mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
remove unsed
This commit is contained in:
parent
6ea7ec8543
commit
9a07363a8d
@ -1,26 +1,18 @@
|
||||
# Modified from https://github.com/QwenLM/Qwen2.5-Omni/blob/main/web_demo.py
|
||||
import io
|
||||
import os
|
||||
import ffmpeg
|
||||
|
||||
import numpy as np
|
||||
import gradio as gr
|
||||
import soundfile as sf
|
||||
|
||||
#import modelscope_studio.components.base as ms
|
||||
#import modelscope_studio.components.antd as antd
|
||||
import gradio.processing_utils as processing_utils
|
||||
|
||||
#from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
|
||||
from transformers import AutoModelForCausalLM
|
||||
from gradio_client import utils as client_utils
|
||||
#from qwen_omni_utils import process_mm_info
|
||||
|
||||
from argparse import ArgumentParser
|
||||
|
||||
def _load_model_processor(args):
|
||||
if args.cpu_only:
|
||||
device_map = 'cpu'
|
||||
else:
|
||||
device_map = 'auto'
|
||||
|
||||
# Check if flash-attn2 flag is enabled and load model accordingly
|
||||
if args.flash_attn2:
|
||||
@ -35,37 +27,9 @@ def _load_model_processor(args):
|
||||
return model, processor
|
||||
|
||||
def _launch_demo(args, model, processor):
|
||||
# Voice settings
|
||||
VOICE_LIST = ['Chelsie', 'Ethan']
|
||||
DEFAULT_VOICE = 'Chelsie'
|
||||
|
||||
default_system_prompt = 'You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.'
|
||||
|
||||
language = args.ui_language
|
||||
|
||||
# def get_text(text: str, cn_text: str):
|
||||
# if language == 'en':
|
||||
# return text
|
||||
# if language == 'zh':
|
||||
# return cn_text
|
||||
# return text
|
||||
|
||||
# def convert_webm_to_mp4(input_file, output_file):
|
||||
# try:
|
||||
# (
|
||||
# ffmpeg
|
||||
# .input(input_file)
|
||||
# .output(output_file, acodec='aac', ar='16000', audio_bitrate='192k')
|
||||
# .run(quiet=True, overwrite_output=True)
|
||||
# )
|
||||
# print(f"Conversion successful: {output_file}")
|
||||
# except ffmpeg.Error as e:
|
||||
# print("An error occurred during conversion.")
|
||||
# print(e.stderr.decode('utf-8'))
|
||||
|
||||
def format_history(history: list, system_prompt: str):
|
||||
def format_history(history: list):
|
||||
messages = []
|
||||
# messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
|
||||
for item in history:
|
||||
if isinstance(item["content"], str):
|
||||
messages.append({"role": item['role'], "content": item['content']})
|
||||
@ -74,25 +38,7 @@ def _launch_demo(args, model, processor):
|
||||
file_path = item["content"][0]
|
||||
|
||||
mime_type = client_utils.get_mimetype(file_path)
|
||||
if mime_type.startswith("image"):
|
||||
messages.append({
|
||||
"role":
|
||||
item['role'],
|
||||
"content": [{
|
||||
"type": "image",
|
||||
"image": file_path
|
||||
}]
|
||||
})
|
||||
elif mime_type.startswith("video"):
|
||||
messages.append({
|
||||
"role":
|
||||
item['role'],
|
||||
"content": [{
|
||||
"type": "video",
|
||||
"video": file_path
|
||||
}]
|
||||
})
|
||||
elif mime_type.startswith("audio"):
|
||||
if mime_type.startswith("audio"):
|
||||
messages.append({
|
||||
"role":
|
||||
item['role'],
|
||||
@ -103,17 +49,17 @@ def _launch_demo(args, model, processor):
|
||||
})
|
||||
return messages
|
||||
|
||||
def predict(messages, voice=DEFAULT_VOICE):
|
||||
def predict(messages):
|
||||
print('predict history: ', messages)
|
||||
|
||||
text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
||||
|
||||
audios, images, videos = process_mm_info(messages, use_audio_in_video=True)
|
||||
audios = [msg['content'][0]['audio'] for msg in messages if msg['role'] == 'user' and isinstance(msg['content'], list) and msg['content'][0]['type'] == 'audio']
|
||||
|
||||
inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=True)
|
||||
inputs = processor(text=text, audio=audios, return_tensors="pt", padding=True)
|
||||
inputs = inputs.to(model.device).to(model.dtype)
|
||||
|
||||
text_ids, audio = model.generate(**inputs, speaker=voice, use_audio_in_video=True)
|
||||
text_ids, audio = model.generate(**inputs)
|
||||
|
||||
response = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
||||
response = response[0].split("\n")[-1]
|
||||
@ -128,37 +74,31 @@ def _launch_demo(args, model, processor):
|
||||
wav_bytes, "audio.wav", cache_dir=demo.GRADIO_CACHE)
|
||||
yield {"type": "audio", "data": audio_path}
|
||||
|
||||
def media_predict(audio, video, history, system_prompt, voice_choice):
|
||||
def media_predict(audio, history):
|
||||
# First yield
|
||||
yield (
|
||||
None, # microphone
|
||||
None, # webcam
|
||||
history, # media_chatbot
|
||||
gr.update(visible=False), # submit_btn
|
||||
gr.update(visible=True), # stop_btn
|
||||
)
|
||||
|
||||
if video is not None:
|
||||
convert_webm_to_mp4(video, video.replace('.webm', '.mp4'))
|
||||
video = video.replace(".webm", ".mp4")
|
||||
files = [audio, video]
|
||||
files = [audio]
|
||||
|
||||
for f in files:
|
||||
if f:
|
||||
history.append({"role": "user", "content": (f, )})
|
||||
|
||||
formatted_history = format_history(history=history,
|
||||
system_prompt=system_prompt,)
|
||||
formatted_history = format_history(history=history)
|
||||
|
||||
|
||||
history.append({"role": "assistant", "content": ""})
|
||||
|
||||
for chunk in predict(formatted_history, voice_choice):
|
||||
for chunk in predict(formatted_history):
|
||||
if chunk["type"] == "text":
|
||||
history[-1]["content"] = chunk["data"]
|
||||
yield (
|
||||
None, # microphone
|
||||
None, # webcam
|
||||
history, # media_chatbot
|
||||
gr.update(visible=False), # submit_btn
|
||||
gr.update(visible=True), # stop_btn
|
||||
@ -172,79 +112,47 @@ def _launch_demo(args, model, processor):
|
||||
# Final yield
|
||||
yield (
|
||||
None, # microphone
|
||||
None, # webcam
|
||||
history, # media_chatbot
|
||||
gr.update(visible=True), # submit_btn
|
||||
gr.update(visible=False), # stop_btn
|
||||
)
|
||||
|
||||
with gr.Blocks() as demo, ms.Application(), antd.ConfigProvider():
|
||||
with gr.Sidebar(open=False):
|
||||
system_prompt_textbox = gr.Textbox(label="System Prompt",
|
||||
value=default_system_prompt)
|
||||
with antd.Flex(gap="small", justify="center", align="center"):
|
||||
with antd.Flex(vertical=True, gap="small", align="center"):
|
||||
antd.Typography.Title("Qwen2.5-Omni Demo",
|
||||
level=1,
|
||||
elem_style=dict(margin=0, fontSize=28))
|
||||
with antd.Flex(vertical=True, gap="small"):
|
||||
antd.Typography.Text(get_text("🎯 Instructions for use:",
|
||||
"🎯 使用说明:"),
|
||||
strong=True)
|
||||
antd.Typography.Text(
|
||||
get_text(
|
||||
"1️⃣ Click the Audio Record button or the Camera Record button.",
|
||||
"1️⃣ 点击音频录制按钮,或摄像头-录制按钮"))
|
||||
antd.Typography.Text(
|
||||
get_text("2️⃣ Input audio or video.", "2️⃣ 输入音频或者视频"))
|
||||
antd.Typography.Text(
|
||||
get_text(
|
||||
"3️⃣ Click the submit button and wait for the model's response.",
|
||||
"3️⃣ 点击提交并等待模型的回答"))
|
||||
voice_choice = gr.Dropdown(label="Voice Choice",
|
||||
choices=VOICE_LIST,
|
||||
value=DEFAULT_VOICE)
|
||||
with gr.Tabs():
|
||||
with gr.Tab("Online"):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1):
|
||||
microphone = gr.Audio(sources=['microphone'],
|
||||
type="filepath")
|
||||
webcam = gr.Video(sources=['webcam'],
|
||||
height=400,
|
||||
include_audio=True)
|
||||
submit_btn = gr.Button(get_text("Submit", "提交"),
|
||||
variant="primary")
|
||||
stop_btn = gr.Button(get_text("Stop", "停止"), visible=False)
|
||||
clear_btn = gr.Button(get_text("Clear History", "清除历史"))
|
||||
with gr.Column(scale=2):
|
||||
media_chatbot = gr.Chatbot(height=650, type="messages")
|
||||
with gr.Blocks() as demo:
|
||||
with gr.Tab("Online"):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1):
|
||||
microphone = gr.Audio(sources=['microphone'],
|
||||
type="filepath")
|
||||
submit_btn = gr.Button(get_text("Submit", "提交"),
|
||||
variant="primary")
|
||||
stop_btn = gr.Button(get_text("Stop", "停止"), visible=False)
|
||||
clear_btn = gr.Button(get_text("Clear History", "清除历史"))
|
||||
with gr.Column(scale=2):
|
||||
media_chatbot = gr.Chatbot(height=650, type="messages")
|
||||
|
||||
def clear_history():
|
||||
return [], gr.update(value=None), gr.update(value=None)
|
||||
def clear_history():
|
||||
return [], gr.update(value=None)
|
||||
|
||||
submit_event = submit_btn.click(fn=media_predict,
|
||||
inputs=[
|
||||
microphone, webcam,
|
||||
media_chatbot,
|
||||
system_prompt_textbox,
|
||||
voice_choice
|
||||
],
|
||||
outputs=[
|
||||
microphone, webcam,
|
||||
media_chatbot, submit_btn,
|
||||
stop_btn
|
||||
])
|
||||
stop_btn.click(
|
||||
fn=lambda:
|
||||
(gr.update(visible=True), gr.update(visible=False)),
|
||||
inputs=None,
|
||||
outputs=[submit_btn, stop_btn],
|
||||
cancels=[submit_event],
|
||||
queue=False)
|
||||
clear_btn.click(fn=clear_history,
|
||||
inputs=None,
|
||||
outputs=[media_chatbot, microphone, webcam])
|
||||
submit_event = submit_btn.click(fn=media_predict,
|
||||
inputs=[
|
||||
microphone,
|
||||
media_chatbot,
|
||||
],
|
||||
outputs=[
|
||||
microphone,
|
||||
media_chatbot, submit_btn,
|
||||
stop_btn
|
||||
])
|
||||
stop_btn.click(
|
||||
fn=lambda:
|
||||
(gr.update(visible=True), gr.update(visible=False)),
|
||||
inputs=None,
|
||||
outputs=[submit_btn, stop_btn],
|
||||
cancels=[submit_event],
|
||||
queue=False)
|
||||
clear_btn.click(fn=clear_history,
|
||||
inputs=None,
|
||||
outputs=[media_chatbot, microphone])
|
||||
|
||||
demo.queue(default_concurrency_limit=100, max_size=100).launch(max_threads=100,
|
||||
ssr_mode=False,
|
||||
@ -254,16 +162,13 @@ def _launch_demo(args, model, processor):
|
||||
server_name=args.server_name,)
|
||||
|
||||
|
||||
DEFAULT_CKPT_PATH = "Qwen/Qwen2.5-Omni-7B"
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
|
||||
parser.add_argument('-c',
|
||||
'--checkpoint-path',
|
||||
parser.add_argument('--checkpoint-path',
|
||||
type=str,
|
||||
default=DEFAULT_CKPT_PATH,
|
||||
default=None,
|
||||
help='Checkpoint name or path, default to %(default)r')
|
||||
parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')
|
||||
|
||||
parser.add_argument('--flash-attn2',
|
||||
action='store_true',
|
||||
@ -279,7 +184,6 @@ def _get_args():
|
||||
help='Automatically launch the interface in a new tab on the default browser.')
|
||||
parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.')
|
||||
parser.add_argument('--server-name', type=str, default='127.0.0.1', help='Demo server name.')
|
||||
parser.add_argument('--ui-language', type=str, choices=['en', 'zh'], default='en', help='Display language for the UI.')
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
Loading…
x
Reference in New Issue
Block a user