torch.all(x_lens > 0)
# Now for the decoder, i.e., the prediction network

View File

@ -296,7 +296,7 @@ def get_params() -> AttributeDict:
"embedding_dim": 512,
# parameters for Noam
"warm_step": 60000, # For the 100h subset, use 8k
"model_warm_step": 3000, # arg given to model, not for lrate
"model_warm_step": 4000, # arg given to model, not for lrate
"env_info": get_env_info(),
}
)
@ -454,7 +454,7 @@ def compute_loss(
sp: spm.SentencePieceProcessor,
batch: dict,
is_training: bool,
warmup_mode: bool = False
warmup: float = 1.0
) -> Tuple[Tensor, MetricsTracker]:
"""
Compute CTC loss given the model and its inputs.
@ -471,6 +471,8 @@ def compute_loss(
True for training. False for validation. When it is True, this
function enables autograd during computation; when it is False, it
disables autograd.
warmup: a floating point value which increases throughout training;
values >= 1.0 are fully warmed up and have all modules present.
"""
device = model.device
feature = batch["inputs"]
@ -493,10 +495,10 @@ def compute_loss(
prune_range=params.prune_range,
am_scale=params.am_scale,
lm_scale=params.lm_scale,
warmup_mode=warmup_mode,
warmup=warmup,
)
loss = (params.simple_loss_scale * simple_loss +
(pruned_loss * 0.0 if warmup_mode else pruned_loss))
(pruned_loss * 0.0 if warmup < 1.0 else pruned_loss))
assert loss.requires_grad == is_training
@ -601,7 +603,7 @@ def train_one_epoch(
sp=sp,
batch=batch,
is_training=True,
warmup_mode=(params.batch_idx_train < params.model_warm_step)
warmup=(params.batch_idx_train / params.model_warm_step)
)
# summary stats
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
@ -855,7 +857,6 @@ def scan_pessimistic_batches_for_oom(
sp=sp,
batch=batch,
is_training=True,
warmup_mode=True # may use slightly more memory
)
loss.backward()
optimizer.step()