mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
Update conformer ctc model
This commit is contained in:
parent
8666b49863
commit
943244642f
@ -17,7 +17,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
@ -42,6 +41,7 @@ from icefall.decode import (
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_env_info,
|
||||
get_texts,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
@ -100,7 +100,7 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lattice-score-scale",
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
@ -122,15 +122,35 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_char",
|
||||
help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-dir",
|
||||
type=str,
|
||||
default="data/lm",
|
||||
help="""The LM dir.
|
||||
It should contain either G_3_gram.pt or G_3_gram.fst.txt
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("conformer_ctc/exp"),
|
||||
"lang_dir": Path("data/lang_char"),
|
||||
"lm_dir": Path("data/lm"),
|
||||
# parameters for conformer
|
||||
"subsampling_factor": 4,
|
||||
"feature_dim": 80,
|
||||
@ -146,6 +166,7 @@ def get_params() -> AttributeDict:
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
@ -154,9 +175,10 @@ def get_params() -> AttributeDict:
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
batch: dict,
|
||||
word_table: k2.SymbolTable,
|
||||
lexicon: Lexicon,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
@ -183,13 +205,15 @@ def decode_one_batch(
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
The decoding graph. Used when params.method is NOT ctc-decoding.
|
||||
H:
|
||||
The ctc topo. Used only when params.method is ctc-decoding.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
lexicon:
|
||||
It contains the token symbol table and the word symbol table.
|
||||
sos_id:
|
||||
The token ID of the SOS.
|
||||
eos_id:
|
||||
@ -198,16 +222,20 @@ def decode_one_batch(
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = HLG.device
|
||||
if HLG is not None:
|
||||
device = HLG.device
|
||||
else:
|
||||
device = H.device
|
||||
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is [N, T, C]
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
|
||||
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
||||
# nnet_output is [N, T, C]
|
||||
# nnet_output is (N, T, C)
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
@ -218,9 +246,16 @@ def decode_one_batch(
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
if H is None:
|
||||
assert HLG is not None
|
||||
decoding_graph = HLG
|
||||
else:
|
||||
assert HLG is None
|
||||
decoding_graph = H
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
HLG=HLG,
|
||||
decoding_graph=decoding_graph,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
@ -229,18 +264,37 @@ def decode_one_batch(
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.method == "ctc-decoding":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
||||
# since we are using H, not HLG here.
|
||||
#
|
||||
# token_ids is a lit-of-list of IDs
|
||||
token_ids = get_texts(best_path)
|
||||
|
||||
key = "ctc-decoding"
|
||||
hyps = [[lexicon.token_table[i] for i in ids] for ids in token_ids]
|
||||
return {key: hyps}
|
||||
|
||||
if params.method == "nbest-oracle":
|
||||
# Note: You can also pass rescored lattices to it.
|
||||
# We choose the HLG decoded lattice for speed reasons
|
||||
# as HLG decoding is faster and the oracle WER
|
||||
# is slightly worse than that of rescored lattices.
|
||||
return nbest_oracle(
|
||||
# is only slightly worse than that of rescored lattices.
|
||||
best_path = nbest_oracle(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=supervisions["text"],
|
||||
word_table=word_table,
|
||||
scale=params.lattice_score_scale,
|
||||
word_table=lexicon.word_table,
|
||||
nbest_scale=params.nbest_scale,
|
||||
oov="<UNK>",
|
||||
)
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
|
||||
return {key: hyps}
|
||||
|
||||
if params.method in ["1best", "nbest"]:
|
||||
if params.method == "1best":
|
||||
@ -253,12 +307,12 @@ def decode_one_batch(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
use_double_scores=params.use_double_scores,
|
||||
scale=params.lattice_score_scale,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
||||
key = f"no_rescore-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
return {key: hyps}
|
||||
|
||||
assert params.method == "attention-decoder"
|
||||
@ -271,13 +325,14 @@ def decode_one_batch(
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
scale=params.lattice_score_scale,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
ans = dict()
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
if best_path_dict is not None:
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
return ans
|
||||
|
||||
|
||||
@ -285,8 +340,9 @@ def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
word_table: k2.SymbolTable,
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
lexicon: Lexicon,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
|
||||
@ -300,9 +356,11 @@ def decode_dataset(
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
word_table:
|
||||
It is the word symbol table.
|
||||
The decoding graph. Used when params.method is NOT ctc-decoding.
|
||||
H:
|
||||
The ctc topo. Used only when params.method is ctc-decoding.
|
||||
lexicon:
|
||||
It contains the token symbol table and the word symbol table.
|
||||
sos_id:
|
||||
The token ID for SOS.
|
||||
eos_id:
|
||||
@ -331,14 +389,16 @@ def decode_dataset(
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
batch=batch,
|
||||
word_table=word_table,
|
||||
lexicon=lexicon,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
)
|
||||
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
@ -411,6 +471,9 @@ def main():
|
||||
parser = get_parser()
|
||||
AishellAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
args.lm_dir = Path(args.lm_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
@ -438,14 +501,22 @@ def main():
|
||||
sos_id = graph_compiler.sos_id
|
||||
eos_id = graph_compiler.eos_id
|
||||
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||
)
|
||||
HLG = HLG.to(device)
|
||||
assert HLG.requires_grad is False
|
||||
if params.method == "ctc-decoding":
|
||||
HLG = None
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=False,
|
||||
device=device,
|
||||
)
|
||||
else:
|
||||
H = None
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
|
||||
)
|
||||
assert HLG.requires_grad is False
|
||||
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
@ -468,7 +539,8 @@ def main():
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
if params.export:
|
||||
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||
@ -483,12 +555,7 @@ def main():
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
aishell = AishellAsrDataModule(args)
|
||||
# CAUTION: `test_sets` is for displaying only.
|
||||
# If you want to skip test-clean, you have to skip
|
||||
# it inside the for loop. That is, use
|
||||
#
|
||||
# if test_set == 'test-clean': continue
|
||||
#
|
||||
|
||||
test_sets = ["test"]
|
||||
for test_set, test_dl in zip(test_sets, aishell.test_dataloaders()):
|
||||
results_dict = decode_dataset(
|
||||
@ -496,7 +563,8 @@ def main():
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
word_table=lexicon.word_table,
|
||||
H=H,
|
||||
lexicon=lexicon,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
)
|
||||
|
@ -16,16 +16,14 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AishellAsrDataModule
|
||||
@ -43,7 +41,9 @@ from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
encode_supervisions,
|
||||
get_env_info,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
@ -78,7 +78,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=50,
|
||||
default=90,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
@ -92,6 +92,35 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_char",
|
||||
help="""The lang dir
|
||||
It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--att-rate",
|
||||
type=float,
|
||||
default=0.7,
|
||||
help="""The attention rate.
|
||||
The total loss is (1 - att_rate) * ctc_loss + att_rate * att_loss
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -99,19 +128,13 @@ def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
is saved in the variable `params`.
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- exp_dir: It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
|
||||
- lang_dir: It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
@ -136,9 +159,6 @@ def get_params() -> AttributeDict:
|
||||
|
||||
- use_double_scores: It is used in k2.ctc_loss
|
||||
|
||||
- att_rate: The proportion of label smoothing loss, final loss will be
|
||||
(1 - att_rate) * ctc_loss + att_rate * label_smoothing_loss
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
@ -163,8 +183,6 @@ def get_params() -> AttributeDict:
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("conformer_ctc/exp"),
|
||||
"lang_dir": Path("data/lang_char"),
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
@ -177,7 +195,6 @@ def get_params() -> AttributeDict:
|
||||
"beam_size": 10,
|
||||
"reduction": "sum",
|
||||
"use_double_scores": True,
|
||||
"att_rate": 0.7,
|
||||
# parameters for conformer
|
||||
"subsampling_factor": 4,
|
||||
"feature_dim": 80,
|
||||
@ -190,6 +207,7 @@ def get_params() -> AttributeDict:
|
||||
"weight_decay": 1e-5,
|
||||
"lr_factor": 5.0,
|
||||
"warm_step": 36000,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
@ -289,7 +307,7 @@ def compute_loss(
|
||||
batch: dict,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
is_training: bool,
|
||||
):
|
||||
) -> Tuple[torch.Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
@ -312,14 +330,14 @@ def compute_loss(
|
||||
"""
|
||||
device = graph_compiler.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is [N, T, C]
|
||||
# at entry, feature is (N, T, C)
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
with torch.set_grad_enabled(is_training):
|
||||
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
||||
# nnet_output is [N, T, C]
|
||||
# nnet_output is (N, T, C)
|
||||
|
||||
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||
# different duration in decreasing order, required by
|
||||
@ -348,36 +366,41 @@ def compute_loss(
|
||||
|
||||
if params.att_rate != 0.0:
|
||||
with torch.set_grad_enabled(is_training):
|
||||
if hasattr(model, "module"):
|
||||
att_loss = model.module.decoder_forward(
|
||||
encoder_memory,
|
||||
memory_mask,
|
||||
token_ids=token_ids,
|
||||
sos_id=graph_compiler.sos_id,
|
||||
eos_id=graph_compiler.eos_id,
|
||||
)
|
||||
else:
|
||||
att_loss = model.decoder_forward(
|
||||
encoder_memory,
|
||||
memory_mask,
|
||||
token_ids=token_ids,
|
||||
sos_id=graph_compiler.sos_id,
|
||||
eos_id=graph_compiler.eos_id,
|
||||
)
|
||||
mmodel = model.module if hasattr(model, "module") else model
|
||||
# Note: We need to generate an unsorted version of token_ids
|
||||
# `encode_supervisions()` called above sorts text, but
|
||||
# encoder_memory and memory_mask are not sorted, so we
|
||||
# use an unsorted version `supervisions["text"]` to regenerate
|
||||
# the token_ids
|
||||
#
|
||||
# See https://github.com/k2-fsa/icefall/issues/97
|
||||
# for more details
|
||||
unsorted_token_ids = graph_compiler.texts_to_ids(
|
||||
supervisions["text"]
|
||||
)
|
||||
att_loss = mmodel.decoder_forward(
|
||||
encoder_memory,
|
||||
memory_mask,
|
||||
token_ids=unsorted_token_ids,
|
||||
sos_id=graph_compiler.sos_id,
|
||||
eos_id=graph_compiler.eos_id,
|
||||
)
|
||||
loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
|
||||
else:
|
||||
loss = ctc_loss
|
||||
att_loss = torch.tensor([0])
|
||||
|
||||
# train_frames and valid_frames are used for printing.
|
||||
if is_training:
|
||||
params.train_frames = supervision_segments[:, 2].sum().item()
|
||||
else:
|
||||
params.valid_frames = supervision_segments[:, 2].sum().item()
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
return loss, ctc_loss.detach(), att_loss.detach()
|
||||
info = MetricsTracker()
|
||||
info["frames"] = supervision_segments[:, 2].sum().item()
|
||||
info["ctc_loss"] = ctc_loss.detach().cpu().item()
|
||||
if params.att_rate != 0.0:
|
||||
info["att_loss"] = att_loss.detach().cpu().item()
|
||||
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
@ -386,18 +409,16 @@ def compute_validation_loss(
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
model.eval()
|
||||
|
||||
tot_loss = 0.0
|
||||
tot_ctc_loss = 0.0
|
||||
tot_att_loss = 0.0
|
||||
tot_frames = 0.0
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss, ctc_loss, att_loss = compute_loss(
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
@ -405,36 +426,17 @@ def compute_validation_loss(
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
assert ctc_loss.requires_grad is False
|
||||
assert att_loss.requires_grad is False
|
||||
|
||||
loss_cpu = loss.detach().cpu().item()
|
||||
tot_loss += loss_cpu
|
||||
|
||||
tot_ctc_loss += ctc_loss.detach().cpu().item()
|
||||
tot_att_loss += att_loss.detach().cpu().item()
|
||||
|
||||
tot_frames += params.valid_frames
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
s = torch.tensor(
|
||||
[tot_loss, tot_ctc_loss, tot_att_loss, tot_frames],
|
||||
device=loss.device,
|
||||
)
|
||||
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
||||
s = s.cpu().tolist()
|
||||
tot_loss = s[0]
|
||||
tot_ctc_loss = s[1]
|
||||
tot_att_loss = s[2]
|
||||
tot_frames = s[3]
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
params.valid_loss = tot_loss / tot_frames
|
||||
params.valid_ctc_loss = tot_ctc_loss / tot_frames
|
||||
params.valid_att_loss = tot_att_loss / tot_frames
|
||||
|
||||
if params.valid_loss < params.best_valid_loss:
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = params.valid_loss
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
@ -473,18 +475,13 @@ def train_one_epoch(
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = 0.0 # sum of losses over all batches
|
||||
tot_ctc_loss = 0.0
|
||||
tot_att_loss = 0.0
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
tot_frames = 0.0 # sum of frames over all batches
|
||||
params.tot_loss = 0.0
|
||||
params.tot_frames = 0.0
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss, ctc_loss, att_loss = compute_loss(
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
@ -492,6 +489,9 @@ def train_one_epoch(
|
||||
is_training=True,
|
||||
)
|
||||
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
@ -500,75 +500,26 @@ def train_one_epoch(
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
loss_cpu = loss.detach().cpu().item()
|
||||
ctc_loss_cpu = ctc_loss.detach().cpu().item()
|
||||
att_loss_cpu = att_loss.detach().cpu().item()
|
||||
|
||||
tot_frames += params.train_frames
|
||||
tot_loss += loss_cpu
|
||||
tot_ctc_loss += ctc_loss_cpu
|
||||
tot_att_loss += att_loss_cpu
|
||||
|
||||
params.tot_frames += params.train_frames
|
||||
params.tot_loss += loss_cpu
|
||||
|
||||
tot_avg_loss = tot_loss / tot_frames
|
||||
tot_avg_ctc_loss = tot_ctc_loss / tot_frames
|
||||
tot_avg_att_loss = tot_att_loss / tot_frames
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||
f"batch avg ctc loss {ctc_loss_cpu/params.train_frames:.4f}, "
|
||||
f"batch avg att loss {att_loss_cpu/params.train_frames:.4f}, "
|
||||
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
|
||||
f"total avg ctc loss: {tot_avg_ctc_loss:.4f}, "
|
||||
f"total avg att loss: {tot_avg_att_loss:.4f}, "
|
||||
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||
f"batch size: {batch_size}"
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/current_ctc_loss",
|
||||
ctc_loss_cpu / params.train_frames,
|
||||
params.batch_idx_train,
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/current_att_loss",
|
||||
att_loss_cpu / params.train_frames,
|
||||
params.batch_idx_train,
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/current_loss",
|
||||
loss_cpu / params.train_frames,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_avg_ctc_loss",
|
||||
tot_avg_ctc_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_avg_att_loss",
|
||||
tot_avg_att_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_avg_loss",
|
||||
tot_avg_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
|
||||
tot_loss = 0.0 # sum of losses over all batches
|
||||
tot_ctc_loss = 0.0
|
||||
tot_att_loss = 0.0
|
||||
|
||||
tot_frames = 0.0 # sum of frames over all batches
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
compute_validation_loss(
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
@ -576,33 +527,14 @@ def train_one_epoch(
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"valid ctc loss {params.valid_ctc_loss:.4f},"
|
||||
f"valid att loss {params.valid_att_loss:.4f},"
|
||||
f"valid loss {params.valid_loss:.4f},"
|
||||
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||
f"best valid epoch: {params.best_valid_epoch}"
|
||||
)
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_ctc_loss",
|
||||
params.valid_ctc_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_att_loss",
|
||||
params.valid_att_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_loss",
|
||||
params.valid_loss,
|
||||
params.batch_idx_train,
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
params.train_loss = params.tot_loss / params.tot_frames
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
@ -729,7 +661,8 @@ def main():
|
||||
parser = get_parser()
|
||||
AishellAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
|
Loading…
x
Reference in New Issue
Block a user