Introduce normalization..

This commit is contained in:
Daniel Povey 2022-06-10 10:47:18 +08:00
parent e891a65735
commit 950cd4a3e8
2 changed files with 34 additions and 2 deletions

View File

@ -713,6 +713,25 @@ class GaussProjDrop(torch.nn.Module):
x = (x_next * self.rand_scale + x_bypass)
return x
class PseudoNormalizeFunction(torch.autograd.Function):
"""
Function object that is the identity function in the forward pass; and, in the
backward pass, removes the component of the derivative in the direction of x itself
(as if it had gone through some kind of normalization layer
"""
@staticmethod
def forward(ctx, x: Tensor) -> Tensor:
ctx.save_for_backward(x)
return x
@staticmethod
def backward(ctx, x_grad: Tensor) -> Tensor:
x, = ctx.saved_tensors
eps = 1.0e-20
x_sumsq = (x**2).sum() + eps
grad_x_sum = (x_grad * x).sum()
return x_grad - x * (grad_x_sum / x_sumsq)
def _compute_correlation_loss(cov: Tensor,
eps: float) -> Tensor:
@ -740,7 +759,9 @@ def _update_cov_stats(cov: Tensor,
x: Tensor of features/activations, of shape (num_frames, num_channels)
beta: The decay constant for the stats, e.g. 0.8.
"""
return cov * beta + torch.matmul(x.t(), x) * (1-beta)
new_cov = torch.matmul(x.t(), x)
new_cov = PseudoNormalizeFunction.apply(new_cov)
return cov * beta + new_cov * (1-beta)
class DecorrelateFunction(torch.autograd.Function):
@ -889,6 +910,8 @@ class Decorrelate(torch.nn.Module):
cov = torch.matmul(x.t(), x)
with torch.no_grad():
self.cov.mul_(self.beta).add_(cov, alpha=(1-self.beta))
m = self.cov.max()
assert m == m
return ans # ans == x.
@ -987,6 +1010,14 @@ def _test_gauss_proj_drop():
m1.eval()
m2.eval()
def _test_pseudo_normalize():
x = torch.randn(3, 4)
x.requires_grad = True
y = PseudoNormalizeFunction.apply(x)
l = y.sin().sum()
l.backward()
assert (x.grad * x).sum().abs() < 0.1
def _test_decorrelate():
D = 384
x = torch.randn(30000, D)
@ -1014,6 +1045,7 @@ if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
_test_pseudo_normalize()
_test_decorrelate()
_test_gauss_proj_drop()
_test_activation_balancer_sign()

View File

@ -94,7 +94,7 @@ class Conformer(EncoderInterface):
aux_layers=list(range(0, num_encoder_layers - 1, aux_layer_period)),
)
self.decorrelate = Decorrelate(d_model, scale=0.1)
self.decorrelate = Decorrelate(d_model, scale=0.05)
def forward(