mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
RNN-T training for yesno. (#141)
* RNN-T training for yesno. * Rename Jointer to Joiner.
This commit is contained in:
parent
1aff64b708
commit
95af039733
2
.gitignore
vendored
2
.gitignore
vendored
@ -6,3 +6,5 @@ exp
|
|||||||
exp*/
|
exp*/
|
||||||
*.pt
|
*.pt
|
||||||
download
|
download
|
||||||
|
*.bak
|
||||||
|
*-bak
|
||||||
|
@ -487,6 +487,7 @@ def run(rank, world_size, args):
|
|||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
device = torch.device("cuda", rank)
|
device = torch.device("cuda", rank)
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
|
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
|
||||||
|
|
||||||
|
0
egs/yesno/ASR/transducer/__init__.py
Normal file
0
egs/yesno/ASR/transducer/__init__.py
Normal file
1
egs/yesno/ASR/transducer/asr_datamodule.py
Symbolic link
1
egs/yesno/ASR/transducer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../tdnn/asr_datamodule.py
|
69
egs/yesno/ASR/transducer/beam_search.py
Normal file
69
egs/yesno/ASR/transducer/beam_search.py
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transducer.model import Transducer
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
# support only batch_size == 1 for now
|
||||||
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
|
||||||
|
decoder_out, (h, c) = model.decoder(sos)
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
t = 0
|
||||||
|
hyp = []
|
||||||
|
max_u = 1000 # terminte after this number of steps
|
||||||
|
u = 0
|
||||||
|
|
||||||
|
while t < T and u < max_u:
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||||
|
# fmt: on
|
||||||
|
logits = model.joiner(current_encoder_out, decoder_out)
|
||||||
|
|
||||||
|
log_prob = logits.log_softmax(dim=-1)
|
||||||
|
# log_prob is (N, 1, 1)
|
||||||
|
# TODO: Use logits.argmax()
|
||||||
|
y = log_prob.argmax()
|
||||||
|
if y != blank_id:
|
||||||
|
hyp.append(y.item())
|
||||||
|
y = y.reshape(1, 1)
|
||||||
|
decoder_out, (h, c) = model.decoder(y, (h, c))
|
||||||
|
u += 1
|
||||||
|
else:
|
||||||
|
t += 1
|
||||||
|
id2word = {1: "YES", 2: "NO"}
|
||||||
|
|
||||||
|
hyp = [id2word[i] for i in hyp]
|
||||||
|
|
||||||
|
return hyp
|
310
egs/yesno/ASR/transducer/decode.py
Executable file
310
egs/yesno/ASR/transducer/decode.py
Executable file
@ -0,0 +1,310 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import YesNoAsrDataModule
|
||||||
|
from transducer.beam_search import greedy_search
|
||||||
|
from transducer.decoder import Decoder
|
||||||
|
from transducer.encoder import Tdnn
|
||||||
|
from transducer.joiner import Joiner
|
||||||
|
from transducer.model import Transducer
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=125,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="transducer/exp",
|
||||||
|
help="Directory from which to load the checkpoints",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"feature_dim": 23,
|
||||||
|
# encoder/decoder params
|
||||||
|
"vocab_size": 3, # blank, yes, no
|
||||||
|
"blank_id": 0,
|
||||||
|
"embedding_dim": 32,
|
||||||
|
"hidden_dim": 16,
|
||||||
|
"num_decoder_layers": 4,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
batch: dict,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Decode one batch and return the result in a list-of-list.
|
||||||
|
Each sub list contains the word IDs for an utterance in the batch.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
|
||||||
|
- params.method is "1best", it uses 1best decoding.
|
||||||
|
- params.method is "nbest", it uses nbest decoding.
|
||||||
|
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
(https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py)
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. `len(ans)` == batch size.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
feature_lens = batch["supervisions"]["num_frames"].to(device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=feature, x_lens=feature_lens
|
||||||
|
)
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
hyp = greedy_search(model=model, encoder_out=encoder_out_i)
|
||||||
|
hyps.append(hyp)
|
||||||
|
|
||||||
|
# hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
return hyps
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
) -> List[Tuple[List[int], List[int]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
Returns:
|
||||||
|
Return a tuple contains two elements (ref_text, hyp_text):
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
results = []
|
||||||
|
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
results = []
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
hyps = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results.extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
if batch_idx % 100 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
exp_dir: Path,
|
||||||
|
test_set_name: str,
|
||||||
|
results: List[Tuple[List[int], List[int]]],
|
||||||
|
) -> None:
|
||||||
|
"""Save results to `exp_dir`.
|
||||||
|
Args:
|
||||||
|
exp_dir:
|
||||||
|
The output directory. This function create the following files inside
|
||||||
|
this directory:
|
||||||
|
|
||||||
|
- recogs-{test_set_name}.text
|
||||||
|
|
||||||
|
It contains the reference and hypothesis results, like below::
|
||||||
|
|
||||||
|
ref=['NO', 'NO', 'NO', 'YES', 'NO', 'NO', 'NO', 'YES']
|
||||||
|
hyp=['NO', 'NO', 'NO', 'YES', 'NO', 'NO', 'NO', 'YES']
|
||||||
|
ref=['NO', 'NO', 'YES', 'NO', 'YES', 'NO', 'NO', 'YES']
|
||||||
|
hyp=['NO', 'NO', 'YES', 'NO', 'YES', 'NO', 'NO', 'YES']
|
||||||
|
|
||||||
|
- errs-{test_set_name}.txt
|
||||||
|
|
||||||
|
It contains the detailed WER.
|
||||||
|
test_set_name:
|
||||||
|
The name of the test set, which will be part of the result filename.
|
||||||
|
results:
|
||||||
|
A list of tuples, each of which contains (ref_words, hyp_words).
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
recog_path = exp_dir / f"recogs-{test_set_name}.txt"
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = exp_dir / f"errs-{test_set_name}.txt"
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
write_error_stats(f, f"{test_set_name}", results)
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
|
||||||
|
def get_transducer_model(params: AttributeDict):
|
||||||
|
encoder = Tdnn(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
output_dim=params.hidden_dim,
|
||||||
|
)
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
embedding_dim=params.embedding_dim,
|
||||||
|
blank_id=params.blank_id,
|
||||||
|
num_layers=params.num_decoder_layers,
|
||||||
|
hidden_dim=params.hidden_dim,
|
||||||
|
embedding_dropout=0.4,
|
||||||
|
rnn_dropout=0.4,
|
||||||
|
)
|
||||||
|
joiner = Joiner(input_dim=params.hidden_dim, output_dim=params.vocab_size)
|
||||||
|
transducer = Transducer(encoder=encoder, decoder=decoder, joiner=joiner)
|
||||||
|
return transducer
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
YesNoAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
params["env_info"] = get_env_info()
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-decode")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.load_state_dict(average_checkpoints(filenames))
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
yes_no = YesNoAsrDataModule(args)
|
||||||
|
test_dl = yes_no.test_dataloaders()
|
||||||
|
results = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
exp_dir=params.exp_dir, test_set_name="test_set", results=results
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
92
egs/yesno/ASR/transducer/decoder.py
Normal file
92
egs/yesno/ASR/transducer/decoder.py
Normal file
@ -0,0 +1,92 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_size: int,
|
||||||
|
embedding_dim: int,
|
||||||
|
blank_id: int,
|
||||||
|
num_layers: int,
|
||||||
|
hidden_dim: int,
|
||||||
|
embedding_dropout: float = 0.0,
|
||||||
|
rnn_dropout: float = 0.0,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
vocab_size:
|
||||||
|
Number of tokens of the modeling unit.
|
||||||
|
embedding_dim:
|
||||||
|
Dimension of the input embedding.
|
||||||
|
blank_id:
|
||||||
|
The ID of the blank symbol.
|
||||||
|
num_layers:
|
||||||
|
Number of RNN layers.
|
||||||
|
hidden_dim:
|
||||||
|
Hidden dimension of RNN layers.
|
||||||
|
embedding_dropout:
|
||||||
|
Dropout rate for the embedding layer.
|
||||||
|
rnn_dropout:
|
||||||
|
Dropout for RNN layers.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.embedding = nn.Embedding(
|
||||||
|
num_embeddings=vocab_size,
|
||||||
|
embedding_dim=embedding_dim,
|
||||||
|
padding_idx=blank_id,
|
||||||
|
)
|
||||||
|
self.embedding_dropout = nn.Dropout(embedding_dropout)
|
||||||
|
self.rnn = nn.LSTM(
|
||||||
|
input_size=embedding_dim,
|
||||||
|
hidden_size=hidden_dim,
|
||||||
|
num_layers=num_layers,
|
||||||
|
batch_first=True,
|
||||||
|
dropout=rnn_dropout,
|
||||||
|
)
|
||||||
|
self.blank_id = blank_id
|
||||||
|
self.output_linear = nn.Linear(hidden_dim, hidden_dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
y: torch.Tensor,
|
||||||
|
states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||||
|
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
y:
|
||||||
|
A 2-D tensor of shape (N, U).
|
||||||
|
states:
|
||||||
|
A tuple of two tensors containing the states information of
|
||||||
|
RNN layers in this decoder.
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing:
|
||||||
|
|
||||||
|
- rnn_output, a tensor of shape (N, U, C)
|
||||||
|
- (h, c), which contain the state information for RNN layers.
|
||||||
|
Both are of shape (num_layers, N, C)
|
||||||
|
"""
|
||||||
|
embeding_out = self.embedding(y)
|
||||||
|
embeding_out = self.embedding_dropout(embeding_out)
|
||||||
|
rnn_out, (h, c) = self.rnn(embeding_out, states)
|
||||||
|
out = self.output_linear(rnn_out)
|
||||||
|
|
||||||
|
return out, (h, c)
|
87
egs/yesno/ASR/transducer/encoder.py
Normal file
87
egs/yesno/ASR/transducer/encoder.py
Normal file
@ -0,0 +1,87 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
# We use a TDNN model as encoder, as it works very well with CTC training
|
||||||
|
# for this tiny dataset.
|
||||||
|
class Tdnn(nn.Module):
|
||||||
|
def __init__(self, num_features: int, output_dim: int):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
num_features:
|
||||||
|
Model input dimension.
|
||||||
|
ouput_dim:
|
||||||
|
Model output dimension
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
# Note: We don't use paddings inside conv layers
|
||||||
|
self.tdnn = nn.Sequential(
|
||||||
|
nn.Conv1d(
|
||||||
|
in_channels=num_features,
|
||||||
|
out_channels=32,
|
||||||
|
kernel_size=3,
|
||||||
|
),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.BatchNorm1d(num_features=32, affine=False),
|
||||||
|
nn.Conv1d(
|
||||||
|
in_channels=32,
|
||||||
|
out_channels=32,
|
||||||
|
kernel_size=5,
|
||||||
|
dilation=2,
|
||||||
|
),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.BatchNorm1d(num_features=32, affine=False),
|
||||||
|
nn.Conv1d(
|
||||||
|
in_channels=32,
|
||||||
|
out_channels=32,
|
||||||
|
kernel_size=5,
|
||||||
|
dilation=4,
|
||||||
|
),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.BatchNorm1d(num_features=32, affine=False),
|
||||||
|
)
|
||||||
|
self.output_linear = nn.Linear(in_features=32, out_features=output_dim)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, x_lens: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The input tensor with shape (N, T, C)
|
||||||
|
x_lens:
|
||||||
|
It contains the number of frames in each utterance in x
|
||||||
|
before padding.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tuple with 2 tensors:
|
||||||
|
|
||||||
|
- logits, a tensor of shape (N, T, C)
|
||||||
|
- logit_lens, a tensor of shape (N,)
|
||||||
|
"""
|
||||||
|
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
||||||
|
x = self.tdnn(x)
|
||||||
|
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
||||||
|
logits = self.output_linear(x)
|
||||||
|
|
||||||
|
# the first conv layer reduces T by 3-1 frames
|
||||||
|
# the second layer reduces T by (5-1)*2 frames
|
||||||
|
# the second layer reduces T by (5-1)*4 frames
|
||||||
|
# Number of output frames is 2 + 4*2 + 4*4 = 2 + 8 + 16 = 26
|
||||||
|
x_lens = x_lens - 26
|
||||||
|
return logits, x_lens
|
55
egs/yesno/ASR/transducer/joiner.py
Normal file
55
egs/yesno/ASR/transducer/joiner.py
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
class Joiner(nn.Module):
|
||||||
|
def __init__(self, input_dim: int, output_dim: int):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.output_linear = nn.Linear(input_dim, output_dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, C).
|
||||||
|
decoder_out:
|
||||||
|
Output from the decoder. Its shape is (N, U, C).
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (N, T, U, C).
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == decoder_out.ndim == 3
|
||||||
|
assert encoder_out.size(0) == decoder_out.size(0)
|
||||||
|
assert encoder_out.size(2) == decoder_out.size(2)
|
||||||
|
|
||||||
|
encoder_out = encoder_out.unsqueeze(2)
|
||||||
|
# Now encoder_out is (N, T, 1, C)
|
||||||
|
|
||||||
|
decoder_out = decoder_out.unsqueeze(1)
|
||||||
|
# Now decoder_out is (N, 1, U, C)
|
||||||
|
|
||||||
|
logit = encoder_out + decoder_out
|
||||||
|
logit = F.relu(logit)
|
||||||
|
|
||||||
|
output = self.output_linear(logit)
|
||||||
|
|
||||||
|
return output
|
120
egs/yesno/ASR/transducer/model.py
Normal file
120
egs/yesno/ASR/transducer/model.py
Normal file
@ -0,0 +1,120 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Note we use `rnnt_loss` from torchaudio, which exists only in
|
||||||
|
torchaudio >= v0.10.0. It also means you have to use torch >= v1.10.0
|
||||||
|
"""
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torchaudio
|
||||||
|
import torchaudio.functional
|
||||||
|
|
||||||
|
from icefall.utils import add_sos
|
||||||
|
|
||||||
|
assert hasattr(torchaudio.functional, "rnnt_loss"), (
|
||||||
|
f"Current torchaudio version: {torchaudio.__version__}\n"
|
||||||
|
"Please install a version >= 0.10.0"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class Transducer(nn.Module):
|
||||||
|
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||||
|
"Sequence Transduction with Recurrent Neural Networks"
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder: nn.Module,
|
||||||
|
decoder: nn.Module,
|
||||||
|
joiner: nn.Module,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder:
|
||||||
|
It is the transcription network in the paper. Its accepts
|
||||||
|
two inputs: `x` of (N, T, C) and `x_lens` of shape (N,).
|
||||||
|
It returns two tensors: `logits` of shape (N, T, C) and
|
||||||
|
`logit_lens` of shape (N,).
|
||||||
|
decoder:
|
||||||
|
It is the prediction network in the paper. Its input shape
|
||||||
|
is (N, U) and its output shape is (N, U, C). It should contain
|
||||||
|
one attribute: `blank_id`.
|
||||||
|
joiner:
|
||||||
|
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
|
||||||
|
output shape is (N, T, U, C). Note that its output contains
|
||||||
|
unnormalized probs, i.e., not processed by log-softmax.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.encoder = encoder
|
||||||
|
self.decoder = decoder
|
||||||
|
self.joiner = joiner
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
x_lens: torch.Tensor,
|
||||||
|
y: k2.RaggedTensor,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A 3-D tensor of shape (N, T, C).
|
||||||
|
x_lens:
|
||||||
|
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||||
|
before padding.
|
||||||
|
y:
|
||||||
|
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||||
|
utterance.
|
||||||
|
Returns:
|
||||||
|
Return the transducer loss.
|
||||||
|
"""
|
||||||
|
assert x.ndim == 3, x.shape
|
||||||
|
assert x_lens.ndim == 1, x_lens.shape
|
||||||
|
assert y.num_axes == 2, y.num_axes
|
||||||
|
|
||||||
|
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||||
|
|
||||||
|
encoder_out, x_lens = self.encoder(x, x_lens)
|
||||||
|
assert torch.all(x_lens > 0)
|
||||||
|
|
||||||
|
# Now for the decoder, i.e., the prediction network
|
||||||
|
row_splits = y.shape.row_splits(1)
|
||||||
|
y_lens = row_splits[1:] - row_splits[:-1]
|
||||||
|
|
||||||
|
blank_id = self.decoder.blank_id
|
||||||
|
sos_y = add_sos(y, sos_id=blank_id)
|
||||||
|
|
||||||
|
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||||
|
|
||||||
|
decoder_out, _ = self.decoder(sos_y_padded)
|
||||||
|
|
||||||
|
logits = self.joiner(encoder_out, decoder_out)
|
||||||
|
|
||||||
|
# rnnt_loss requires 0 padded targets
|
||||||
|
y_padded = y.pad(mode="constant", padding_value=0)
|
||||||
|
|
||||||
|
loss = torchaudio.functional.rnnt_loss(
|
||||||
|
logits=logits,
|
||||||
|
targets=y_padded,
|
||||||
|
logit_lengths=x_lens,
|
||||||
|
target_lengths=y_lens,
|
||||||
|
blank=blank_id,
|
||||||
|
reduction="mean",
|
||||||
|
)
|
||||||
|
|
||||||
|
return loss
|
65
egs/yesno/ASR/transducer/test_decoder.py
Executable file
65
egs/yesno/ASR/transducer/test_decoder.py
Executable file
@ -0,0 +1,65 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
To run this file, do:
|
||||||
|
|
||||||
|
cd icefall/egs/yesno/ASR
|
||||||
|
python ./transducer/test_decoder.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transducer.decoder import Decoder
|
||||||
|
|
||||||
|
|
||||||
|
def test_decoder():
|
||||||
|
vocab_size = 3
|
||||||
|
blank_id = 0
|
||||||
|
embedding_dim = 128
|
||||||
|
num_layers = 2
|
||||||
|
hidden_dim = 6
|
||||||
|
N = 3
|
||||||
|
U = 5
|
||||||
|
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=vocab_size,
|
||||||
|
embedding_dim=embedding_dim,
|
||||||
|
blank_id=blank_id,
|
||||||
|
num_layers=num_layers,
|
||||||
|
hidden_dim=hidden_dim,
|
||||||
|
embedding_dropout=0.0,
|
||||||
|
rnn_dropout=0.0,
|
||||||
|
)
|
||||||
|
x = torch.randint(1, vocab_size, (N, U))
|
||||||
|
rnn_out, (h, c) = decoder(x)
|
||||||
|
|
||||||
|
assert rnn_out.shape == (N, U, hidden_dim)
|
||||||
|
assert h.shape == (num_layers, N, hidden_dim)
|
||||||
|
assert c.shape == (num_layers, N, hidden_dim)
|
||||||
|
|
||||||
|
rnn_out, (h, c) = decoder(x, (h, c))
|
||||||
|
assert rnn_out.shape == (N, U, hidden_dim)
|
||||||
|
assert h.shape == (num_layers, N, hidden_dim)
|
||||||
|
assert c.shape == (num_layers, N, hidden_dim)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test_decoder()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
47
egs/yesno/ASR/transducer/test_encoder.py
Executable file
47
egs/yesno/ASR/transducer/test_encoder.py
Executable file
@ -0,0 +1,47 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
To run this file, do:
|
||||||
|
|
||||||
|
cd icefall/egs/yesno/ASR
|
||||||
|
python ./transducer/test_encoder.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transducer.encoder import Tdnn
|
||||||
|
|
||||||
|
|
||||||
|
def test_encoder():
|
||||||
|
input_dim = 10
|
||||||
|
output_dim = 20
|
||||||
|
encoder = Tdnn(input_dim, output_dim)
|
||||||
|
N = 10
|
||||||
|
T = 85
|
||||||
|
x = torch.rand(N, T, input_dim)
|
||||||
|
x_lens = torch.randint(low=30, high=T, size=(N,), dtype=torch.int32)
|
||||||
|
logits, logit_lens = encoder(x, x_lens)
|
||||||
|
assert logits.shape == (N, T - 26, output_dim)
|
||||||
|
assert torch.all(torch.eq(x_lens - 26, logit_lens))
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test_encoder()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
50
egs/yesno/ASR/transducer/test_joiner.py
Executable file
50
egs/yesno/ASR/transducer/test_joiner.py
Executable file
@ -0,0 +1,50 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
To run this file, do:
|
||||||
|
|
||||||
|
cd icefall/egs/yesno/ASR
|
||||||
|
python ./transducer/test_joiner.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transducer.joiner import Joiner
|
||||||
|
|
||||||
|
|
||||||
|
def test_joiner():
|
||||||
|
N = 2
|
||||||
|
T = 3
|
||||||
|
C = 4
|
||||||
|
U = 5
|
||||||
|
|
||||||
|
joiner = Joiner(C, 10)
|
||||||
|
|
||||||
|
encoder_out = torch.rand(N, T, C)
|
||||||
|
decoder_out = torch.rand(N, U, C)
|
||||||
|
|
||||||
|
joint = joiner(encoder_out, decoder_out)
|
||||||
|
assert joint.shape == (N, T, U, 10)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test_joiner()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
77
egs/yesno/ASR/transducer/test_transducer.py
Executable file
77
egs/yesno/ASR/transducer/test_transducer.py
Executable file
@ -0,0 +1,77 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
To run this file, do:
|
||||||
|
|
||||||
|
cd icefall/egs/yesno/ASR
|
||||||
|
python ./transducer/test_transducer.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
from transducer.decoder import Decoder
|
||||||
|
from transducer.encoder import Tdnn
|
||||||
|
from transducer.joiner import Joiner
|
||||||
|
from transducer.model import Transducer
|
||||||
|
|
||||||
|
|
||||||
|
def test_transducer():
|
||||||
|
# encoder params
|
||||||
|
input_dim = 10
|
||||||
|
output_dim = 20
|
||||||
|
|
||||||
|
# decoder params
|
||||||
|
vocab_size = 3
|
||||||
|
blank_id = 0
|
||||||
|
embedding_dim = 128
|
||||||
|
num_layers = 2
|
||||||
|
|
||||||
|
encoder = Tdnn(input_dim, output_dim)
|
||||||
|
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=vocab_size,
|
||||||
|
embedding_dim=embedding_dim,
|
||||||
|
blank_id=blank_id,
|
||||||
|
num_layers=num_layers,
|
||||||
|
hidden_dim=output_dim,
|
||||||
|
embedding_dropout=0.0,
|
||||||
|
rnn_dropout=0.0,
|
||||||
|
)
|
||||||
|
|
||||||
|
joiner = Joiner(output_dim, vocab_size)
|
||||||
|
transducer = Transducer(encoder=encoder, decoder=decoder, joiner=joiner)
|
||||||
|
|
||||||
|
y = k2.RaggedTensor([[1, 2, 1], [1, 1, 1, 2, 1]])
|
||||||
|
N = y.dim0
|
||||||
|
T = 50
|
||||||
|
|
||||||
|
x = torch.rand(N, T, input_dim)
|
||||||
|
x_lens = torch.randint(low=30, high=T, size=(N,), dtype=torch.int32)
|
||||||
|
x_lens[0] = T
|
||||||
|
|
||||||
|
loss = transducer(x, x_lens, y)
|
||||||
|
print(loss)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test_transducer()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
581
egs/yesno/ASR/transducer/train.py
Executable file
581
egs/yesno/ASR/transducer/train.py
Executable file
@ -0,0 +1,581 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from asr_datamodule import YesNoAsrDataModule
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch import Tensor
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.nn.utils import clip_grad_norm_
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from transducer.decoder import Decoder
|
||||||
|
from transducer.encoder import Tdnn
|
||||||
|
from transducer.joiner import Joiner
|
||||||
|
from transducer.model import Transducer
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_labels(texts: List[str]) -> k2.RaggedTensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
texts:
|
||||||
|
A list of transcripts. Each transcript contains spaces separated
|
||||||
|
"NO" or "YES".
|
||||||
|
Returns:
|
||||||
|
Return a ragged tensor containing the corresponding word ID.
|
||||||
|
"""
|
||||||
|
# blank is 0
|
||||||
|
word2id = {"YES": 1, "NO": 2}
|
||||||
|
word_ids = []
|
||||||
|
for t in texts:
|
||||||
|
words = t.split()
|
||||||
|
ids = [word2id[w] for w in words]
|
||||||
|
word_ids.append(ids)
|
||||||
|
|
||||||
|
return k2.RaggedTensor(word_ids)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12354,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=200,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""Resume training from from this epoch.
|
||||||
|
If it is positive, it will load checkpoint from
|
||||||
|
tdnn/exp/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="transducer/exp",
|
||||||
|
help="Directory to save results",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
is saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- lr: It specifies the initial learning rate
|
||||||
|
|
||||||
|
- feature_dim: The model input dim. It has to match the one used
|
||||||
|
in computing features.
|
||||||
|
|
||||||
|
- weight_decay: The weight_decay for the optimizer.
|
||||||
|
|
||||||
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
|
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
||||||
|
and continue training from that checkpoint.
|
||||||
|
|
||||||
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
|
the model that has the lowest training loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_valid_loss: Best validation loss so far. It is used to select
|
||||||
|
the model that has the lowest validation loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_train_epoch: It is the epoch that has the best training loss.
|
||||||
|
|
||||||
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||||
|
|
||||||
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||||
|
contains number of batches trained so far across
|
||||||
|
epochs.
|
||||||
|
|
||||||
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
|
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||||
|
|
||||||
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"lr": 1e-3,
|
||||||
|
"feature_dim": 23,
|
||||||
|
"weight_decay": 1e-6,
|
||||||
|
"start_epoch": 0,
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 10,
|
||||||
|
"reset_interval": 20,
|
||||||
|
"valid_interval": 10,
|
||||||
|
# encoder/decoder params
|
||||||
|
"vocab_size": 3, # blank, yes, no
|
||||||
|
"blank_id": 0,
|
||||||
|
"embedding_dim": 32,
|
||||||
|
"hidden_dim": 16,
|
||||||
|
"num_decoder_layers": 4,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint_if_available(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Load checkpoint from file.
|
||||||
|
|
||||||
|
If params.start_epoch is positive, it will load the checkpoint from
|
||||||
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||||
|
|
||||||
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||||
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||||
|
and `best_valid_loss` in `params`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
The return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
optimizer:
|
||||||
|
The optimizer that we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler we are using.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if params.start_epoch <= 0:
|
||||||
|
return
|
||||||
|
|
||||||
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||||
|
saved_params = load_checkpoint(
|
||||||
|
filename,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"best_train_epoch",
|
||||||
|
"best_valid_epoch",
|
||||||
|
"batch_idx_train",
|
||||||
|
"best_train_loss",
|
||||||
|
"best_valid_loss",
|
||||||
|
]
|
||||||
|
for k in keys:
|
||||||
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
scheduler: torch.optim.lr_scheduler._LRScheduler,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Save model, optimizer, scheduler and training stats to file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
"""
|
||||||
|
if rank != 0:
|
||||||
|
return
|
||||||
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||||
|
save_checkpoint_impl(
|
||||||
|
filename=filename,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.best_train_epoch == params.cur_epoch:
|
||||||
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_train_filename)
|
||||||
|
|
||||||
|
if params.best_valid_epoch == params.cur_epoch:
|
||||||
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
batch: dict,
|
||||||
|
is_training: bool,
|
||||||
|
) -> Tuple[Tensor, MetricsTracker]:
|
||||||
|
"""
|
||||||
|
Compute RNN-T loss given the model and its inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training. It is an instance of Tdnn in our case.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
is_training:
|
||||||
|
True for training. False for validation. When it is True, this
|
||||||
|
function enables autograd during computation; when it is False, it
|
||||||
|
disables autograd.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
|
||||||
|
feature_lens = batch["supervisions"]["num_frames"].to(device)
|
||||||
|
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
labels = get_labels(texts).to(device)
|
||||||
|
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
loss = model(x=feature, x_lens=feature_lens, y=labels)
|
||||||
|
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
info = MetricsTracker()
|
||||||
|
info["frames"] = feature.size(0)
|
||||||
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
|
||||||
|
return loss, info
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> MetricsTracker:
|
||||||
|
"""Run the validation process. The validation loss
|
||||||
|
is saved in `params.valid_loss`.
|
||||||
|
"""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
|
||||||
|
tot_loss = tot_loss + loss_info
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
tot_loss.reduce(loss.device)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
|
||||||
|
if loss_value < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = loss_value
|
||||||
|
|
||||||
|
return tot_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
# summary stats.
|
||||||
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, "
|
||||||
|
f"batch {batch_idx}, loss[{loss_info}], "
|
||||||
|
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||||
|
)
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
loss_info.write_summary(
|
||||||
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
tot_loss.write_summary(
|
||||||
|
tb_writer, "train/tot_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
|
valid_info = compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(f"Epoch {params.cur_epoch}, validation {valid_info}")
|
||||||
|
if tb_writer is not None:
|
||||||
|
valid_info.write_summary(
|
||||||
|
tb_writer,
|
||||||
|
"train/valid_",
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
params.train_loss = loss_value
|
||||||
|
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def get_transducer_model(params: AttributeDict):
|
||||||
|
encoder = Tdnn(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
output_dim=params.hidden_dim,
|
||||||
|
)
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
embedding_dim=params.embedding_dim,
|
||||||
|
blank_id=params.blank_id,
|
||||||
|
num_layers=params.num_decoder_layers,
|
||||||
|
hidden_dim=params.hidden_dim,
|
||||||
|
embedding_dropout=0.4,
|
||||||
|
rnn_dropout=0.4,
|
||||||
|
)
|
||||||
|
joiner = Joiner(input_dim=params.hidden_dim, output_dim=params.vocab_size)
|
||||||
|
transducer = Transducer(encoder=encoder, decoder=decoder, joiner=joiner)
|
||||||
|
|
||||||
|
return transducer
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
params["env_info"] = get_env_info()
|
||||||
|
|
||||||
|
fix_random_seed(42)
|
||||||
|
if world_size > 1:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
if world_size > 1:
|
||||||
|
model = DDP(model, device_ids=[rank])
|
||||||
|
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
optimizer = optim.Adam(
|
||||||
|
model.parameters(),
|
||||||
|
lr=params.lr,
|
||||||
|
weight_decay=params.weight_decay,
|
||||||
|
)
|
||||||
|
|
||||||
|
if checkpoints:
|
||||||
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
|
||||||
|
yes_no = YesNoAsrDataModule(args)
|
||||||
|
train_dl = yes_no.train_dataloaders()
|
||||||
|
|
||||||
|
# There are only 60 waves: 30 files are used for training
|
||||||
|
# and the remaining 30 files are used for testing.
|
||||||
|
# We use test data as validation.
|
||||||
|
valid_dl = yes_no.test_dataloaders()
|
||||||
|
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs):
|
||||||
|
train_dl.sampler.set_epoch(epoch)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=None,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
if world_size > 1:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
YesNoAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
125
icefall/utils.py
125
icefall/utils.py
@ -565,3 +565,128 @@ class MetricsTracker(collections.defaultdict):
|
|||||||
"""
|
"""
|
||||||
for k, v in self.norm_items():
|
for k, v in self.norm_items():
|
||||||
tb_writer.add_scalar(prefix + k, v, batch_idx)
|
tb_writer.add_scalar(prefix + k, v, batch_idx)
|
||||||
|
|
||||||
|
|
||||||
|
def concat(
|
||||||
|
ragged: k2.RaggedTensor, value: int, direction: str
|
||||||
|
) -> k2.RaggedTensor:
|
||||||
|
"""Prepend a value to the beginning of each sublist or append a value.
|
||||||
|
to the end of each sublist.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ragged:
|
||||||
|
A ragged tensor with two axes.
|
||||||
|
value:
|
||||||
|
The value to prepend or append.
|
||||||
|
direction:
|
||||||
|
It can be either "left" or "right". If it is "left", we
|
||||||
|
prepend the value to the beginning of each sublist;
|
||||||
|
if it is "right", we append the value to the end of each
|
||||||
|
sublist.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a new ragged tensor, whose sublists either start with
|
||||||
|
or end with the given value.
|
||||||
|
|
||||||
|
>>> a = k2.RaggedTensor([[1, 3], [5]])
|
||||||
|
>>> a
|
||||||
|
[ [ 1 3 ] [ 5 ] ]
|
||||||
|
>>> concat(a, value=0, direction="left")
|
||||||
|
[ [ 0 1 3 ] [ 0 5 ] ]
|
||||||
|
>>> concat(a, value=0, direction="right")
|
||||||
|
[ [ 1 3 0 ] [ 5 0 ] ]
|
||||||
|
|
||||||
|
"""
|
||||||
|
dtype = ragged.dtype
|
||||||
|
device = ragged.device
|
||||||
|
|
||||||
|
assert ragged.num_axes == 2, f"num_axes: {ragged.num_axes}"
|
||||||
|
pad_values = torch.full(
|
||||||
|
size=(ragged.tot_size(0), 1),
|
||||||
|
fill_value=value,
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
)
|
||||||
|
pad = k2.RaggedTensor(pad_values)
|
||||||
|
|
||||||
|
if direction == "left":
|
||||||
|
ans = k2.ragged.cat([pad, ragged], axis=1)
|
||||||
|
elif direction == "right":
|
||||||
|
ans = k2.ragged.cat([ragged, pad], axis=1)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f'Unsupported direction: {direction}. " \
|
||||||
|
"Expect either "left" or "right"'
|
||||||
|
)
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def add_sos(ragged: k2.RaggedTensor, sos_id: int) -> k2.RaggedTensor:
|
||||||
|
"""Add SOS to each sublist.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ragged:
|
||||||
|
A ragged tensor with two axes.
|
||||||
|
sos_id:
|
||||||
|
The ID of the SOS symbol.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a new ragged tensor, where each sublist starts with SOS.
|
||||||
|
|
||||||
|
>>> a = k2.RaggedTensor([[1, 3], [5]])
|
||||||
|
>>> a
|
||||||
|
[ [ 1 3 ] [ 5 ] ]
|
||||||
|
>>> add_sos(a, sos_id=0)
|
||||||
|
[ [ 0 1 3 ] [ 0 5 ] ]
|
||||||
|
|
||||||
|
"""
|
||||||
|
return concat(ragged, sos_id, direction="left")
|
||||||
|
|
||||||
|
|
||||||
|
def add_eos(ragged: k2.RaggedTensor, eos_id: int) -> k2.RaggedTensor:
|
||||||
|
"""Add EOS to each sublist.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ragged:
|
||||||
|
A ragged tensor with two axes.
|
||||||
|
eos_id:
|
||||||
|
The ID of the EOS symbol.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a new ragged tensor, where each sublist ends with EOS.
|
||||||
|
|
||||||
|
>>> a = k2.RaggedTensor([[1, 3], [5]])
|
||||||
|
>>> a
|
||||||
|
[ [ 1 3 ] [ 5 ] ]
|
||||||
|
>>> add_eos(a, eos_id=0)
|
||||||
|
[ [ 1 3 0 ] [ 5 0 ] ]
|
||||||
|
|
||||||
|
"""
|
||||||
|
return concat(ragged, eos_id, direction="right")
|
||||||
|
|
||||||
|
|
||||||
|
def make_pad_mask(lengths: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lengths:
|
||||||
|
A 1-D tensor containing sentence lengths.
|
||||||
|
Returns:
|
||||||
|
Return a 2-D bool tensor, where masked positions
|
||||||
|
are filled with `True` and non-masked positions are
|
||||||
|
filled with `False`.
|
||||||
|
|
||||||
|
>>> lengths = torch.tensor([1, 3, 2, 5])
|
||||||
|
>>> make_pad_mask(lengths)
|
||||||
|
tensor([[False, True, True, True, True],
|
||||||
|
[False, False, False, True, True],
|
||||||
|
[False, False, True, True, True],
|
||||||
|
[False, False, False, False, False]])
|
||||||
|
"""
|
||||||
|
assert lengths.ndim == 1, lengths.ndim
|
||||||
|
|
||||||
|
max_len = lengths.max()
|
||||||
|
n = lengths.size(0)
|
||||||
|
|
||||||
|
expaned_lengths = torch.arange(max_len).expand(n, max_len).to(lengths)
|
||||||
|
|
||||||
|
return expaned_lengths >= lengths.unsqueeze(1)
|
||||||
|
@ -21,7 +21,14 @@ import pytest
|
|||||||
import torch
|
import torch
|
||||||
|
|
||||||
from icefall.env import get_env_info
|
from icefall.env import get_env_info
|
||||||
from icefall.utils import AttributeDict, encode_supervisions, get_texts
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
add_eos,
|
||||||
|
add_sos,
|
||||||
|
encode_supervisions,
|
||||||
|
get_texts,
|
||||||
|
make_pad_mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
@ -126,3 +133,35 @@ def test_attribute_dict():
|
|||||||
def test_get_env_info():
|
def test_get_env_info():
|
||||||
s = get_env_info()
|
s = get_env_info()
|
||||||
print(s)
|
print(s)
|
||||||
|
|
||||||
|
|
||||||
|
def test_makd_pad_mask():
|
||||||
|
lengths = torch.tensor([1, 3, 2])
|
||||||
|
mask = make_pad_mask(lengths)
|
||||||
|
expected = torch.tensor(
|
||||||
|
[
|
||||||
|
[False, True, True],
|
||||||
|
[False, False, False],
|
||||||
|
[False, False, True],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
assert torch.all(torch.eq(mask, expected))
|
||||||
|
assert (~expected).sum() == lengths.sum()
|
||||||
|
|
||||||
|
|
||||||
|
def test_add_sos():
|
||||||
|
sos_id = 100
|
||||||
|
ragged = k2.RaggedTensor([[1, 2], [3], [0]])
|
||||||
|
sos_ragged = add_sos(ragged, sos_id)
|
||||||
|
expected = k2.RaggedTensor([[sos_id, 1, 2], [sos_id, 3], [sos_id, 0]])
|
||||||
|
assert str(sos_ragged) == str(expected)
|
||||||
|
|
||||||
|
|
||||||
|
def test_add_eos():
|
||||||
|
eos_id = 30
|
||||||
|
ragged = k2.RaggedTensor([[1, 2], [3], [], [5, 8, 9]])
|
||||||
|
ragged_eos = add_eos(ragged, eos_id)
|
||||||
|
expected = k2.RaggedTensor(
|
||||||
|
[[1, 2, eos_id], [3, eos_id], [eos_id], [5, 8, 9, eos_id]]
|
||||||
|
)
|
||||||
|
assert str(ragged_eos) == str(expected)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user