mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-07 08:04:18 +00:00
WIP: Use shallow fusion in modified beam search.
This commit is contained in:
parent
27fa5f05d3
commit
954b4efff3
160
egs/librispeech/ASR/local/compile_lg.py
Executable file
160
egs/librispeech/ASR/local/compile_lg.py
Executable file
@ -0,0 +1,160 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This script takes as input lang_dir and generates LG from
|
||||
|
||||
- L, the lexicon, built from lang_dir/L_disambig.pt
|
||||
|
||||
Caution: We use a lexicon that contains disambiguation symbols
|
||||
|
||||
- G, the LM, built from data/lm/G_3_gram.fst.txt
|
||||
|
||||
The generated LG is saved in $lang_dir/LG.fst
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compile_LG(lang_dir: str) -> k2.Fsa:
|
||||
"""
|
||||
Args:
|
||||
lang_dir:
|
||||
The language directory, e.g., data/lang_phone or data/lang_bpe_500.
|
||||
|
||||
Return:
|
||||
An FST representing LG.
|
||||
"""
|
||||
|
||||
tokens = k2.SymbolTable.from_file(f"{lang_dir}/tokens.txt")
|
||||
|
||||
assert "#0" in tokens
|
||||
|
||||
first_token_disambig_id = tokens["#0"]
|
||||
logging.info(f"first token disambig ID: {first_token_disambig_id}")
|
||||
|
||||
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
||||
|
||||
if Path("data/lm/G_3_gram.pt").is_file():
|
||||
logging.info("Loading pre-compiled G_3_gram")
|
||||
d = torch.load("data/lm/G_3_gram.pt")
|
||||
G = k2.Fsa.from_dict(d)
|
||||
else:
|
||||
logging.info("Loading G_3_gram.fst.txt")
|
||||
with open("data/lm/G_3_gram.fst.txt") as f:
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
del G.aux_labels
|
||||
torch.save(G.as_dict(), "data/lm/G_3_gram.pt")
|
||||
|
||||
L = k2.arc_sort(L)
|
||||
G = k2.arc_sort(G)
|
||||
|
||||
logging.info("Composing L and G")
|
||||
LG = k2.compose(L, G)
|
||||
logging.info(f"LG shape: {LG.shape}, num_arcs: {LG.num_arcs}")
|
||||
|
||||
del LG.aux_labels
|
||||
|
||||
logging.info("Connecting LG")
|
||||
LG = k2.connect(LG)
|
||||
logging.info(
|
||||
f"LG shape after k2.connect: {LG.shape}, num_arcs: {LG.num_arcs}"
|
||||
)
|
||||
|
||||
logging.info("Determinizing LG")
|
||||
LG = k2.determinize(LG)
|
||||
logging.info(
|
||||
f"LG shape after k2.determinize: {LG.shape}, num_arcs: {LG.num_arcs}"
|
||||
)
|
||||
|
||||
logging.info("Connecting LG after k2.determinize")
|
||||
LG = k2.connect(LG)
|
||||
logging.info(
|
||||
f"LG shape after k2.connect: {LG.shape}, num_arcs: {LG.num_arcs}"
|
||||
)
|
||||
|
||||
logging.info("Removing disambiguation symbols on LG")
|
||||
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||
# See https://github.com/k2-fsa/k2/issues/874
|
||||
# for why we need to set LG.properties to None
|
||||
LG.__dict__["_properties"] = None
|
||||
|
||||
logging.info("Removing epsilons")
|
||||
LG = k2.remove_epsilon(LG)
|
||||
logging.info(
|
||||
f"LG shape after k2.remove_epsilon: {LG.shape}, num_arcs: {LG.num_arcs}"
|
||||
)
|
||||
|
||||
logging.info("Connecting")
|
||||
LG = k2.connect(LG)
|
||||
logging.info(
|
||||
f"LG shape after k2.connect: {LG.shape}, num_arcs: {LG.num_arcs}"
|
||||
)
|
||||
|
||||
logging.info("Arc sorting LG")
|
||||
LG = k2.arc_sort(LG)
|
||||
|
||||
logging.info(f"LG properties: {LG.properties_str}")
|
||||
# Possible properties is:
|
||||
# "Valid|Nonempty|ArcSorted|EpsilonFree|MaybeAccessible|MaybeCoaccessible"
|
||||
logging.info("Caution: LG is not deterministic!!!")
|
||||
|
||||
return LG
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
out_filename = lang_dir / "LG.pt"
|
||||
|
||||
if out_filename.is_file():
|
||||
logging.info(f"{out_filename} already exists - skipping")
|
||||
return
|
||||
|
||||
logging.info(f"Processing {lang_dir}")
|
||||
|
||||
LG = compile_LG(lang_dir)
|
||||
logging.info(f"Saving LG to {out_filename}")
|
||||
torch.save(LG.as_dict(), out_filename)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
79
egs/librispeech/ASR/local/test_compile_lg.py
Executable file
79
egs/librispeech/ASR/local/test_compile_lg.py
Executable file
@ -0,0 +1,79 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./local/test_compile_lg.py
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
|
||||
lang_dir = Path("./data/lang_bpe_500")
|
||||
|
||||
|
||||
def get_word_ids(word_table: k2.SymbolTable, s: str) -> List[int]:
|
||||
"""
|
||||
Args:
|
||||
word_table:
|
||||
Word symbol table.
|
||||
s:
|
||||
A string consisting of space(s) separated words.
|
||||
Returns:
|
||||
Return a list of word IDs.
|
||||
"""
|
||||
ans = []
|
||||
for w in s.split():
|
||||
ans.append(word_table[w])
|
||||
return ans
|
||||
|
||||
|
||||
def main():
|
||||
assert lang_dir.exists(), f"{lang_dir} does not exist!"
|
||||
LG = k2.Fsa.from_dict(torch.load(f"{lang_dir}/LG.pt", map_location="cpu"))
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(f"{lang_dir}/bpe.model")
|
||||
|
||||
word_table = k2.SymbolTable.from_file(f"{lang_dir}/words.txt")
|
||||
s = "HELLO WORLD"
|
||||
token_ids = sp.encode(s)
|
||||
|
||||
token_fsa = k2.linear_fsa(token_ids)
|
||||
|
||||
fsa = k2.intersect(LG, token_fsa)
|
||||
fsa = k2.connect(fsa)
|
||||
print(k2.to_dot(fsa))
|
||||
print(fsa.properties_str)
|
||||
print(LG.properties_str)
|
||||
# You can use https://dreampuf.github.io/GraphvizOnline/
|
||||
# to visualize the output.
|
||||
#
|
||||
# You can see that the resulting fsa is not deterministic
|
||||
# Note: LG is non-deterministic
|
||||
#
|
||||
# See https://shorturl.at/uIL69
|
||||
# for visualization of the above fsa.
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -17,8 +17,10 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from model import Transducer
|
||||
from shallow_fusion import shallow_fusion
|
||||
|
||||
|
||||
def greedy_search(
|
||||
@ -111,6 +113,13 @@ class Hypothesis:
|
||||
# It contains only one entry.
|
||||
log_prob: torch.Tensor
|
||||
|
||||
# Used for shallow fusion
|
||||
# The key of the dict is a state index into LG
|
||||
# while the corresponding value is the LM score
|
||||
# reaching this state.
|
||||
# Note: The value tensor contains only a single entry
|
||||
ngram_state_and_scores: Optional[Dict[int, torch.Tensor]] = (None,)
|
||||
|
||||
@property
|
||||
def key(self) -> str:
|
||||
"""Return a string representation of self.ys"""
|
||||
@ -149,6 +158,15 @@ class HypothesisList(object):
|
||||
torch.logaddexp(
|
||||
old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
|
||||
)
|
||||
if hyp.ngram_state_and_scores is not None:
|
||||
for state, score in hyp.ngram_state_and_scores.items():
|
||||
if (
|
||||
state in old_hyp.ngram_state_and_scores
|
||||
and score > old_hyp.ngram_state_and_scores[state]
|
||||
):
|
||||
old_hyp.ngram_state_and_scores[state] = score
|
||||
else:
|
||||
old_hyp.ngram_state_and_scores[state] = score
|
||||
else:
|
||||
self._data[key] = hyp
|
||||
|
||||
@ -318,6 +336,7 @@ def modified_beam_search(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
beam: int = 4,
|
||||
LG: Optional[k2.Fsa] = None,
|
||||
) -> List[int]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
@ -328,9 +347,13 @@ def modified_beam_search(
|
||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||
beam:
|
||||
Beam size.
|
||||
LG:
|
||||
Optional. Used for shallow fusion.
|
||||
Returns:
|
||||
Return the decoded result.
|
||||
"""
|
||||
enable_shallow_fusion = LG is not None
|
||||
ngram_lm_scale = 0.8
|
||||
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
@ -350,10 +373,19 @@ def modified_beam_search(
|
||||
T = encoder_out.size(1)
|
||||
|
||||
B = HypothesisList()
|
||||
|
||||
if enable_shallow_fusion:
|
||||
ngram_state_and_scores = {
|
||||
0: torch.zeros(1, dtype=torch.float32, device=device)
|
||||
}
|
||||
else:
|
||||
ngram_state_and_scores = None
|
||||
|
||||
B.add(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
ngram_state_and_scores=ngram_state_and_scores,
|
||||
)
|
||||
)
|
||||
|
||||
@ -411,9 +443,33 @@ def modified_beam_search(
|
||||
new_token = topk_token_indexes[i]
|
||||
if new_token != blank_id:
|
||||
new_ys.append(new_token)
|
||||
else:
|
||||
ngram_state_and_scores = hyp.ngram_state_and_scores
|
||||
|
||||
new_log_prob = topk_log_probs[i]
|
||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||
|
||||
if enable_shallow_fusion and new_token != blank_id:
|
||||
ngram_state_and_scores = shallow_fusion(
|
||||
LG, new_token, hyp.ngram_state_and_scores
|
||||
)
|
||||
if len(ngram_state_and_scores) == 0:
|
||||
continue
|
||||
max_ngram_score = max(ngram_state_and_scores.values())
|
||||
new_log_prob += ngram_lm_scale * max_ngram_score
|
||||
|
||||
# TODO: Get the maximum scores in ngram_state_and_scores
|
||||
# and add it to new_log_prob
|
||||
|
||||
new_hyp = Hypothesis(
|
||||
ys=new_ys,
|
||||
log_prob=new_log_prob,
|
||||
ngram_state_and_scores=ngram_state_and_scores,
|
||||
)
|
||||
|
||||
B.add(new_hyp)
|
||||
if len(B) == 0:
|
||||
for h in A:
|
||||
B.add(h)
|
||||
|
||||
best_hyp = B.get_most_probable(length_norm=True)
|
||||
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||
|
@ -40,8 +40,9 @@ import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Tuple
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -131,6 +132,13 @@ def get_parser():
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--LG",
|
||||
type=str,
|
||||
help="""Path to LG.pt for shallow fusion.
|
||||
Used only when --decoding-method is modified_beam_search.""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -203,6 +211,7 @@ def decode_one_batch(
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
LG: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
@ -225,6 +234,9 @@ def decode_one_batch(
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
LG:
|
||||
Optional. Used for shallow fusion. Used only when params.decoding_method
|
||||
is modified_beam_search.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
@ -257,17 +269,24 @@ def decode_one_batch(
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp = modified_beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
LG=LG,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
for h in hyps:
|
||||
print(" ".join(h))
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
@ -280,6 +299,7 @@ def decode_dataset(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
LG: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
@ -292,6 +312,9 @@ def decode_dataset(
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
LG:
|
||||
Optional. Used for shallow fusion. Used only when params.decoding_method
|
||||
is modified_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
@ -320,6 +343,7 @@ def decode_dataset(
|
||||
model=model,
|
||||
sp=sp,
|
||||
batch=batch,
|
||||
LG=LG,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
@ -419,6 +443,21 @@ def main():
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
if params.LG is not None:
|
||||
assert (
|
||||
params.decoding_method == "modified_beam_search"
|
||||
), "--LG is used only when --decoding_method=modified_beam_search"
|
||||
logging.info(f"Loading LG from {params.LG}")
|
||||
LG = k2.Fsa.from_dict(torch.load(params.LG, map_location=device))
|
||||
logging.info(f"LG properties: {LG.properties_str}")
|
||||
logging.info(f"LG num_states: {LG.shape[0]}, num_arcs: {LG.num_arcs}")
|
||||
# If LG is created by local/compile_lg.py, then it should be epsilon
|
||||
# free as well as arc sorted
|
||||
assert "ArcSorted" in LG.properties_str
|
||||
assert "EpsilonFree" in LG.properties_str
|
||||
else:
|
||||
LG = None
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
@ -467,6 +506,7 @@ def main():
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
LG=LG,
|
||||
)
|
||||
|
||||
save_results(
|
||||
|
78
egs/librispeech/ASR/transducer_stateless/shallow_fusion.py
Normal file
78
egs/librispeech/ASR/transducer_stateless/shallow_fusion.py
Normal file
@ -0,0 +1,78 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
|
||||
def shallow_fusion(
|
||||
LG: k2.Fsa,
|
||||
token: int,
|
||||
state_and_scores: Dict[int, torch.Tensor],
|
||||
) -> Dict[int, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
LG:
|
||||
An n-gram. It should be arc sorted and epsilon free.
|
||||
token:
|
||||
The input token ID.
|
||||
state_and_scores:
|
||||
The keys contain the current state we are in and the
|
||||
values are the LM log_prob for reaching the corresponding
|
||||
states from the start state.
|
||||
Returns:
|
||||
Return a new state_and_scores.
|
||||
"""
|
||||
row_splits = LG.arcs.row_splits(1)
|
||||
arcs = LG.arcs.values()
|
||||
|
||||
current_states = list(state_and_scores.keys())
|
||||
|
||||
ans = dict()
|
||||
for s in current_states:
|
||||
labels_begin = row_splits[s]
|
||||
labels_end = row_splits[s + 1]
|
||||
labels = LG.labels[labels_begin:labels_end].contiguous()
|
||||
|
||||
# As LG is not deterministic, there may be multiple
|
||||
# out-going arcs that with label equal to "token"
|
||||
#
|
||||
# Note: LG is arc sorted!
|
||||
left = torch.bucketize(token, labels, right=False)
|
||||
right = torch.bucketize(token, labels, right=True)
|
||||
|
||||
if left >= right:
|
||||
# There are no out-going arcs from this state
|
||||
# that have label equal to "token"
|
||||
continue
|
||||
|
||||
# Now we have
|
||||
# labels[i] == token
|
||||
# for
|
||||
# left <= i < right
|
||||
|
||||
for i in range(left, right):
|
||||
i += labels_begin
|
||||
next_state = arcs[i][1].item()
|
||||
score = LG.scores[i]
|
||||
if next_state not in ans:
|
||||
ans[next_state] = score
|
||||
else:
|
||||
ans[next_state] = max(score, ans[next_state])
|
||||
|
||||
return ans
|
Loading…
x
Reference in New Issue
Block a user