Introduce in_scale=0.5 for SwishExpScale

This commit is contained in:
Daniel Povey 2022-03-11 19:05:55 +08:00
parent a0d5e2932c
commit 98156711ef
3 changed files with 15 additions and 10 deletions

View File

@ -221,18 +221,21 @@ class ExpScale(torch.nn.Module):
def _exp_scale_swish(x: Tensor, scale: Tensor, speed: float) -> Tensor:
def _exp_scale_swish(x: Tensor, scale: Tensor, speed: float, in_scale: float) -> Tensor:
# double-swish, implemented/approximated as offset-swish
if in_scale != 1.0:
x = x * in_scale
x = (x * torch.sigmoid(x - 1.0))
x = x * (scale * speed).exp()
return x
class SwishExpScaleFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x: Tensor, scale: Tensor, speed: float) -> Tensor:
def forward(ctx, x: Tensor, scale: Tensor, speed: float, in_scale: float) -> Tensor:
ctx.save_for_backward(x.detach(), scale.detach())
ctx.speed = speed
return _exp_scale_swish(x, scale, speed)
ctx.in_scale = in_scale
return _exp_scale_swish(x, scale, speed, in_scale)
@staticmethod
def backward(ctx, y_grad: Tensor) -> Tensor:
@ -240,21 +243,23 @@ class SwishExpScaleFunction(torch.autograd.Function):
x.requires_grad = True
scale.requires_grad = True
with torch.enable_grad():
y = _exp_scale_swish(x, scale, ctx.speed)
y = _exp_scale_swish(x, scale, ctx.speed, ctx.in_scale)
y.backward(gradient=y_grad)
return x.grad, scale.grad, None
return x.grad, scale.grad, None, None
class SwishExpScale(torch.nn.Module):
# combines ExpScale and a Swish (actually the ExpScale is after the Swish).
# caution: need to specify name for speed, e.g. SwishExpScale(50, speed=4.0)
def __init__(self, *shape, speed: float = 1.0):
#
def __init__(self, *shape, speed: float = 1.0, in_scale: float = 1.0):
super(SwishExpScale, self).__init__()
self.in_scale = in_scale
self.scale = nn.Parameter(torch.zeros(*shape))
self.speed = speed
def forward(self, x: Tensor) -> Tensor:
return SwishExpScaleFunction.apply(x, self.scale, self.speed)
return SwishExpScaleFunction.apply(x, self.scale, self.speed, self.in_scale)
# x = (x * torch.sigmoid(x))
# x = (x * torch.sigmoid(x))
# x = x * (self.scale * self.speed).exp()

View File

@ -160,7 +160,7 @@ class ConformerEncoderLayer(nn.Module):
nn.Linear(d_model, dim_feedforward),
DerivBalancer(channel_dim=-1, threshold=0.05,
max_factor=0.01),
SwishExpScale(dim_feedforward, speed=20.0),
SwishExpScale(dim_feedforward, speed=20.0, in_scale=0.5),
nn.Dropout(dropout),
nn.Linear(dim_feedforward, d_model),
)
@ -169,7 +169,7 @@ class ConformerEncoderLayer(nn.Module):
nn.Linear(d_model, dim_feedforward),
DerivBalancer(channel_dim=-1, threshold=0.05,
max_factor=0.01),
SwishExpScale(dim_feedforward, speed=20.0),
SwishExpScale(dim_feedforward, speed=20.0, in_scale=0.5),
nn.Dropout(dropout),
nn.Linear(dim_feedforward, d_model),
)

View File

@ -110,7 +110,7 @@ def get_parser():
parser.add_argument(
"--exp-dir",
type=str,
default="transducer_stateless/randcombine1_expscale3_rework",
default="transducer_stateless/randcombine1_expscale3_rework_0.5",
help="""The experiment dir.
It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved