mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-05 07:04:18 +00:00
Minor fixes
This commit is contained in:
parent
d1c0388e57
commit
96a8e8900b
@ -1,920 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
import math
|
|
||||||
import warnings
|
|
||||||
from typing import Optional, Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import Tensor, nn
|
|
||||||
from transformer import Transformer
|
|
||||||
|
|
||||||
from icefall.utils import make_pad_mask
|
|
||||||
|
|
||||||
|
|
||||||
class Conformer(Transformer):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
num_features (int): Number of input features
|
|
||||||
output_dim (int): Number of output dimension
|
|
||||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
|
||||||
d_model (int): attention dimension
|
|
||||||
nhead (int): number of head
|
|
||||||
dim_feedforward (int): feedforward dimention
|
|
||||||
num_encoder_layers (int): number of encoder layers
|
|
||||||
dropout (float): dropout rate
|
|
||||||
cnn_module_kernel (int): Kernel size of convolution module
|
|
||||||
normalize_before (bool): whether to use layer_norm before the first block.
|
|
||||||
vgg_frontend (bool): whether to use vgg frontend.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
num_features: int,
|
|
||||||
output_dim: int,
|
|
||||||
subsampling_factor: int = 4,
|
|
||||||
d_model: int = 256,
|
|
||||||
nhead: int = 4,
|
|
||||||
dim_feedforward: int = 2048,
|
|
||||||
num_encoder_layers: int = 12,
|
|
||||||
dropout: float = 0.1,
|
|
||||||
cnn_module_kernel: int = 31,
|
|
||||||
normalize_before: bool = True,
|
|
||||||
vgg_frontend: bool = False,
|
|
||||||
) -> None:
|
|
||||||
super(Conformer, self).__init__(
|
|
||||||
num_features=num_features,
|
|
||||||
output_dim=output_dim,
|
|
||||||
subsampling_factor=subsampling_factor,
|
|
||||||
d_model=d_model,
|
|
||||||
nhead=nhead,
|
|
||||||
dim_feedforward=dim_feedforward,
|
|
||||||
num_encoder_layers=num_encoder_layers,
|
|
||||||
dropout=dropout,
|
|
||||||
normalize_before=normalize_before,
|
|
||||||
vgg_frontend=vgg_frontend,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
|
||||||
|
|
||||||
encoder_layer = ConformerEncoderLayer(
|
|
||||||
d_model,
|
|
||||||
nhead,
|
|
||||||
dim_feedforward,
|
|
||||||
dropout,
|
|
||||||
cnn_module_kernel,
|
|
||||||
normalize_before,
|
|
||||||
)
|
|
||||||
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
|
||||||
self.normalize_before = normalize_before
|
|
||||||
if self.normalize_before:
|
|
||||||
self.after_norm = nn.LayerNorm(d_model)
|
|
||||||
else:
|
|
||||||
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
|
||||||
# and throws an error without this change.
|
|
||||||
self.after_norm = identity
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
|
||||||
x_lens:
|
|
||||||
A tensor of shape (batch_size,) containing the number of frames in
|
|
||||||
`x` before padding.
|
|
||||||
Returns:
|
|
||||||
Return a tuple containing 2 tensors:
|
|
||||||
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
|
||||||
- logit_lens, a tensor of shape (batch_size,) containing the number
|
|
||||||
of frames in `logits` before padding.
|
|
||||||
"""
|
|
||||||
x = self.encoder_embed(x)
|
|
||||||
x, pos_emb = self.encoder_pos(x)
|
|
||||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
||||||
|
|
||||||
# Caution: We assume the subsampling factor is 4!
|
|
||||||
lengths = ((x_lens - 1) // 2 - 1) // 2
|
|
||||||
assert x.size(0) == lengths.max().item()
|
|
||||||
mask = make_pad_mask(lengths)
|
|
||||||
|
|
||||||
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, N, C)
|
|
||||||
|
|
||||||
if self.normalize_before:
|
|
||||||
x = self.after_norm(x)
|
|
||||||
|
|
||||||
logits = self.encoder_output_layer(x)
|
|
||||||
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
||||||
|
|
||||||
return logits, lengths
|
|
||||||
|
|
||||||
|
|
||||||
class ConformerEncoderLayer(nn.Module):
|
|
||||||
"""
|
|
||||||
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
|
|
||||||
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
|
|
||||||
|
|
||||||
Args:
|
|
||||||
d_model: the number of expected features in the input (required).
|
|
||||||
nhead: the number of heads in the multiheadattention models (required).
|
|
||||||
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
|
||||||
dropout: the dropout value (default=0.1).
|
|
||||||
cnn_module_kernel (int): Kernel size of convolution module.
|
|
||||||
normalize_before: whether to use layer_norm before the first block.
|
|
||||||
|
|
||||||
Examples::
|
|
||||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
|
||||||
>>> src = torch.rand(10, 32, 512)
|
|
||||||
>>> pos_emb = torch.rand(32, 19, 512)
|
|
||||||
>>> out = encoder_layer(src, pos_emb)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
d_model: int,
|
|
||||||
nhead: int,
|
|
||||||
dim_feedforward: int = 2048,
|
|
||||||
dropout: float = 0.1,
|
|
||||||
cnn_module_kernel: int = 31,
|
|
||||||
normalize_before: bool = True,
|
|
||||||
) -> None:
|
|
||||||
super(ConformerEncoderLayer, self).__init__()
|
|
||||||
self.self_attn = RelPositionMultiheadAttention(
|
|
||||||
d_model, nhead, dropout=0.0
|
|
||||||
)
|
|
||||||
|
|
||||||
self.feed_forward = nn.Sequential(
|
|
||||||
nn.Linear(d_model, dim_feedforward),
|
|
||||||
Swish(),
|
|
||||||
nn.Dropout(dropout),
|
|
||||||
nn.Linear(dim_feedforward, d_model),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.feed_forward_macaron = nn.Sequential(
|
|
||||||
nn.Linear(d_model, dim_feedforward),
|
|
||||||
Swish(),
|
|
||||||
nn.Dropout(dropout),
|
|
||||||
nn.Linear(dim_feedforward, d_model),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
|
||||||
|
|
||||||
self.norm_ff_macaron = nn.LayerNorm(
|
|
||||||
d_model
|
|
||||||
) # for the macaron style FNN module
|
|
||||||
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
|
||||||
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
|
||||||
|
|
||||||
self.ff_scale = 0.5
|
|
||||||
|
|
||||||
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
|
||||||
self.norm_final = nn.LayerNorm(
|
|
||||||
d_model
|
|
||||||
) # for the final output of the block
|
|
||||||
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
|
||||||
|
|
||||||
self.normalize_before = normalize_before
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
src: Tensor,
|
|
||||||
pos_emb: Tensor,
|
|
||||||
src_mask: Optional[Tensor] = None,
|
|
||||||
src_key_padding_mask: Optional[Tensor] = None,
|
|
||||||
) -> Tensor:
|
|
||||||
"""
|
|
||||||
Pass the input through the encoder layer.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
src: the sequence to the encoder layer (required).
|
|
||||||
pos_emb: Positional embedding tensor (required).
|
|
||||||
src_mask: the mask for the src sequence (optional).
|
|
||||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
|
||||||
|
|
||||||
Shape:
|
|
||||||
src: (S, N, E).
|
|
||||||
pos_emb: (N, 2*S-1, E)
|
|
||||||
src_mask: (S, S).
|
|
||||||
src_key_padding_mask: (N, S).
|
|
||||||
S is the source sequence length, N is the batch size, E is the feature number
|
|
||||||
"""
|
|
||||||
|
|
||||||
# macaron style feed forward module
|
|
||||||
residual = src
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm_ff_macaron(src)
|
|
||||||
src = residual + self.ff_scale * self.dropout(
|
|
||||||
self.feed_forward_macaron(src)
|
|
||||||
)
|
|
||||||
if not self.normalize_before:
|
|
||||||
src = self.norm_ff_macaron(src)
|
|
||||||
|
|
||||||
# multi-headed self-attention module
|
|
||||||
residual = src
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm_mha(src)
|
|
||||||
src_att = self.self_attn(
|
|
||||||
src,
|
|
||||||
src,
|
|
||||||
src,
|
|
||||||
pos_emb=pos_emb,
|
|
||||||
attn_mask=src_mask,
|
|
||||||
key_padding_mask=src_key_padding_mask,
|
|
||||||
)[0]
|
|
||||||
src = residual + self.dropout(src_att)
|
|
||||||
if not self.normalize_before:
|
|
||||||
src = self.norm_mha(src)
|
|
||||||
|
|
||||||
# convolution module
|
|
||||||
residual = src
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm_conv(src)
|
|
||||||
src = residual + self.dropout(self.conv_module(src))
|
|
||||||
if not self.normalize_before:
|
|
||||||
src = self.norm_conv(src)
|
|
||||||
|
|
||||||
# feed forward module
|
|
||||||
residual = src
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm_ff(src)
|
|
||||||
src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
|
|
||||||
if not self.normalize_before:
|
|
||||||
src = self.norm_ff(src)
|
|
||||||
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm_final(src)
|
|
||||||
|
|
||||||
return src
|
|
||||||
|
|
||||||
|
|
||||||
class ConformerEncoder(nn.TransformerEncoder):
|
|
||||||
r"""ConformerEncoder is a stack of N encoder layers
|
|
||||||
|
|
||||||
Args:
|
|
||||||
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
|
||||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
|
||||||
norm: the layer normalization component (optional).
|
|
||||||
|
|
||||||
Examples::
|
|
||||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
|
||||||
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
|
|
||||||
>>> src = torch.rand(10, 32, 512)
|
|
||||||
>>> pos_emb = torch.rand(32, 19, 512)
|
|
||||||
>>> out = conformer_encoder(src, pos_emb)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
|
|
||||||
) -> None:
|
|
||||||
super(ConformerEncoder, self).__init__(
|
|
||||||
encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
src: Tensor,
|
|
||||||
pos_emb: Tensor,
|
|
||||||
mask: Optional[Tensor] = None,
|
|
||||||
src_key_padding_mask: Optional[Tensor] = None,
|
|
||||||
) -> Tensor:
|
|
||||||
r"""Pass the input through the encoder layers in turn.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
src: the sequence to the encoder (required).
|
|
||||||
pos_emb: Positional embedding tensor (required).
|
|
||||||
mask: the mask for the src sequence (optional).
|
|
||||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
|
||||||
|
|
||||||
Shape:
|
|
||||||
src: (S, N, E).
|
|
||||||
pos_emb: (N, 2*S-1, E)
|
|
||||||
mask: (S, S).
|
|
||||||
src_key_padding_mask: (N, S).
|
|
||||||
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
|
||||||
|
|
||||||
"""
|
|
||||||
output = src
|
|
||||||
|
|
||||||
for mod in self.layers:
|
|
||||||
output = mod(
|
|
||||||
output,
|
|
||||||
pos_emb,
|
|
||||||
src_mask=mask,
|
|
||||||
src_key_padding_mask=src_key_padding_mask,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.norm is not None:
|
|
||||||
output = self.norm(output)
|
|
||||||
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
class RelPositionalEncoding(torch.nn.Module):
|
|
||||||
"""Relative positional encoding module.
|
|
||||||
|
|
||||||
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
|
||||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
|
||||||
|
|
||||||
Args:
|
|
||||||
d_model: Embedding dimension.
|
|
||||||
dropout_rate: Dropout rate.
|
|
||||||
max_len: Maximum input length.
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self, d_model: int, dropout_rate: float, max_len: int = 5000
|
|
||||||
) -> None:
|
|
||||||
"""Construct an PositionalEncoding object."""
|
|
||||||
super(RelPositionalEncoding, self).__init__()
|
|
||||||
self.d_model = d_model
|
|
||||||
self.xscale = math.sqrt(self.d_model)
|
|
||||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
|
||||||
self.pe = None
|
|
||||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
|
||||||
|
|
||||||
def extend_pe(self, x: Tensor) -> None:
|
|
||||||
"""Reset the positional encodings."""
|
|
||||||
if self.pe is not None:
|
|
||||||
# self.pe contains both positive and negative parts
|
|
||||||
# the length of self.pe is 2 * input_len - 1
|
|
||||||
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
|
||||||
# Note: TorchScript doesn't implement operator== for torch.Device
|
|
||||||
if self.pe.dtype != x.dtype or str(self.pe.device) != str(
|
|
||||||
x.device
|
|
||||||
):
|
|
||||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
|
||||||
return
|
|
||||||
# Suppose `i` means to the position of query vecotr and `j` means the
|
|
||||||
# position of key vector. We use position relative positions when keys
|
|
||||||
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
|
||||||
pe_positive = torch.zeros(x.size(1), self.d_model)
|
|
||||||
pe_negative = torch.zeros(x.size(1), self.d_model)
|
|
||||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
|
||||||
div_term = torch.exp(
|
|
||||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
|
||||||
* -(math.log(10000.0) / self.d_model)
|
|
||||||
)
|
|
||||||
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
|
||||||
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
|
||||||
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
|
||||||
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
|
||||||
|
|
||||||
# Reserve the order of positive indices and concat both positive and
|
|
||||||
# negative indices. This is used to support the shifting trick
|
|
||||||
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
|
||||||
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
|
||||||
pe_negative = pe_negative[1:].unsqueeze(0)
|
|
||||||
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
|
||||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
|
||||||
"""Add positional encoding.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x (torch.Tensor): Input tensor (batch, time, `*`).
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
torch.Tensor: Encoded tensor (batch, time, `*`).
|
|
||||||
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
|
||||||
|
|
||||||
"""
|
|
||||||
self.extend_pe(x)
|
|
||||||
x = x * self.xscale
|
|
||||||
pos_emb = self.pe[
|
|
||||||
:,
|
|
||||||
self.pe.size(1) // 2
|
|
||||||
- x.size(1)
|
|
||||||
+ 1 : self.pe.size(1) // 2 # noqa E203
|
|
||||||
+ x.size(1),
|
|
||||||
]
|
|
||||||
return self.dropout(x), self.dropout(pos_emb)
|
|
||||||
|
|
||||||
|
|
||||||
class RelPositionMultiheadAttention(nn.Module):
|
|
||||||
r"""Multi-Head Attention layer with relative position encoding
|
|
||||||
|
|
||||||
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
|
||||||
|
|
||||||
Args:
|
|
||||||
embed_dim: total dimension of the model.
|
|
||||||
num_heads: parallel attention heads.
|
|
||||||
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
|
||||||
|
|
||||||
Examples::
|
|
||||||
|
|
||||||
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
|
||||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
embed_dim: int,
|
|
||||||
num_heads: int,
|
|
||||||
dropout: float = 0.0,
|
|
||||||
) -> None:
|
|
||||||
super(RelPositionMultiheadAttention, self).__init__()
|
|
||||||
self.embed_dim = embed_dim
|
|
||||||
self.num_heads = num_heads
|
|
||||||
self.dropout = dropout
|
|
||||||
self.head_dim = embed_dim // num_heads
|
|
||||||
assert (
|
|
||||||
self.head_dim * num_heads == self.embed_dim
|
|
||||||
), "embed_dim must be divisible by num_heads"
|
|
||||||
|
|
||||||
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
|
|
||||||
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
|
||||||
|
|
||||||
# linear transformation for positional encoding.
|
|
||||||
self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False)
|
|
||||||
# these two learnable bias are used in matrix c and matrix d
|
|
||||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
|
||||||
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
|
||||||
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
|
||||||
|
|
||||||
self._reset_parameters()
|
|
||||||
|
|
||||||
def _reset_parameters(self) -> None:
|
|
||||||
nn.init.xavier_uniform_(self.in_proj.weight)
|
|
||||||
nn.init.constant_(self.in_proj.bias, 0.0)
|
|
||||||
nn.init.constant_(self.out_proj.bias, 0.0)
|
|
||||||
|
|
||||||
nn.init.xavier_uniform_(self.pos_bias_u)
|
|
||||||
nn.init.xavier_uniform_(self.pos_bias_v)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
query: Tensor,
|
|
||||||
key: Tensor,
|
|
||||||
value: Tensor,
|
|
||||||
pos_emb: Tensor,
|
|
||||||
key_padding_mask: Optional[Tensor] = None,
|
|
||||||
need_weights: bool = True,
|
|
||||||
attn_mask: Optional[Tensor] = None,
|
|
||||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
|
||||||
r"""
|
|
||||||
Args:
|
|
||||||
query, key, value: map a query and a set of key-value pairs to an output.
|
|
||||||
pos_emb: Positional embedding tensor
|
|
||||||
key_padding_mask: if provided, specified padding elements in the key will
|
|
||||||
be ignored by the attention. When given a binary mask and a value is True,
|
|
||||||
the corresponding value on the attention layer will be ignored. When given
|
|
||||||
a byte mask and a value is non-zero, the corresponding value on the attention
|
|
||||||
layer will be ignored
|
|
||||||
need_weights: output attn_output_weights.
|
|
||||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
|
||||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
|
||||||
|
|
||||||
Shape:
|
|
||||||
- Inputs:
|
|
||||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
|
||||||
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
|
||||||
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
|
||||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
|
||||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
|
||||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
|
||||||
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
|
||||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
|
||||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
|
||||||
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
|
||||||
is provided, it will be added to the attention weight.
|
|
||||||
|
|
||||||
- Outputs:
|
|
||||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
|
||||||
E is the embedding dimension.
|
|
||||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
|
||||||
L is the target sequence length, S is the source sequence length.
|
|
||||||
"""
|
|
||||||
return self.multi_head_attention_forward(
|
|
||||||
query,
|
|
||||||
key,
|
|
||||||
value,
|
|
||||||
pos_emb,
|
|
||||||
self.embed_dim,
|
|
||||||
self.num_heads,
|
|
||||||
self.in_proj.weight,
|
|
||||||
self.in_proj.bias,
|
|
||||||
self.dropout,
|
|
||||||
self.out_proj.weight,
|
|
||||||
self.out_proj.bias,
|
|
||||||
training=self.training,
|
|
||||||
key_padding_mask=key_padding_mask,
|
|
||||||
need_weights=need_weights,
|
|
||||||
attn_mask=attn_mask,
|
|
||||||
)
|
|
||||||
|
|
||||||
def rel_shift(self, x: Tensor) -> Tensor:
|
|
||||||
"""Compute relative positional encoding.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x: Input tensor (batch, head, time1, 2*time1-1).
|
|
||||||
time1 means the length of query vector.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tensor: tensor of shape (batch, head, time1, time2)
|
|
||||||
(note: time2 has the same value as time1, but it is for
|
|
||||||
the key, while time1 is for the query).
|
|
||||||
"""
|
|
||||||
(batch_size, num_heads, time1, n) = x.shape
|
|
||||||
assert n == 2 * time1 - 1
|
|
||||||
# Note: TorchScript requires explicit arg for stride()
|
|
||||||
batch_stride = x.stride(0)
|
|
||||||
head_stride = x.stride(1)
|
|
||||||
time1_stride = x.stride(2)
|
|
||||||
n_stride = x.stride(3)
|
|
||||||
return x.as_strided(
|
|
||||||
(batch_size, num_heads, time1, time1),
|
|
||||||
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
|
||||||
storage_offset=n_stride * (time1 - 1),
|
|
||||||
)
|
|
||||||
|
|
||||||
def multi_head_attention_forward(
|
|
||||||
self,
|
|
||||||
query: Tensor,
|
|
||||||
key: Tensor,
|
|
||||||
value: Tensor,
|
|
||||||
pos_emb: Tensor,
|
|
||||||
embed_dim_to_check: int,
|
|
||||||
num_heads: int,
|
|
||||||
in_proj_weight: Tensor,
|
|
||||||
in_proj_bias: Tensor,
|
|
||||||
dropout_p: float,
|
|
||||||
out_proj_weight: Tensor,
|
|
||||||
out_proj_bias: Tensor,
|
|
||||||
training: bool = True,
|
|
||||||
key_padding_mask: Optional[Tensor] = None,
|
|
||||||
need_weights: bool = True,
|
|
||||||
attn_mask: Optional[Tensor] = None,
|
|
||||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
|
||||||
r"""
|
|
||||||
Args:
|
|
||||||
query, key, value: map a query and a set of key-value pairs to an output.
|
|
||||||
pos_emb: Positional embedding tensor
|
|
||||||
embed_dim_to_check: total dimension of the model.
|
|
||||||
num_heads: parallel attention heads.
|
|
||||||
in_proj_weight, in_proj_bias: input projection weight and bias.
|
|
||||||
dropout_p: probability of an element to be zeroed.
|
|
||||||
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
|
||||||
training: apply dropout if is ``True``.
|
|
||||||
key_padding_mask: if provided, specified padding elements in the key will
|
|
||||||
be ignored by the attention. This is an binary mask. When the value is True,
|
|
||||||
the corresponding value on the attention layer will be filled with -inf.
|
|
||||||
need_weights: output attn_output_weights.
|
|
||||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
|
||||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
|
||||||
|
|
||||||
Shape:
|
|
||||||
Inputs:
|
|
||||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
|
||||||
length, N is the batch size, E is the embedding dimension.
|
|
||||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
|
||||||
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
|
||||||
will be unchanged. If a BoolTensor is provided, the positions with the
|
|
||||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
|
||||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
|
||||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
|
||||||
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
|
||||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
|
||||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
|
||||||
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
|
||||||
is provided, it will be added to the attention weight.
|
|
||||||
|
|
||||||
Outputs:
|
|
||||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
|
||||||
E is the embedding dimension.
|
|
||||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
|
||||||
L is the target sequence length, S is the source sequence length.
|
|
||||||
"""
|
|
||||||
|
|
||||||
tgt_len, bsz, embed_dim = query.size()
|
|
||||||
assert embed_dim == embed_dim_to_check
|
|
||||||
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
|
||||||
|
|
||||||
head_dim = embed_dim // num_heads
|
|
||||||
assert (
|
|
||||||
head_dim * num_heads == embed_dim
|
|
||||||
), "embed_dim must be divisible by num_heads"
|
|
||||||
scaling = float(head_dim) ** -0.5
|
|
||||||
|
|
||||||
if torch.equal(query, key) and torch.equal(key, value):
|
|
||||||
# self-attention
|
|
||||||
q, k, v = nn.functional.linear(
|
|
||||||
query, in_proj_weight, in_proj_bias
|
|
||||||
).chunk(3, dim=-1)
|
|
||||||
|
|
||||||
elif torch.equal(key, value):
|
|
||||||
# encoder-decoder attention
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = 0
|
|
||||||
_end = embed_dim
|
|
||||||
_w = in_proj_weight[_start:_end, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:_end]
|
|
||||||
q = nn.functional.linear(query, _w, _b)
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = embed_dim
|
|
||||||
_end = None
|
|
||||||
_w = in_proj_weight[_start:, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:]
|
|
||||||
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
|
||||||
|
|
||||||
else:
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = 0
|
|
||||||
_end = embed_dim
|
|
||||||
_w = in_proj_weight[_start:_end, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:_end]
|
|
||||||
q = nn.functional.linear(query, _w, _b)
|
|
||||||
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = embed_dim
|
|
||||||
_end = embed_dim * 2
|
|
||||||
_w = in_proj_weight[_start:_end, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:_end]
|
|
||||||
k = nn.functional.linear(key, _w, _b)
|
|
||||||
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = embed_dim * 2
|
|
||||||
_end = None
|
|
||||||
_w = in_proj_weight[_start:, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:]
|
|
||||||
v = nn.functional.linear(value, _w, _b)
|
|
||||||
|
|
||||||
if attn_mask is not None:
|
|
||||||
assert (
|
|
||||||
attn_mask.dtype == torch.float32
|
|
||||||
or attn_mask.dtype == torch.float64
|
|
||||||
or attn_mask.dtype == torch.float16
|
|
||||||
or attn_mask.dtype == torch.uint8
|
|
||||||
or attn_mask.dtype == torch.bool
|
|
||||||
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
|
||||||
attn_mask.dtype
|
|
||||||
)
|
|
||||||
if attn_mask.dtype == torch.uint8:
|
|
||||||
warnings.warn(
|
|
||||||
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
|
||||||
)
|
|
||||||
attn_mask = attn_mask.to(torch.bool)
|
|
||||||
|
|
||||||
if attn_mask.dim() == 2:
|
|
||||||
attn_mask = attn_mask.unsqueeze(0)
|
|
||||||
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
|
||||||
raise RuntimeError(
|
|
||||||
"The size of the 2D attn_mask is not correct."
|
|
||||||
)
|
|
||||||
elif attn_mask.dim() == 3:
|
|
||||||
if list(attn_mask.size()) != [
|
|
||||||
bsz * num_heads,
|
|
||||||
query.size(0),
|
|
||||||
key.size(0),
|
|
||||||
]:
|
|
||||||
raise RuntimeError(
|
|
||||||
"The size of the 3D attn_mask is not correct."
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise RuntimeError(
|
|
||||||
"attn_mask's dimension {} is not supported".format(
|
|
||||||
attn_mask.dim()
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# attn_mask's dim is 3 now.
|
|
||||||
|
|
||||||
# convert ByteTensor key_padding_mask to bool
|
|
||||||
if (
|
|
||||||
key_padding_mask is not None
|
|
||||||
and key_padding_mask.dtype == torch.uint8
|
|
||||||
):
|
|
||||||
warnings.warn(
|
|
||||||
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
|
||||||
)
|
|
||||||
key_padding_mask = key_padding_mask.to(torch.bool)
|
|
||||||
|
|
||||||
q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
|
||||||
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
|
||||||
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
|
||||||
|
|
||||||
src_len = k.size(0)
|
|
||||||
|
|
||||||
if key_padding_mask is not None:
|
|
||||||
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
|
||||||
key_padding_mask.size(0), bsz
|
|
||||||
)
|
|
||||||
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
|
||||||
key_padding_mask.size(1), src_len
|
|
||||||
)
|
|
||||||
|
|
||||||
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
|
||||||
|
|
||||||
pos_emb_bsz = pos_emb.size(0)
|
|
||||||
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
|
||||||
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
|
||||||
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
|
||||||
|
|
||||||
q_with_bias_u = (q + self.pos_bias_u).transpose(
|
|
||||||
1, 2
|
|
||||||
) # (batch, head, time1, d_k)
|
|
||||||
|
|
||||||
q_with_bias_v = (q + self.pos_bias_v).transpose(
|
|
||||||
1, 2
|
|
||||||
) # (batch, head, time1, d_k)
|
|
||||||
|
|
||||||
# compute attention score
|
|
||||||
# first compute matrix a and matrix c
|
|
||||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
|
||||||
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
|
||||||
matrix_ac = torch.matmul(
|
|
||||||
q_with_bias_u, k
|
|
||||||
) # (batch, head, time1, time2)
|
|
||||||
|
|
||||||
# compute matrix b and matrix d
|
|
||||||
matrix_bd = torch.matmul(
|
|
||||||
q_with_bias_v, p.transpose(-2, -1)
|
|
||||||
) # (batch, head, time1, 2*time1-1)
|
|
||||||
matrix_bd = self.rel_shift(matrix_bd)
|
|
||||||
|
|
||||||
attn_output_weights = (
|
|
||||||
matrix_ac + matrix_bd
|
|
||||||
) * scaling # (batch, head, time1, time2)
|
|
||||||
|
|
||||||
attn_output_weights = attn_output_weights.view(
|
|
||||||
bsz * num_heads, tgt_len, -1
|
|
||||||
)
|
|
||||||
|
|
||||||
assert list(attn_output_weights.size()) == [
|
|
||||||
bsz * num_heads,
|
|
||||||
tgt_len,
|
|
||||||
src_len,
|
|
||||||
]
|
|
||||||
|
|
||||||
if attn_mask is not None:
|
|
||||||
if attn_mask.dtype == torch.bool:
|
|
||||||
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
|
||||||
else:
|
|
||||||
attn_output_weights += attn_mask
|
|
||||||
|
|
||||||
if key_padding_mask is not None:
|
|
||||||
attn_output_weights = attn_output_weights.view(
|
|
||||||
bsz, num_heads, tgt_len, src_len
|
|
||||||
)
|
|
||||||
attn_output_weights = attn_output_weights.masked_fill(
|
|
||||||
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
|
||||||
float("-inf"),
|
|
||||||
)
|
|
||||||
attn_output_weights = attn_output_weights.view(
|
|
||||||
bsz * num_heads, tgt_len, src_len
|
|
||||||
)
|
|
||||||
|
|
||||||
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
|
||||||
attn_output_weights = nn.functional.dropout(
|
|
||||||
attn_output_weights, p=dropout_p, training=training
|
|
||||||
)
|
|
||||||
|
|
||||||
attn_output = torch.bmm(attn_output_weights, v)
|
|
||||||
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
|
||||||
attn_output = (
|
|
||||||
attn_output.transpose(0, 1)
|
|
||||||
.contiguous()
|
|
||||||
.view(tgt_len, bsz, embed_dim)
|
|
||||||
)
|
|
||||||
attn_output = nn.functional.linear(
|
|
||||||
attn_output, out_proj_weight, out_proj_bias
|
|
||||||
)
|
|
||||||
|
|
||||||
if need_weights:
|
|
||||||
# average attention weights over heads
|
|
||||||
attn_output_weights = attn_output_weights.view(
|
|
||||||
bsz, num_heads, tgt_len, src_len
|
|
||||||
)
|
|
||||||
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
|
||||||
else:
|
|
||||||
return attn_output, None
|
|
||||||
|
|
||||||
|
|
||||||
class ConvolutionModule(nn.Module):
|
|
||||||
"""ConvolutionModule in Conformer model.
|
|
||||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
|
|
||||||
|
|
||||||
Args:
|
|
||||||
channels (int): The number of channels of conv layers.
|
|
||||||
kernel_size (int): Kernerl size of conv layers.
|
|
||||||
bias (bool): Whether to use bias in conv layers (default=True).
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self, channels: int, kernel_size: int, bias: bool = True
|
|
||||||
) -> None:
|
|
||||||
"""Construct an ConvolutionModule object."""
|
|
||||||
super(ConvolutionModule, self).__init__()
|
|
||||||
# kernerl_size should be a odd number for 'SAME' padding
|
|
||||||
assert (kernel_size - 1) % 2 == 0
|
|
||||||
|
|
||||||
self.pointwise_conv1 = nn.Conv1d(
|
|
||||||
channels,
|
|
||||||
2 * channels,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
padding=0,
|
|
||||||
bias=bias,
|
|
||||||
)
|
|
||||||
self.depthwise_conv = nn.Conv1d(
|
|
||||||
channels,
|
|
||||||
channels,
|
|
||||||
kernel_size,
|
|
||||||
stride=1,
|
|
||||||
padding=(kernel_size - 1) // 2,
|
|
||||||
groups=channels,
|
|
||||||
bias=bias,
|
|
||||||
)
|
|
||||||
self.norm = nn.LayerNorm(channels)
|
|
||||||
self.pointwise_conv2 = nn.Conv1d(
|
|
||||||
channels,
|
|
||||||
channels,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
padding=0,
|
|
||||||
bias=bias,
|
|
||||||
)
|
|
||||||
self.activation = Swish()
|
|
||||||
|
|
||||||
def forward(self, x: Tensor) -> Tensor:
|
|
||||||
"""Compute convolution module.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x: Input tensor (#time, batch, channels).
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tensor: Output tensor (#time, batch, channels).
|
|
||||||
|
|
||||||
"""
|
|
||||||
# exchange the temporal dimension and the feature dimension
|
|
||||||
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
|
||||||
|
|
||||||
# GLU mechanism
|
|
||||||
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
|
|
||||||
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
|
|
||||||
|
|
||||||
# 1D Depthwise Conv
|
|
||||||
x = self.depthwise_conv(x)
|
|
||||||
# x is (batch, channels, time)
|
|
||||||
x = x.permute(0, 2, 1)
|
|
||||||
x = self.norm(x)
|
|
||||||
x = x.permute(0, 2, 1)
|
|
||||||
|
|
||||||
x = self.activation(x)
|
|
||||||
|
|
||||||
x = self.pointwise_conv2(x) # (batch, channel, time)
|
|
||||||
|
|
||||||
return x.permute(2, 0, 1)
|
|
||||||
|
|
||||||
|
|
||||||
class Swish(torch.nn.Module):
|
|
||||||
"""Construct an Swish object."""
|
|
||||||
|
|
||||||
def forward(self, x: Tensor) -> Tensor:
|
|
||||||
"""Return Swich activation function."""
|
|
||||||
return x * torch.sigmoid(x)
|
|
||||||
|
|
||||||
|
|
||||||
def identity(x):
|
|
||||||
return x
|
|
1
egs/aishell/ASR/pruned_transducer_stateless/conformer.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless/conformer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../transducer_stateless/conformer.py
|
@ -1,43 +0,0 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from typing import Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
|
|
||||||
|
|
||||||
class EncoderInterface(nn.Module):
|
|
||||||
def forward(
|
|
||||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
A tensor of shape (batch_size, input_seq_len, num_features)
|
|
||||||
containing the input features.
|
|
||||||
x_lens:
|
|
||||||
A tensor of shape (batch_size,) containing the number of frames
|
|
||||||
in `x` before padding.
|
|
||||||
Returns:
|
|
||||||
Return a tuple containing two tensors:
|
|
||||||
- encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
|
|
||||||
containing unnormalized probabilities, i.e., the output of a
|
|
||||||
linear layer.
|
|
||||||
- encoder_out_lens, a tensor of shape (batch_size,) containing
|
|
||||||
the number of frames in `encoder_out` before padding.
|
|
||||||
"""
|
|
||||||
raise NotImplementedError("Please implement it in a subclass")
|
|
1
egs/aishell/ASR/pruned_transducer_stateless/encoder_interface.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../transducer_stateless/encoder_interface.py
|
@ -16,6 +16,7 @@
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
class Joiner(nn.Module):
|
class Joiner(nn.Module):
|
||||||
@ -31,9 +32,9 @@ class Joiner(nn.Module):
|
|||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
encoder_out:
|
encoder_out:
|
||||||
The pruned output from the encoder. Its shape is (N, T, s_range, C).
|
Output from the encoder. Its shape is (N, T, s_range, C).
|
||||||
decoder_out:
|
decoder_out:
|
||||||
The pruned output from the decoder. Its shape is (N, T, s_range, C).
|
Output from the decoder. Its shape is (N, T, s_range, C).
|
||||||
Returns:
|
Returns:
|
||||||
Return a tensor of shape (N, T, s_range, C).
|
Return a tensor of shape (N, T, s_range, C).
|
||||||
"""
|
"""
|
||||||
@ -42,10 +43,8 @@ class Joiner(nn.Module):
|
|||||||
|
|
||||||
logit = encoder_out + decoder_out
|
logit = encoder_out + decoder_out
|
||||||
|
|
||||||
logit = self.inner_linear(logit)
|
logit = self.inner_linear(torch.tanh(logit))
|
||||||
|
|
||||||
logit = torch.tanh(logit)
|
output = self.output_linear(F.relu(logit))
|
||||||
|
|
||||||
output = self.output_linear(logit)
|
|
||||||
|
|
||||||
return output
|
return output
|
||||||
|
@ -14,6 +14,7 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
import k2
|
import k2
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
@ -32,9 +33,6 @@ class Transducer(nn.Module):
|
|||||||
encoder: EncoderInterface,
|
encoder: EncoderInterface,
|
||||||
decoder: nn.Module,
|
decoder: nn.Module,
|
||||||
joiner: nn.Module,
|
joiner: nn.Module,
|
||||||
prune_range: int = 3,
|
|
||||||
lm_scale: float = 0.0,
|
|
||||||
am_scale: float = 0.0,
|
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
@ -51,20 +49,6 @@ class Transducer(nn.Module):
|
|||||||
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
|
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
|
||||||
output shape is (N, T, U, C). Note that its output contains
|
output shape is (N, T, U, C). Note that its output contains
|
||||||
unnormalized probs, i.e., not processed by log-softmax.
|
unnormalized probs, i.e., not processed by log-softmax.
|
||||||
prune_range:
|
|
||||||
The prune range for rnnt loss, it means how many symbols(context)
|
|
||||||
we are considering for each frame to compute the loss.
|
|
||||||
am_scale:
|
|
||||||
The scale to smooth the loss with am (output of encoder network)
|
|
||||||
part
|
|
||||||
lm_scale:
|
|
||||||
The scale to smooth the loss with lm (output of predictor network)
|
|
||||||
part
|
|
||||||
Note:
|
|
||||||
Regarding am_scale & lm_scale, it will make the loss-function one of
|
|
||||||
the form:
|
|
||||||
lm_scale * lm_probs + am_scale * am_probs +
|
|
||||||
(1-lm_scale-am_scale) * combined_probs
|
|
||||||
"""
|
"""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
assert isinstance(encoder, EncoderInterface), type(encoder)
|
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||||
@ -73,15 +57,15 @@ class Transducer(nn.Module):
|
|||||||
self.encoder = encoder
|
self.encoder = encoder
|
||||||
self.decoder = decoder
|
self.decoder = decoder
|
||||||
self.joiner = joiner
|
self.joiner = joiner
|
||||||
self.prune_range = prune_range
|
|
||||||
self.lm_scale = lm_scale
|
|
||||||
self.am_scale = am_scale
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
x_lens: torch.Tensor,
|
x_lens: torch.Tensor,
|
||||||
y: k2.RaggedTensor,
|
y: k2.RaggedTensor,
|
||||||
|
prune_range: int = 5,
|
||||||
|
am_scale: float = 0.0,
|
||||||
|
lm_scale: float = 0.0,
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
@ -93,8 +77,23 @@ class Transducer(nn.Module):
|
|||||||
y:
|
y:
|
||||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||||
utterance.
|
utterance.
|
||||||
|
prune_range:
|
||||||
|
The prune range for rnnt loss, it means how many symbols(context)
|
||||||
|
we are considering for each frame to compute the loss.
|
||||||
|
am_scale:
|
||||||
|
The scale to smooth the loss with am (output of encoder network)
|
||||||
|
part
|
||||||
|
lm_scale:
|
||||||
|
The scale to smooth the loss with lm (output of predictor network)
|
||||||
|
part
|
||||||
Returns:
|
Returns:
|
||||||
Return the transducer loss.
|
Return the transducer loss.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
Regarding am_scale & lm_scale, it will make the loss-function one of
|
||||||
|
the form:
|
||||||
|
lm_scale * lm_probs + am_scale * am_probs +
|
||||||
|
(1-lm_scale-am_scale) * combined_probs
|
||||||
"""
|
"""
|
||||||
assert x.ndim == 3, x.shape
|
assert x.ndim == 3, x.shape
|
||||||
assert x_lens.ndim == 1, x_lens.shape
|
assert x_lens.ndim == 1, x_lens.shape
|
||||||
@ -112,11 +111,14 @@ class Transducer(nn.Module):
|
|||||||
blank_id = self.decoder.blank_id
|
blank_id = self.decoder.blank_id
|
||||||
sos_y = add_sos(y, sos_id=blank_id)
|
sos_y = add_sos(y, sos_id=blank_id)
|
||||||
|
|
||||||
|
# sos_y_padded: [B, S + 1], start with SOS.
|
||||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||||
|
|
||||||
|
# decoder_out: [B, S + 1, C]
|
||||||
decoder_out = self.decoder(sos_y_padded)
|
decoder_out = self.decoder(sos_y_padded)
|
||||||
|
|
||||||
# Note: y does not start with SOS
|
# Note: y does not start with SOS
|
||||||
|
# y_padded : [B, S]
|
||||||
y_padded = y.pad(mode="constant", padding_value=0)
|
y_padded = y.pad(mode="constant", padding_value=0)
|
||||||
|
|
||||||
y_padded = y_padded.to(torch.int64)
|
y_padded = y_padded.to(torch.int64)
|
||||||
@ -127,27 +129,41 @@ class Transducer(nn.Module):
|
|||||||
boundary[:, 3] = x_lens
|
boundary[:, 3] = x_lens
|
||||||
|
|
||||||
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
||||||
decoder_out,
|
lm=decoder_out,
|
||||||
encoder_out,
|
am=encoder_out,
|
||||||
y_padded,
|
symbols=y_padded,
|
||||||
blank_id,
|
termination_symbol=blank_id,
|
||||||
lm_only_scale=self.lm_scale,
|
lm_only_scale=lm_scale,
|
||||||
am_only_scale=self.am_scale,
|
am_only_scale=am_scale,
|
||||||
boundary=boundary,
|
boundary=boundary,
|
||||||
|
reduction="sum",
|
||||||
return_grad=True,
|
return_grad=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# ranges : [B, T, prune_range]
|
||||||
ranges = k2.get_rnnt_prune_ranges(
|
ranges = k2.get_rnnt_prune_ranges(
|
||||||
px_grad, py_grad, boundary, self.prune_range
|
px_grad=px_grad,
|
||||||
)
|
py_grad=py_grad,
|
||||||
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
boundary=boundary,
|
||||||
encoder_out, decoder_out, ranges
|
s_range=prune_range,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# am_pruned : [B, T, prune_range, C]
|
||||||
|
# lm_pruned : [B, T, prune_range, C]
|
||||||
|
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
||||||
|
am=encoder_out, lm=decoder_out, ranges=ranges
|
||||||
|
)
|
||||||
|
|
||||||
|
# logits : [B, T, prune_range, C]
|
||||||
logits = self.joiner(am_pruned, lm_pruned)
|
logits = self.joiner(am_pruned, lm_pruned)
|
||||||
|
|
||||||
pruned_loss = k2.rnnt_loss_pruned(
|
pruned_loss = k2.rnnt_loss_pruned(
|
||||||
logits, y_padded, ranges, blank_id, boundary
|
logits=logits,
|
||||||
|
symbols=y_padded,
|
||||||
|
ranges=ranges,
|
||||||
|
termination_symbol=blank_id,
|
||||||
|
boundary=boundary,
|
||||||
|
reduction="sum",
|
||||||
)
|
)
|
||||||
|
|
||||||
return (-torch.sum(simple_loss), -torch.sum(pruned_loss))
|
return (simple_loss, pruned_loss)
|
||||||
|
@ -140,7 +140,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lm-scale",
|
"--lm-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.5,
|
default=0.25,
|
||||||
help="The scale to smooth the loss with lm "
|
help="The scale to smooth the loss with lm "
|
||||||
"(output of prediction network) part.",
|
"(output of prediction network) part.",
|
||||||
)
|
)
|
||||||
@ -152,7 +152,22 @@ def get_parser():
|
|||||||
help="The scale to smooth the loss with am (output of encoder network)"
|
help="The scale to smooth the loss with am (output of encoder network)"
|
||||||
"part.",
|
"part.",
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--simple-loss-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="To get pruning ranges, we will calculate a simple version"
|
||||||
|
"loss(joiner is just addition), this simple loss also uses for"
|
||||||
|
"training (as a regularization item). We will scale the simple loss"
|
||||||
|
"with this parameter before adding to the final loss.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--seed",
|
||||||
|
type=int,
|
||||||
|
default=42,
|
||||||
|
help="The seed for random generators intended for reproducibility",
|
||||||
|
)
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -213,13 +228,13 @@ def get_params() -> AttributeDict:
|
|||||||
# parameters for conformer
|
# parameters for conformer
|
||||||
"feature_dim": 80,
|
"feature_dim": 80,
|
||||||
"subsampling_factor": 4,
|
"subsampling_factor": 4,
|
||||||
"attention_dim": 256,
|
"attention_dim": 512,
|
||||||
"nhead": 4,
|
"nhead": 4,
|
||||||
"dim_feedforward": 1024,
|
"dim_feedforward": 2048,
|
||||||
"num_encoder_layers": 12,
|
"num_encoder_layers": 12,
|
||||||
"vgg_frontend": False,
|
"vgg_frontend": False,
|
||||||
# parameters for decoder
|
# parameters for decoder
|
||||||
"embedding_dim": 256,
|
"embedding_dim": 512,
|
||||||
# parameters for Noam
|
# parameters for Noam
|
||||||
"warm_step": 30000,
|
"warm_step": 30000,
|
||||||
"env_info": get_env_info(),
|
"env_info": get_env_info(),
|
||||||
@ -272,9 +287,6 @@ def get_transducer_model(params: AttributeDict) -> nn.Module:
|
|||||||
encoder=encoder,
|
encoder=encoder,
|
||||||
decoder=decoder,
|
decoder=decoder,
|
||||||
joiner=joiner,
|
joiner=joiner,
|
||||||
prune_range=params.prune_range,
|
|
||||||
lm_scale=params.lm_scale,
|
|
||||||
am_scale=params.am_scale,
|
|
||||||
)
|
)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
@ -403,8 +415,15 @@ def compute_loss(
|
|||||||
y = k2.RaggedTensor(y).to(device)
|
y = k2.RaggedTensor(y).to(device)
|
||||||
|
|
||||||
with torch.set_grad_enabled(is_training):
|
with torch.set_grad_enabled(is_training):
|
||||||
simple_loss, pruned_loss = model(x=feature, x_lens=feature_lens, y=y)
|
simple_loss, pruned_loss = model(
|
||||||
loss = simple_loss + pruned_loss
|
x=feature,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
y=y,
|
||||||
|
prune_range=params.prune_range,
|
||||||
|
lm_scale=params.lm_scale,
|
||||||
|
am_scale=params.am_scale,
|
||||||
|
)
|
||||||
|
loss = params.simple_loss_scale * simple_loss + pruned_loss
|
||||||
|
|
||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
@ -1,418 +0,0 @@
|
|||||||
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
import math
|
|
||||||
from typing import Optional, Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from encoder_interface import EncoderInterface
|
|
||||||
from subsampling import Conv2dSubsampling, VggSubsampling
|
|
||||||
|
|
||||||
from icefall.utils import make_pad_mask
|
|
||||||
|
|
||||||
|
|
||||||
class Transformer(EncoderInterface):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
num_features: int,
|
|
||||||
output_dim: int,
|
|
||||||
subsampling_factor: int = 4,
|
|
||||||
d_model: int = 256,
|
|
||||||
nhead: int = 4,
|
|
||||||
dim_feedforward: int = 2048,
|
|
||||||
num_encoder_layers: int = 12,
|
|
||||||
dropout: float = 0.1,
|
|
||||||
normalize_before: bool = True,
|
|
||||||
vgg_frontend: bool = False,
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
num_features:
|
|
||||||
The input dimension of the model.
|
|
||||||
output_dim:
|
|
||||||
The output dimension of the model.
|
|
||||||
subsampling_factor:
|
|
||||||
Number of output frames is num_in_frames // subsampling_factor.
|
|
||||||
Currently, subsampling_factor MUST be 4.
|
|
||||||
d_model:
|
|
||||||
Attention dimension.
|
|
||||||
nhead:
|
|
||||||
Number of heads in multi-head attention.
|
|
||||||
Must satisfy d_model // nhead == 0.
|
|
||||||
dim_feedforward:
|
|
||||||
The output dimension of the feedforward layers in encoder.
|
|
||||||
num_encoder_layers:
|
|
||||||
Number of encoder layers.
|
|
||||||
dropout:
|
|
||||||
Dropout in encoder.
|
|
||||||
normalize_before:
|
|
||||||
If True, use pre-layer norm; False to use post-layer norm.
|
|
||||||
vgg_frontend:
|
|
||||||
True to use vgg style frontend for subsampling.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.num_features = num_features
|
|
||||||
self.output_dim = output_dim
|
|
||||||
self.subsampling_factor = subsampling_factor
|
|
||||||
if subsampling_factor != 4:
|
|
||||||
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
|
||||||
|
|
||||||
# self.encoder_embed converts the input of shape (N, T, num_features)
|
|
||||||
# to the shape (N, T//subsampling_factor, d_model).
|
|
||||||
# That is, it does two things simultaneously:
|
|
||||||
# (1) subsampling: T -> T//subsampling_factor
|
|
||||||
# (2) embedding: num_features -> d_model
|
|
||||||
if vgg_frontend:
|
|
||||||
self.encoder_embed = VggSubsampling(num_features, d_model)
|
|
||||||
else:
|
|
||||||
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
|
||||||
|
|
||||||
self.encoder_pos = PositionalEncoding(d_model, dropout)
|
|
||||||
|
|
||||||
encoder_layer = TransformerEncoderLayer(
|
|
||||||
d_model=d_model,
|
|
||||||
nhead=nhead,
|
|
||||||
dim_feedforward=dim_feedforward,
|
|
||||||
dropout=dropout,
|
|
||||||
normalize_before=normalize_before,
|
|
||||||
)
|
|
||||||
|
|
||||||
if normalize_before:
|
|
||||||
encoder_norm = nn.LayerNorm(d_model)
|
|
||||||
else:
|
|
||||||
encoder_norm = None
|
|
||||||
|
|
||||||
self.encoder = nn.TransformerEncoder(
|
|
||||||
encoder_layer=encoder_layer,
|
|
||||||
num_layers=num_encoder_layers,
|
|
||||||
norm=encoder_norm,
|
|
||||||
)
|
|
||||||
|
|
||||||
# TODO(fangjun): remove dropout
|
|
||||||
self.encoder_output_layer = nn.Sequential(
|
|
||||||
nn.Dropout(p=dropout), nn.Linear(d_model, output_dim)
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
|
||||||
x_lens:
|
|
||||||
A tensor of shape (batch_size,) containing the number of frames in
|
|
||||||
`x` before padding.
|
|
||||||
Returns:
|
|
||||||
Return a tuple containing 2 tensors:
|
|
||||||
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
|
||||||
- logit_lens, a tensor of shape (batch_size,) containing the number
|
|
||||||
of frames in `logits` before padding.
|
|
||||||
"""
|
|
||||||
x = self.encoder_embed(x)
|
|
||||||
x = self.encoder_pos(x)
|
|
||||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
||||||
|
|
||||||
# Caution: We assume the subsampling factor is 4!
|
|
||||||
lengths = ((x_lens - 1) // 2 - 1) // 2
|
|
||||||
assert x.size(0) == lengths.max().item()
|
|
||||||
|
|
||||||
mask = make_pad_mask(lengths)
|
|
||||||
x = self.encoder(x, src_key_padding_mask=mask) # (T, N, C)
|
|
||||||
|
|
||||||
logits = self.encoder_output_layer(x)
|
|
||||||
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
||||||
|
|
||||||
return logits, lengths
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerEncoderLayer(nn.Module):
|
|
||||||
"""
|
|
||||||
Modified from torch.nn.TransformerEncoderLayer.
|
|
||||||
Add support of normalize_before,
|
|
||||||
i.e., use layer_norm before the first block.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
d_model:
|
|
||||||
the number of expected features in the input (required).
|
|
||||||
nhead:
|
|
||||||
the number of heads in the multiheadattention models (required).
|
|
||||||
dim_feedforward:
|
|
||||||
the dimension of the feedforward network model (default=2048).
|
|
||||||
dropout:
|
|
||||||
the dropout value (default=0.1).
|
|
||||||
activation:
|
|
||||||
the activation function of intermediate layer, relu or
|
|
||||||
gelu (default=relu).
|
|
||||||
normalize_before:
|
|
||||||
whether to use layer_norm before the first block.
|
|
||||||
|
|
||||||
Examples::
|
|
||||||
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
|
||||||
>>> src = torch.rand(10, 32, 512)
|
|
||||||
>>> out = encoder_layer(src)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
d_model: int,
|
|
||||||
nhead: int,
|
|
||||||
dim_feedforward: int = 2048,
|
|
||||||
dropout: float = 0.1,
|
|
||||||
activation: str = "relu",
|
|
||||||
normalize_before: bool = True,
|
|
||||||
) -> None:
|
|
||||||
super(TransformerEncoderLayer, self).__init__()
|
|
||||||
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
|
||||||
# Implementation of Feedforward model
|
|
||||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
|
||||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
|
||||||
|
|
||||||
self.norm1 = nn.LayerNorm(d_model)
|
|
||||||
self.norm2 = nn.LayerNorm(d_model)
|
|
||||||
self.dropout1 = nn.Dropout(dropout)
|
|
||||||
self.dropout2 = nn.Dropout(dropout)
|
|
||||||
|
|
||||||
self.activation = _get_activation_fn(activation)
|
|
||||||
|
|
||||||
self.normalize_before = normalize_before
|
|
||||||
|
|
||||||
def __setstate__(self, state):
|
|
||||||
if "activation" not in state:
|
|
||||||
state["activation"] = nn.functional.relu
|
|
||||||
super(TransformerEncoderLayer, self).__setstate__(state)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
src: torch.Tensor,
|
|
||||||
src_mask: Optional[torch.Tensor] = None,
|
|
||||||
src_key_padding_mask: Optional[torch.Tensor] = None,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Pass the input through the encoder layer.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
src: the sequence to the encoder layer (required).
|
|
||||||
src_mask: the mask for the src sequence (optional).
|
|
||||||
src_key_padding_mask: the mask for the src keys per batch (optional)
|
|
||||||
|
|
||||||
Shape:
|
|
||||||
src: (S, N, E).
|
|
||||||
src_mask: (S, S).
|
|
||||||
src_key_padding_mask: (N, S).
|
|
||||||
S is the source sequence length, T is the target sequence length,
|
|
||||||
N is the batch size, E is the feature number
|
|
||||||
"""
|
|
||||||
residual = src
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm1(src)
|
|
||||||
src2 = self.self_attn(
|
|
||||||
src,
|
|
||||||
src,
|
|
||||||
src,
|
|
||||||
attn_mask=src_mask,
|
|
||||||
key_padding_mask=src_key_padding_mask,
|
|
||||||
)[0]
|
|
||||||
src = residual + self.dropout1(src2)
|
|
||||||
if not self.normalize_before:
|
|
||||||
src = self.norm1(src)
|
|
||||||
|
|
||||||
residual = src
|
|
||||||
if self.normalize_before:
|
|
||||||
src = self.norm2(src)
|
|
||||||
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
|
||||||
src = residual + self.dropout2(src2)
|
|
||||||
if not self.normalize_before:
|
|
||||||
src = self.norm2(src)
|
|
||||||
return src
|
|
||||||
|
|
||||||
|
|
||||||
def _get_activation_fn(activation: str):
|
|
||||||
if activation == "relu":
|
|
||||||
return nn.functional.relu
|
|
||||||
elif activation == "gelu":
|
|
||||||
return nn.functional.gelu
|
|
||||||
|
|
||||||
raise RuntimeError(
|
|
||||||
"activation should be relu/gelu, not {}".format(activation)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class PositionalEncoding(nn.Module):
|
|
||||||
"""This class implements the positional encoding
|
|
||||||
proposed in the following paper:
|
|
||||||
|
|
||||||
- Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
|
|
||||||
|
|
||||||
PE(pos, 2i) = sin(pos / (10000^(2i/d_modle))
|
|
||||||
PE(pos, 2i+1) = cos(pos / (10000^(2i/d_modle))
|
|
||||||
|
|
||||||
Note::
|
|
||||||
|
|
||||||
1 / (10000^(2i/d_model)) = exp(-log(10000^(2i/d_model)))
|
|
||||||
= exp(-1* 2i / d_model * log(100000))
|
|
||||||
= exp(2i * -(log(10000) / d_model))
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, d_model: int, dropout: float = 0.1) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
d_model:
|
|
||||||
Embedding dimension.
|
|
||||||
dropout:
|
|
||||||
Dropout probability to be applied to the output of this module.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
self.d_model = d_model
|
|
||||||
self.xscale = math.sqrt(self.d_model)
|
|
||||||
self.dropout = nn.Dropout(p=dropout)
|
|
||||||
# not doing: self.pe = None because of errors thrown by torchscript
|
|
||||||
self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
|
|
||||||
|
|
||||||
def extend_pe(self, x: torch.Tensor) -> None:
|
|
||||||
"""Extend the time t in the positional encoding if required.
|
|
||||||
|
|
||||||
The shape of `self.pe` is (1, T1, d_model). The shape of the input x
|
|
||||||
is (N, T, d_model). If T > T1, then we change the shape of self.pe
|
|
||||||
to (N, T, d_model). Otherwise, nothing is done.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
It is a tensor of shape (N, T, C).
|
|
||||||
Returns:
|
|
||||||
Return None.
|
|
||||||
"""
|
|
||||||
if self.pe is not None:
|
|
||||||
if self.pe.size(1) >= x.size(1):
|
|
||||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
|
||||||
return
|
|
||||||
pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
|
|
||||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
|
||||||
div_term = torch.exp(
|
|
||||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
|
||||||
* -(math.log(10000.0) / self.d_model)
|
|
||||||
)
|
|
||||||
pe[:, 0::2] = torch.sin(position * div_term)
|
|
||||||
pe[:, 1::2] = torch.cos(position * div_term)
|
|
||||||
pe = pe.unsqueeze(0)
|
|
||||||
# Now pe is of shape (1, T, d_model), where T is x.size(1)
|
|
||||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Add positional encoding.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
Its shape is (N, T, C)
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Return a tensor of shape (N, T, C)
|
|
||||||
"""
|
|
||||||
self.extend_pe(x)
|
|
||||||
x = x * self.xscale + self.pe[:, : x.size(1), :]
|
|
||||||
return self.dropout(x)
|
|
||||||
|
|
||||||
|
|
||||||
class Noam(object):
|
|
||||||
"""
|
|
||||||
Implements Noam optimizer.
|
|
||||||
|
|
||||||
Proposed in
|
|
||||||
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
|
||||||
|
|
||||||
Modified from
|
|
||||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
|
||||||
|
|
||||||
Args:
|
|
||||||
params:
|
|
||||||
iterable of parameters to optimize or dicts defining parameter groups
|
|
||||||
model_size:
|
|
||||||
attention dimension of the transformer model
|
|
||||||
factor:
|
|
||||||
learning rate factor
|
|
||||||
warm_step:
|
|
||||||
warmup steps
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
params,
|
|
||||||
model_size: int = 256,
|
|
||||||
factor: float = 10.0,
|
|
||||||
warm_step: int = 25000,
|
|
||||||
weight_decay=0,
|
|
||||||
) -> None:
|
|
||||||
"""Construct an Noam object."""
|
|
||||||
self.optimizer = torch.optim.Adam(
|
|
||||||
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
|
||||||
)
|
|
||||||
self._step = 0
|
|
||||||
self.warmup = warm_step
|
|
||||||
self.factor = factor
|
|
||||||
self.model_size = model_size
|
|
||||||
self._rate = 0
|
|
||||||
|
|
||||||
@property
|
|
||||||
def param_groups(self):
|
|
||||||
"""Return param_groups."""
|
|
||||||
return self.optimizer.param_groups
|
|
||||||
|
|
||||||
def step(self):
|
|
||||||
"""Update parameters and rate."""
|
|
||||||
self._step += 1
|
|
||||||
rate = self.rate()
|
|
||||||
for p in self.optimizer.param_groups:
|
|
||||||
p["lr"] = rate
|
|
||||||
self._rate = rate
|
|
||||||
self.optimizer.step()
|
|
||||||
|
|
||||||
def rate(self, step=None):
|
|
||||||
"""Implement `lrate` above."""
|
|
||||||
if step is None:
|
|
||||||
step = self._step
|
|
||||||
return (
|
|
||||||
self.factor
|
|
||||||
* self.model_size ** (-0.5)
|
|
||||||
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
|
||||||
)
|
|
||||||
|
|
||||||
def zero_grad(self):
|
|
||||||
"""Reset gradient."""
|
|
||||||
self.optimizer.zero_grad()
|
|
||||||
|
|
||||||
def state_dict(self):
|
|
||||||
"""Return state_dict."""
|
|
||||||
return {
|
|
||||||
"_step": self._step,
|
|
||||||
"warmup": self.warmup,
|
|
||||||
"factor": self.factor,
|
|
||||||
"model_size": self.model_size,
|
|
||||||
"_rate": self._rate,
|
|
||||||
"optimizer": self.optimizer.state_dict(),
|
|
||||||
}
|
|
||||||
|
|
||||||
def load_state_dict(self, state_dict):
|
|
||||||
"""Load state_dict."""
|
|
||||||
for key, value in state_dict.items():
|
|
||||||
if key == "optimizer":
|
|
||||||
self.optimizer.load_state_dict(state_dict["optimizer"])
|
|
||||||
else:
|
|
||||||
setattr(self, key, value)
|
|
1
egs/aishell/ASR/pruned_transducer_stateless/transformer.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless/transformer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../transducer_stateless/transformer.py
|
Loading…
x
Reference in New Issue
Block a user