From 9924acb5a6cdc29e213c80c62a1a9b6790d68504 Mon Sep 17 00:00:00 2001 From: dohe0342 Date: Mon, 9 Jan 2023 11:17:23 +0900 Subject: [PATCH] from local --- .../.conformer_randomcombine.py.swp | Bin 102400 -> 102400 bytes .../conformer_randomcombine.py | 16 +++++++++------- 2 files changed, 9 insertions(+), 7 deletions(-) diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/.conformer_randomcombine.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/.conformer_randomcombine.py.swp index 1423504dc30ea213d0d9865d5b9acde6ee14f30f..18599bdedbdfe260d804cabe17047ec737a500b3 100644 GIT binary patch delta 679 zcmY+?Ur19?9KiA4Ew`z;oYPjA&`pB5P2D6Eda$-$bj~p%2qBlPnl_u>vANhP*q|0c zQNn$={Ua9CLk|(-LVJjymtJ~V4-rIE(o-)*^b*udUzNfR=X1~D@;kr#J3nr@YAsi- zt`mVH;i$TAFdz&Ev-s@fw_?q8+o6n`HOFDUWO6>&`CAVTn=6Cdm%FK`9tFn}I3D7lQi_({no z@<_pnHo*=@)8vkvD%<{q!6>3N|W7UEGtU0KK0h6@A_nA-D$3bMr_9R zMdiLeG1*lr_;bnh?BHBh%V%a5^9vsOxnUGk->AA4kxR`jXsJ_uiFD?4!kbPMli3+9 zzm&-@<&O3xIq4hncsJx)kKp~lP~7t`=d6}hSA+Z2wLGeEKvQ~q3hJoJPxkk_|0UOJ Zll_}=aigQ4Y}32LUB(km)Oj3I{{R+olL`O; delta 625 zcmYMwUucq17{~GFQ2t%pT!KU~c$rXYvDt+|M6d;I*szEqiW=rhH$i<(Ct0u*27|hY z;$6HEEG+7B=zdCC=QxnlK92G4{e z+QGq~uv{Wna?dY4$uD~zxYTHU*>!5jGHDm_7>;2*^mUuaA{KB2t6d@$oWNhF$PzA~ z3(p)PNqFi@!}E5tyj3|2ZQNZS58vNn-2SrD434R%W_wKe=bDj5GonJKv|HFiy(>f)yol$|_wGhG0Tca=BZ&r0R&|o{M{R81kifsS@ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/conformer_randomcombine.py b/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/conformer_randomcombine.py index defbdcb6e..83846158a 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/conformer_randomcombine.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/conformer_randomcombine.py @@ -211,7 +211,7 @@ class Conformer(EncoderInterface): ) # (T, N, C) x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C) - + ''' layer_output = [x.permute(1, 0, 2) for x in layer_output] x = self.layer_norm(1/12*(self.sigmoid(self.alpha[0])*layer_output[0] + \ @@ -228,12 +228,14 @@ class Conformer(EncoderInterface): self.sigmoid(self.alpha[11])*layer_output[11] ) ) - - #x = 0 - #for enum, alpha in enumerate(self.alpha): - # x += self.sigmoid(alpha)*layer_output[enum] - - #x = self.layer_norm((1/self.group_size)*x) + ''' + layer_outputs = [x.permute(1, 0, 2) for x in layer_outputs] + + x = 0 + for enum, alpha in enumerate(self.alpha): + x += self.sigmoid(alpha*layer_outputs[(enum+1)*self.group_layer_num-1]) + + x = self.layer_norm(x/self.group_num) return x, lengths