This commit is contained in:
Yifan Yang 2023-06-14 15:22:00 +08:00
parent e37e30fafc
commit 9971ca6173
2 changed files with 111 additions and 47 deletions

View File

@ -1185,7 +1185,7 @@ def run(rank, world_size, args):
valid_cuts += librispeech.dev_other_cuts()
valid_dl = librispeech.valid_dataloaders(valid_cuts)
if not params.print_diagnostics:
if 0 and not params.print_diagnostics:
scan_pessimistic_batches_for_oom(
model=model,
train_dl=train_dl,

View File

@ -544,13 +544,15 @@ class Zipformer2EncoderLayer(nn.Module):
bypass_skip_rate: FloatLike = ScheduledFloat((0.0, 0.5), (4000.0, 0.02), default=0),
) -> None:
super(Zipformer2EncoderLayer, self).__init__()
embed_dim = embed_dim >> 1
self.embed_dim = embed_dim
# self.bypass implements layer skipping as well as bypass; see its default values.
self.bypass = BypassModule(embed_dim, skip_rate=bypass_skip_rate,
self.bypass = BypassModule(embed_dim * 2, skip_rate=bypass_skip_rate,
straight_through_rate=0)
# bypass_mid is bypass used in the middle of the layer.
self.bypass_mid = BypassModule(embed_dim, straight_through_rate=0)
self.bypass_mid_a = BypassModule(embed_dim, straight_through_rate=0)
self.bypass_mid_b = BypassModule(embed_dim, straight_through_rate=0)
# skip probability for dynamic modules (meaning: anything but feedforward).
self.attention_skip_rate = copy.deepcopy(attention_skip_rate)
@ -565,48 +567,71 @@ class Zipformer2EncoderLayer(nn.Module):
self.const_attention_rate = copy.deepcopy(const_attention_rate)
self.self_attn_weights = RelPositionMultiheadAttentionWeights(
self.cross_attn_weights_a = RelPositionMultiheadAttentionWeights(
embed_dim, pos_dim=pos_dim, num_heads=num_heads,
query_head_dim=query_head_dim, pos_head_dim=pos_head_dim,
dropout=0.0,
)
self.cross_attn_weights_b = RelPositionMultiheadAttentionWeights(
embed_dim, pos_dim=pos_dim, num_heads=num_heads,
query_head_dim=query_head_dim, pos_head_dim=pos_head_dim,
dropout=0.0,
)
self.self_attn1 = SelfAttention(embed_dim, num_heads,
self.cross_attn1_a = CrossAttention(embed_dim, num_heads,
value_head_dim)
self.cross_attn1_b = CrossAttention(embed_dim, num_heads,
value_head_dim)
self.self_attn2 = SelfAttention(embed_dim, num_heads,
self.cross_attn2_a = CrossAttention(embed_dim, num_heads,
value_head_dim)
self.cross_attn2_b = CrossAttention(embed_dim, num_heads,
value_head_dim)
self.feed_forward1 = FeedforwardModule(embed_dim,
self.feed_forward1_a = FeedforwardModule(embed_dim,
(feedforward_dim * 3) // 4,
dropout)
self.feed_forward1_b = FeedforwardModule(embed_dim,
(feedforward_dim * 3) // 4,
dropout)
self.feed_forward2 = FeedforwardModule(embed_dim,
self.feed_forward2_a = FeedforwardModule(embed_dim,
feedforward_dim,
dropout)
self.feed_forward2_b = FeedforwardModule(embed_dim,
feedforward_dim,
dropout)
self.feed_forward3 = FeedforwardModule(embed_dim,
self.feed_forward3_a = FeedforwardModule(embed_dim,
(feedforward_dim * 5) // 4,
dropout)
self.feed_forward3_b = FeedforwardModule(embed_dim,
(feedforward_dim * 5) // 4,
dropout)
self.nonlin_attention = NonlinAttention(embed_dim,
self.nonlin_attention_a = NonlinAttention(embed_dim,
hidden_channels=3 * embed_dim // 4)
self.nonlin_attention_b = NonlinAttention(embed_dim,
hidden_channels=3 * embed_dim // 4)
self.conv_module1 = ConvolutionModule(embed_dim,
self.conv_module1_a = ConvolutionModule(embed_dim,
cnn_module_kernel,
causal=causal)
self.conv_module1_b = ConvolutionModule(embed_dim,
cnn_module_kernel,
causal=causal)
self.conv_module2 = ConvolutionModule(embed_dim,
self.conv_module2_a = ConvolutionModule(embed_dim,
cnn_module_kernel,
causal=causal)
self.conv_module2_b = ConvolutionModule(embed_dim,
cnn_module_kernel,
causal=causal)
# TODO: remove it
self.bypass_scale = nn.Parameter(torch.full((embed_dim,), 0.5))
self.norm = BiasNorm(embed_dim)
self.norm = BiasNorm(embed_dim * 2)
self.balancer1 = Balancer(
embed_dim, channel_dim=-1,
embed_dim * 2, channel_dim=-1,
min_positive=0.45, max_positive=0.55,
min_abs=0.2, max_abs=4.0,
)
@ -644,7 +669,7 @@ class Zipformer2EncoderLayer(nn.Module):
grad_scale=0.01)
self.balancer2 = Balancer(
embed_dim, channel_dim=-1,
embed_dim * 2, channel_dim=-1,
min_positive=0.45, max_positive=0.55,
min_abs=0.1, max_abs=4.0,
)
@ -692,7 +717,8 @@ class Zipformer2EncoderLayer(nn.Module):
Returns:
A tensor which has the same shape as src
"""
src_orig = src
src_a, src_b = torch.split(src, self.embed_dim, 2)
src_orig_a, src_orig_b = src_a, src_b
# dropout rate for non-feedforward submodules
if torch.jit.is_scripting():
@ -701,18 +727,28 @@ class Zipformer2EncoderLayer(nn.Module):
attention_skip_rate = float(self.attention_skip_rate) if self.training else 0.0
# attn_weights: (num_heads, batch_size, seq_len, seq_len)
attn_weights = self.self_attn_weights(
src,
attn_weights_a = self.cross_attn_weights_a(
src_a,
src_b,
pos_emb=pos_emb,
attn_mask=attn_mask,
key_padding_mask=src_key_padding_mask,
)
attn_weights_b = self.cross_attn_weights_b(
src_b,
src_a,
pos_emb=pos_emb,
attn_mask=attn_mask,
key_padding_mask=src_key_padding_mask,
)
src = src + self.feed_forward1(src)
src_a = src_a + self.feed_forward1_a(src_a)
src_b = src_b + self.feed_forward1_b(src_b)
self_attn_dropout_mask = self.get_sequence_dropout_mask(src, attention_skip_rate)
cross_attn_dropout_mask = self.get_sequence_dropout_mask(src_a, attention_skip_rate)
selected_attn_weights = attn_weights[0:1]
selected_attn_weights_a = attn_weights_a[0:1]
selected_attn_weights_b = attn_weights_b[0:1]
if torch.jit.is_scripting():
pass
elif not self.training and random.random() < float(self.const_attention_rate):
@ -720,23 +756,33 @@ class Zipformer2EncoderLayer(nn.Module):
# encourage these modules to do something similar to an
# averaging-over-time operation.
# only need the mask, can just use the 1st one and expand later
selected_attn_weights = selected_attn_weights[0:1]
selected_attn_weights = (selected_attn_weights > 0.0).to(selected_attn_weights.dtype)
selected_attn_weights = selected_attn_weights * (1.0 / selected_attn_weights.sum(dim=-1, keepdim=True))
selected_attn_weights_a = selected_attn_weights_a[0:1]
selected_attn_weights_b = selected_attn_weights_b[0:1]
selected_attn_weights_a = (selected_attn_weights_a > 0.0).to(selected_attn_weights_a.dtype)
selected_attn_weights_b = (selected_attn_weights_b > 0.0).to(selected_attn_weights_b.dtype)
selected_attn_weights_a = selected_attn_weights_a * (1.0 / selected_attn_weights_a.sum(dim=-1, keepdim=True))
selected_attn_weights_b = selected_attn_weights_b * (1.0 / selected_attn_weights_b.sum(dim=-1, keepdim=True))
na = self.balancer_na(self.nonlin_attention(src, selected_attn_weights))
na_a = self.balancer_na(self.nonlin_attention_a(src_a, selected_attn_weights_a))
na_b = self.balancer_na(self.nonlin_attention_b(src_b, selected_attn_weights_b))
src = src + (na if self_attn_dropout_mask is None else na * self_attn_dropout_mask)
src_a = src_a + (na_a if cross_attn_dropout_mask is None else na_a * cross_attn_dropout_mask)
src_b = src_b + (na_b if cross_attn_dropout_mask is None else na_b * cross_attn_dropout_mask)
self_attn = self.self_attn1(src, attn_weights)
cross_attn_a = self.cross_attn1_a(src_b, attn_weights_a)
cross_attn_b = self.cross_attn1_b(src_a, attn_weights_b)
src = src + (self_attn if self_attn_dropout_mask is None else self_attn * self_attn_dropout_mask)
src_a = src_a + (cross_attn_a if cross_attn_dropout_mask is None else cross_attn_a * cross_attn_dropout_mask)
src_b = src_b + (cross_attn_b if cross_attn_dropout_mask is None else cross_attn_b * cross_attn_dropout_mask)
if torch.jit.is_scripting():
conv_skip_rate = 0.0
else:
conv_skip_rate = float(self.conv_skip_rate) if self.training else 0.0
src = src + self.sequence_dropout(self.conv_module1(src, chunk_size=chunk_size,
src_a = src_a + self.sequence_dropout(self.conv_module1_a(src_a, chunk_size=chunk_size,
src_key_padding_mask=src_key_padding_mask),
conv_skip_rate)
src_b = src_b + self.sequence_dropout(self.conv_module1_b(src_b, chunk_size=chunk_size,
src_key_padding_mask=src_key_padding_mask),
conv_skip_rate)
@ -744,21 +790,29 @@ class Zipformer2EncoderLayer(nn.Module):
ff2_skip_rate = 0.0
else:
ff2_skip_rate = float(self.ff2_skip_rate) if self.training else 0.0
src = src + self.sequence_dropout(self.balancer_ff2(self.feed_forward2(src)),
src_a = src_a + self.sequence_dropout(self.balancer_ff2(self.feed_forward2_a(src_a)),
ff2_skip_rate)
src_b = src_b + self.sequence_dropout(self.balancer_ff2(self.feed_forward2_b(src_b)),
ff2_skip_rate)
# bypass in the middle of the layer.
src = self.bypass_mid(src_orig, src)
src_a = self.bypass_mid_a(src_orig_a, src_a)
src_b = self.bypass_mid_b(src_orig_b, src_b)
self_attn = self.self_attn2(src, attn_weights)
cross_attn_a = self.cross_attn2_a(src_b, attn_weights_a)
cross_attn_b = self.cross_attn2_b(src_a, attn_weights_b)
src = src + (self_attn if self_attn_dropout_mask is None else self_attn * self_attn_dropout_mask)
src_a = src_a + (cross_attn_a if cross_attn_dropout_mask is None else cross_attn_a * cross_attn_dropout_mask)
src_b = src_b + (cross_attn_b if cross_attn_dropout_mask is None else cross_attn_b * cross_attn_dropout_mask)
if torch.jit.is_scripting():
conv_skip_rate = 0.0
else:
conv_skip_rate = float(self.conv_skip_rate) if self.training else 0.0
src = src + self.sequence_dropout(self.conv_module2(src, chunk_size=chunk_size,
src_a = src_a + self.sequence_dropout(self.conv_module2_a(src_a, chunk_size=chunk_size,
src_key_padding_mask=src_key_padding_mask),
conv_skip_rate)
src_b = src_b + self.sequence_dropout(self.conv_module2_b(src_b, chunk_size=chunk_size,
src_key_padding_mask=src_key_padding_mask),
conv_skip_rate)
@ -766,12 +820,17 @@ class Zipformer2EncoderLayer(nn.Module):
ff3_skip_rate = 0.0
else:
ff3_skip_rate = float(self.ff3_skip_rate) if self.training else 0.0
src = src + self.sequence_dropout(self.balancer_ff3(self.feed_forward3(src)),
src_a = src_a + self.sequence_dropout(self.balancer_ff3(self.feed_forward3_a(src_a)),
ff3_skip_rate)
src_b = src_b + self.sequence_dropout(self.balancer_ff3(self.feed_forward3_b(src_b)),
ff3_skip_rate)
src = torch.cat([src_a, src_b], 2)
src = self.balancer1(src)
src = self.norm(src)
src_orig = torch.cat([src_orig_a, src_orig_b], 2)
src = self.bypass(src_orig, src)
src = self.balancer2(src)
@ -827,7 +886,7 @@ class Zipformer2EncoderLayer(nn.Module):
src_orig = src
# attn_weights: (num_heads, batch_size, seq_len, seq_len)
attn_weights, cached_key = self.self_attn_weights.streaming_forward(
attn_weights, cached_key = self.cross_attn_weights.streaming_forward(
src,
pos_emb=pos_emb,
cached_key=cached_key,
@ -845,13 +904,13 @@ class Zipformer2EncoderLayer(nn.Module):
)
src = src + na
self_attn, cached_val1 = self.self_attn1.streaming_forward(
cross_attn, cached_val1 = self.cross_attn1.streaming_forward(
src,
attn_weights=attn_weights,
cached_val=cached_val1,
left_context_len=left_context_len,
)
src = src + self_attn
src = src + cross_attn
src_conv, cached_conv1 = self.conv_module1.streaming_forward(
src,
@ -865,13 +924,13 @@ class Zipformer2EncoderLayer(nn.Module):
# bypass in the middle of the layer.
src = self.bypass_mid(src_orig, src)
self_attn, cached_val2 = self.self_attn2.streaming_forward(
cross_attn, cached_val2 = self.cross_attn2.streaming_forward(
src,
attn_weights=attn_weights,
cached_val=cached_val2,
left_context_len=left_context_len,
)
src = src + self_attn
src = src + cross_attn
src_conv, cached_conv2 = self.conv_module2.streaming_forward(
src,
@ -1438,7 +1497,9 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
# dividing it between the query and key. Note: this module is intended
# to be used with the ScaledAdam optimizer; with most other optimizers,
# it would be necessary to apply the scaling factor in the forward function.
self.in_proj = ScaledLinear(embed_dim, in_proj_dim, bias=True,
self.in_proj_a = ScaledLinear(embed_dim, in_proj_dim, bias=True,
initial_scale=query_head_dim**-0.25)
self.in_proj_b = ScaledLinear(embed_dim, in_proj_dim, bias=True,
initial_scale=query_head_dim**-0.25)
self.whiten_keys = Whiten(num_groups=num_heads,
@ -1475,6 +1536,7 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
def forward(
self,
x: Tensor,
y: Tensor,
pos_emb: Tensor,
key_padding_mask: Optional[Tensor] = None,
attn_mask: Optional[Tensor] = None,
@ -1482,6 +1544,7 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
r"""
Args:
x: input of shape (seq_len, batch_size, embed_dim)
y: input of shape (seq_len, batch_size, embed_dim)
pos_emb: Positional embedding tensor, of shape (1, 2*seq_len - 1, pos_dim)
key_padding_mask: a bool tensor of shape (batch_size, seq_len). Positions that
are True in this mask will be ignored as sources in the attention weighting.
@ -1492,7 +1555,8 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
a tensor of attention weights, of shape (hum_heads, batch_size, seq_len, seq_len)
interpreted as (hum_heads, batch_size, tgt_seq_len, src_seq_len).
"""
x = self.in_proj(x)
x = self.in_proj_a(x)
y = self.in_proj_b(y)
query_head_dim = self.query_head_dim
pos_head_dim = self.pos_head_dim
num_heads = self.num_heads
@ -1503,7 +1567,7 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
# self-attention
q = x[...,0:query_dim]
k = x[...,query_dim:2*query_dim]
k = y[...,query_dim:2*query_dim]
# p is the position-encoding query
p = x[...,2*query_dim:]
assert p.shape[-1] == num_heads * pos_head_dim
@ -1711,7 +1775,7 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
logging.info(f"name={self.name}, attn_weights_entropy = {attn_weights_entropy}")
class SelfAttention(nn.Module):
class CrossAttention(nn.Module):
"""
The simplest possible attention module. This one works with already-computed attention
weights, e.g. as computed by RelPositionMultiheadAttentionWeights.