Implement layer dropout with probability 0.075
This commit is contained in:
parent
b9a95af099
commit
97bc894f62
@ -447,8 +447,12 @@ class ConformerEncoder(nn.Module):
|
|||||||
warmup: float,
|
warmup: float,
|
||||||
min_output_scale: float = 0.1,
|
min_output_scale: float = 0.1,
|
||||||
max_output_scale: float = 1.0):
|
max_output_scale: float = 1.0):
|
||||||
output_scale = max(warmup * max_output_scale,
|
layer_dropout_prob = 0.075
|
||||||
min_output_scale)
|
if self.training and random.random() < layer_dropout_prob:
|
||||||
|
output_scale = 0.1
|
||||||
|
else:
|
||||||
|
output_scale = max(warmup * max_output_scale,
|
||||||
|
min_output_scale)
|
||||||
if output_scale == 1.0:
|
if output_scale == 1.0:
|
||||||
return output
|
return output
|
||||||
else:
|
else:
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user