mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Introduce in_scale=0.5 for SwishExpScale
This commit is contained in:
parent
a0d5e2932c
commit
98156711ef
@ -221,18 +221,21 @@ class ExpScale(torch.nn.Module):
|
||||
|
||||
|
||||
|
||||
def _exp_scale_swish(x: Tensor, scale: Tensor, speed: float) -> Tensor:
|
||||
def _exp_scale_swish(x: Tensor, scale: Tensor, speed: float, in_scale: float) -> Tensor:
|
||||
# double-swish, implemented/approximated as offset-swish
|
||||
if in_scale != 1.0:
|
||||
x = x * in_scale
|
||||
x = (x * torch.sigmoid(x - 1.0))
|
||||
x = x * (scale * speed).exp()
|
||||
return x
|
||||
|
||||
class SwishExpScaleFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor, scale: Tensor, speed: float) -> Tensor:
|
||||
def forward(ctx, x: Tensor, scale: Tensor, speed: float, in_scale: float) -> Tensor:
|
||||
ctx.save_for_backward(x.detach(), scale.detach())
|
||||
ctx.speed = speed
|
||||
return _exp_scale_swish(x, scale, speed)
|
||||
ctx.in_scale = in_scale
|
||||
return _exp_scale_swish(x, scale, speed, in_scale)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, y_grad: Tensor) -> Tensor:
|
||||
@ -240,21 +243,23 @@ class SwishExpScaleFunction(torch.autograd.Function):
|
||||
x.requires_grad = True
|
||||
scale.requires_grad = True
|
||||
with torch.enable_grad():
|
||||
y = _exp_scale_swish(x, scale, ctx.speed)
|
||||
y = _exp_scale_swish(x, scale, ctx.speed, ctx.in_scale)
|
||||
y.backward(gradient=y_grad)
|
||||
return x.grad, scale.grad, None
|
||||
return x.grad, scale.grad, None, None
|
||||
|
||||
|
||||
class SwishExpScale(torch.nn.Module):
|
||||
# combines ExpScale and a Swish (actually the ExpScale is after the Swish).
|
||||
# caution: need to specify name for speed, e.g. SwishExpScale(50, speed=4.0)
|
||||
def __init__(self, *shape, speed: float = 1.0):
|
||||
#
|
||||
def __init__(self, *shape, speed: float = 1.0, in_scale: float = 1.0):
|
||||
super(SwishExpScale, self).__init__()
|
||||
self.in_scale = in_scale
|
||||
self.scale = nn.Parameter(torch.zeros(*shape))
|
||||
self.speed = speed
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return SwishExpScaleFunction.apply(x, self.scale, self.speed)
|
||||
return SwishExpScaleFunction.apply(x, self.scale, self.speed, self.in_scale)
|
||||
# x = (x * torch.sigmoid(x))
|
||||
# x = (x * torch.sigmoid(x))
|
||||
# x = x * (self.scale * self.speed).exp()
|
||||
|
@ -160,7 +160,7 @@ class ConformerEncoderLayer(nn.Module):
|
||||
nn.Linear(d_model, dim_feedforward),
|
||||
DerivBalancer(channel_dim=-1, threshold=0.05,
|
||||
max_factor=0.01),
|
||||
SwishExpScale(dim_feedforward, speed=20.0),
|
||||
SwishExpScale(dim_feedforward, speed=20.0, in_scale=0.5),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_feedforward, d_model),
|
||||
)
|
||||
@ -169,7 +169,7 @@ class ConformerEncoderLayer(nn.Module):
|
||||
nn.Linear(d_model, dim_feedforward),
|
||||
DerivBalancer(channel_dim=-1, threshold=0.05,
|
||||
max_factor=0.01),
|
||||
SwishExpScale(dim_feedforward, speed=20.0),
|
||||
SwishExpScale(dim_feedforward, speed=20.0, in_scale=0.5),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_feedforward, d_model),
|
||||
)
|
||||
|
@ -110,7 +110,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_stateless/randcombine1_expscale3_rework",
|
||||
default="transducer_stateless/randcombine1_expscale3_rework_0.5",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
|
Loading…
x
Reference in New Issue
Block a user