remove unsed

This commit is contained in:
Yuekai Zhang 2025-04-25 14:21:50 +08:00
parent 6ea7ec8543
commit 9a07363a8d

View File

@ -1,26 +1,18 @@
# Modified from https://github.com/QwenLM/Qwen2.5-Omni/blob/main/web_demo.py
import io
import os
import ffmpeg
import numpy as np
import gradio as gr
import soundfile as sf
#import modelscope_studio.components.base as ms
#import modelscope_studio.components.antd as antd
import gradio.processing_utils as processing_utils
#from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
from transformers import AutoModelForCausalLM
from gradio_client import utils as client_utils
#from qwen_omni_utils import process_mm_info
from argparse import ArgumentParser
def _load_model_processor(args):
if args.cpu_only:
device_map = 'cpu'
else:
device_map = 'auto'
# Check if flash-attn2 flag is enabled and load model accordingly
if args.flash_attn2:
@ -35,37 +27,9 @@ def _load_model_processor(args):
return model, processor
def _launch_demo(args, model, processor):
# Voice settings
VOICE_LIST = ['Chelsie', 'Ethan']
DEFAULT_VOICE = 'Chelsie'
default_system_prompt = 'You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.'
language = args.ui_language
# def get_text(text: str, cn_text: str):
# if language == 'en':
# return text
# if language == 'zh':
# return cn_text
# return text
# def convert_webm_to_mp4(input_file, output_file):
# try:
# (
# ffmpeg
# .input(input_file)
# .output(output_file, acodec='aac', ar='16000', audio_bitrate='192k')
# .run(quiet=True, overwrite_output=True)
# )
# print(f"Conversion successful: {output_file}")
# except ffmpeg.Error as e:
# print("An error occurred during conversion.")
# print(e.stderr.decode('utf-8'))
def format_history(history: list, system_prompt: str):
def format_history(history: list):
messages = []
# messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
for item in history:
if isinstance(item["content"], str):
messages.append({"role": item['role'], "content": item['content']})
@ -74,25 +38,7 @@ def _launch_demo(args, model, processor):
file_path = item["content"][0]
mime_type = client_utils.get_mimetype(file_path)
if mime_type.startswith("image"):
messages.append({
"role":
item['role'],
"content": [{
"type": "image",
"image": file_path
}]
})
elif mime_type.startswith("video"):
messages.append({
"role":
item['role'],
"content": [{
"type": "video",
"video": file_path
}]
})
elif mime_type.startswith("audio"):
if mime_type.startswith("audio"):
messages.append({
"role":
item['role'],
@ -103,17 +49,17 @@ def _launch_demo(args, model, processor):
})
return messages
def predict(messages, voice=DEFAULT_VOICE):
def predict(messages):
print('predict history: ', messages)
text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
audios, images, videos = process_mm_info(messages, use_audio_in_video=True)
audios = [msg['content'][0]['audio'] for msg in messages if msg['role'] == 'user' and isinstance(msg['content'], list) and msg['content'][0]['type'] == 'audio']
inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=True)
inputs = processor(text=text, audio=audios, return_tensors="pt", padding=True)
inputs = inputs.to(model.device).to(model.dtype)
text_ids, audio = model.generate(**inputs, speaker=voice, use_audio_in_video=True)
text_ids, audio = model.generate(**inputs)
response = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
response = response[0].split("\n")[-1]
@ -128,37 +74,31 @@ def _launch_demo(args, model, processor):
wav_bytes, "audio.wav", cache_dir=demo.GRADIO_CACHE)
yield {"type": "audio", "data": audio_path}
def media_predict(audio, video, history, system_prompt, voice_choice):
def media_predict(audio, history):
# First yield
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=False), # submit_btn
gr.update(visible=True), # stop_btn
)
if video is not None:
convert_webm_to_mp4(video, video.replace('.webm', '.mp4'))
video = video.replace(".webm", ".mp4")
files = [audio, video]
files = [audio]
for f in files:
if f:
history.append({"role": "user", "content": (f, )})
formatted_history = format_history(history=history,
system_prompt=system_prompt,)
formatted_history = format_history(history=history)
history.append({"role": "assistant", "content": ""})
for chunk in predict(formatted_history, voice_choice):
for chunk in predict(formatted_history):
if chunk["type"] == "text":
history[-1]["content"] = chunk["data"]
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=False), # submit_btn
gr.update(visible=True), # stop_btn
@ -172,79 +112,47 @@ def _launch_demo(args, model, processor):
# Final yield
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=True), # submit_btn
gr.update(visible=False), # stop_btn
)
with gr.Blocks() as demo, ms.Application(), antd.ConfigProvider():
with gr.Sidebar(open=False):
system_prompt_textbox = gr.Textbox(label="System Prompt",
value=default_system_prompt)
with antd.Flex(gap="small", justify="center", align="center"):
with antd.Flex(vertical=True, gap="small", align="center"):
antd.Typography.Title("Qwen2.5-Omni Demo",
level=1,
elem_style=dict(margin=0, fontSize=28))
with antd.Flex(vertical=True, gap="small"):
antd.Typography.Text(get_text("🎯 Instructions for use:",
"🎯 使用说明:"),
strong=True)
antd.Typography.Text(
get_text(
"1⃣ Click the Audio Record button or the Camera Record button.",
"1⃣ 点击音频录制按钮,或摄像头-录制按钮"))
antd.Typography.Text(
get_text("2⃣ Input audio or video.", "2⃣ 输入音频或者视频"))
antd.Typography.Text(
get_text(
"3⃣ Click the submit button and wait for the model's response.",
"3⃣ 点击提交并等待模型的回答"))
voice_choice = gr.Dropdown(label="Voice Choice",
choices=VOICE_LIST,
value=DEFAULT_VOICE)
with gr.Tabs():
with gr.Tab("Online"):
with gr.Row():
with gr.Column(scale=1):
microphone = gr.Audio(sources=['microphone'],
type="filepath")
webcam = gr.Video(sources=['webcam'],
height=400,
include_audio=True)
submit_btn = gr.Button(get_text("Submit", "提交"),
variant="primary")
stop_btn = gr.Button(get_text("Stop", "停止"), visible=False)
clear_btn = gr.Button(get_text("Clear History", "清除历史"))
with gr.Column(scale=2):
media_chatbot = gr.Chatbot(height=650, type="messages")
with gr.Blocks() as demo:
with gr.Tab("Online"):
with gr.Row():
with gr.Column(scale=1):
microphone = gr.Audio(sources=['microphone'],
type="filepath")
submit_btn = gr.Button(get_text("Submit", "提交"),
variant="primary")
stop_btn = gr.Button(get_text("Stop", "停止"), visible=False)
clear_btn = gr.Button(get_text("Clear History", "清除历史"))
with gr.Column(scale=2):
media_chatbot = gr.Chatbot(height=650, type="messages")
def clear_history():
return [], gr.update(value=None), gr.update(value=None)
def clear_history():
return [], gr.update(value=None)
submit_event = submit_btn.click(fn=media_predict,
inputs=[
microphone, webcam,
media_chatbot,
system_prompt_textbox,
voice_choice
],
outputs=[
microphone, webcam,
media_chatbot, submit_btn,
stop_btn
])
stop_btn.click(
fn=lambda:
(gr.update(visible=True), gr.update(visible=False)),
inputs=None,
outputs=[submit_btn, stop_btn],
cancels=[submit_event],
queue=False)
clear_btn.click(fn=clear_history,
inputs=None,
outputs=[media_chatbot, microphone, webcam])
submit_event = submit_btn.click(fn=media_predict,
inputs=[
microphone,
media_chatbot,
],
outputs=[
microphone,
media_chatbot, submit_btn,
stop_btn
])
stop_btn.click(
fn=lambda:
(gr.update(visible=True), gr.update(visible=False)),
inputs=None,
outputs=[submit_btn, stop_btn],
cancels=[submit_event],
queue=False)
clear_btn.click(fn=clear_history,
inputs=None,
outputs=[media_chatbot, microphone])
demo.queue(default_concurrency_limit=100, max_size=100).launch(max_threads=100,
ssr_mode=False,
@ -254,16 +162,13 @@ def _launch_demo(args, model, processor):
server_name=args.server_name,)
DEFAULT_CKPT_PATH = "Qwen/Qwen2.5-Omni-7B"
def _get_args():
parser = ArgumentParser()
parser.add_argument('-c',
'--checkpoint-path',
parser.add_argument('--checkpoint-path',
type=str,
default=DEFAULT_CKPT_PATH,
default=None,
help='Checkpoint name or path, default to %(default)r')
parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')
parser.add_argument('--flash-attn2',
action='store_true',
@ -279,7 +184,6 @@ def _get_args():
help='Automatically launch the interface in a new tab on the default browser.')
parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.')
parser.add_argument('--server-name', type=str, default='127.0.0.1', help='Demo server name.')
parser.add_argument('--ui-language', type=str, choices=['en', 'zh'], default='en', help='Display language for the UI.')
args = parser.parse_args()
return args