mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-07 08:04:18 +00:00
Add decoding with H and HL for LibriSpeech
This commit is contained in:
parent
2d7067753e
commit
9384d63cfe
43
.github/scripts/run-pre-trained-conformer-ctc.sh
vendored
43
.github/scripts/run-pre-trained-conformer-ctc.sh
vendored
@ -44,3 +44,46 @@ log "HLG decoding"
|
||||
$repo/test_wavs/1089-134686-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0002.flac
|
||||
|
||||
log "CTC decoding on CPU with kaldi decoders using OpenFst"
|
||||
|
||||
log "Exporting model with torchscript"
|
||||
|
||||
pushd $repo/exp
|
||||
ln -s pretrained.pt epoch-99.pt
|
||||
popd
|
||||
|
||||
./conformer_ctc/export.py \
|
||||
--epoch 99 \
|
||||
--avg 1 \
|
||||
--exp-dir $repo/exp \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--jit 1
|
||||
|
||||
ls -lh $repo/exp
|
||||
|
||||
|
||||
log "Generating H.fst, HL.fst"
|
||||
|
||||
./local/prepare_lang_fst.py --lang-dir $repo/data/lang_bpe_500
|
||||
ls -lh $repo/data/lang_bpe_500
|
||||
|
||||
log "Decoding with H on CPU with OpenFst"
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_H.py \
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--H $repo/data/lang_bpe_500/H.fst \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
$repo/test_wavs/1089-134686-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0002.flac
|
||||
|
||||
log "Decoding with HL on CPU with OpenFst"
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_H.py \
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--HL $repo/data/lang_bpe_500/HL.fst \
|
||||
--words $repo/data/lang_bpe_500/words.txt \
|
||||
$repo/test_wavs/1089-134686-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0002.flac
|
||||
|
@ -29,7 +29,7 @@ concurrency:
|
||||
|
||||
jobs:
|
||||
run_pre_trained_conformer_ctc:
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'ctc'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
|
221
egs/librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_H.py
Executable file
221
egs/librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_H.py
Executable file
@ -0,0 +1,221 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This file shows how to use a torchscript model for decoding with H
|
||||
on CPU using OpenFST and decoders from kaldi.
|
||||
|
||||
Usage:
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_H.py \
|
||||
--nn-model ./cpu_jit.pt \
|
||||
--H ./data/lang_bpe_500/H.fst \
|
||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||
./download/LibriSpeech/test-clean/1089/134686/1089-134686-0002.flac \
|
||||
./download/LibriSpeech/test-clean/1221/135766/1221-135766-0001.flac
|
||||
|
||||
Note that to generate ./tdnn/exp/cpu_jit.pt,
|
||||
you can use ./export.py --jit 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import Dict, List
|
||||
|
||||
import kaldi_hmm_gmm
|
||||
import kaldifeat
|
||||
import kaldifst
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_hmm_gmm import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""Path to the torchscript model.
|
||||
You can use ./tdnn/export.py --jit 1
|
||||
to obtain it
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to tokens.txt",
|
||||
)
|
||||
|
||||
parser.add_argument("--H", type=str, required=True, help="Path to H.fst")
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. ",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def read_tokens(tokens_txt: str) -> Dict[int, str]:
|
||||
id2token = dict()
|
||||
with open(tokens_txt, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
token, idx = line.strip().split()
|
||||
id2token[int(idx)] = token
|
||||
|
||||
return id2token
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
if sample_rate != expected_sample_rate:
|
||||
wave = torchaudio.functional.resample(
|
||||
wave,
|
||||
orig_freq=sample_rate,
|
||||
new_freq=expected_sample_rate,
|
||||
)
|
||||
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def decode(
|
||||
filename: str,
|
||||
nnet_output: torch.Tensor,
|
||||
H: kaldifst,
|
||||
id2token: Dict[int, str],
|
||||
) -> List[str]:
|
||||
logging.info(f"{filename}, {nnet_output.shape}")
|
||||
decodable = DecodableCtc(nnet_output)
|
||||
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(H, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
print(f"failed to decode {filename}")
|
||||
return ""
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
print(f"failed to get linear symbol sequence for {filename}")
|
||||
return ""
|
||||
|
||||
# tokens are incremented during graph construction
|
||||
# so they need to be decremented
|
||||
hyps = [id2token[i - 1] for i in osymbols_out]
|
||||
# hyps = "".join(hyps).split("▁")
|
||||
hyps = "".join(hyps).split("\u2581") # unicode codepoint of ▁
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
device = torch.device("cpu")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Loading torchscript model")
|
||||
model = torch.jit.load(args.nn_model)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
logging.info(f"Loading H from {args.H}")
|
||||
H = kaldifst.StdVectorFst.read(args.H)
|
||||
|
||||
sample_rate = 16000
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = sample_rate
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files, expected_sample_rate=sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.shape[0] for f in features]
|
||||
feature_lengths = torch.tensor(feature_lengths)
|
||||
|
||||
supervisions = dict()
|
||||
supervisions["sequence_idx"] = torch.arange(len(features))
|
||||
supervisions["start_frame"] = torch.zeros(len(features))
|
||||
supervisions["num_frames"] = feature_lengths
|
||||
|
||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||
|
||||
nnet_output, _, _ = model(features, supervisions)
|
||||
feature_lengths = ((feature_lengths - 1) // 2 - 1) // 2
|
||||
|
||||
id2token = read_tokens(args.tokens)
|
||||
|
||||
hyps = []
|
||||
for i in range(nnet_output.shape[0]):
|
||||
hyp = decode(
|
||||
filename=args.sound_files[i],
|
||||
nnet_output=nnet_output[i, : feature_lengths[i]],
|
||||
H=H,
|
||||
id2token=id2token,
|
||||
)
|
||||
hyps.append(hyp)
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(args.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
218
egs/librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_HL.py
Executable file
218
egs/librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_HL.py
Executable file
@ -0,0 +1,218 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This file shows how to use a torchscript model for decoding with H
|
||||
on CPU using OpenFST and decoders from kaldi.
|
||||
|
||||
Usage:
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_H.py \
|
||||
--nn-model ./cpu_jit.pt \
|
||||
--HL ./data/lang_bpe_500/HL.fst \
|
||||
--words ./data/lang_bpe_500/words.txt \
|
||||
./download/LibriSpeech/test-clean/1089/134686/1089-134686-0002.flac \
|
||||
./download/LibriSpeech/test-clean/1221/135766/1221-135766-0001.flac
|
||||
|
||||
Note that to generate ./tdnn/exp/cpu_jit.pt,
|
||||
you can use ./export.py --jit 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import Dict, List
|
||||
|
||||
import kaldi_hmm_gmm
|
||||
import kaldifeat
|
||||
import kaldifst
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_hmm_gmm import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""Path to the torchscript model.
|
||||
You can use ./tdnn/export.py --jit 1
|
||||
to obtain it
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to words.txt",
|
||||
)
|
||||
|
||||
parser.add_argument("--HL", type=str, required=True, help="Path to HL.fst")
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. ",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def read_words(words_txt: str) -> Dict[int, str]:
|
||||
id2word = dict()
|
||||
with open(words_txt, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
word, idx = line.strip().split()
|
||||
id2word[int(idx)] = word
|
||||
|
||||
return id2word
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
if sample_rate != expected_sample_rate:
|
||||
wave = torchaudio.functional.resample(
|
||||
wave,
|
||||
orig_freq=sample_rate,
|
||||
new_freq=expected_sample_rate,
|
||||
)
|
||||
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def decode(
|
||||
filename: str,
|
||||
nnet_output: torch.Tensor,
|
||||
HL: kaldifst,
|
||||
id2word: Dict[int, str],
|
||||
) -> List[str]:
|
||||
logging.info(f"{filename}, {nnet_output.shape}")
|
||||
decodable = DecodableCtc(nnet_output)
|
||||
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(HL, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
print(f"failed to decode {filename}")
|
||||
return ""
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
print(f"failed to get linear symbol sequence for {filename}")
|
||||
return ""
|
||||
|
||||
# are shifted by 1 during graph construction
|
||||
hyps = [id2word[i] for i in osymbols_out]
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
device = torch.device("cpu")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Loading torchscript model")
|
||||
model = torch.jit.load(args.nn_model)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
logging.info(f"Loading HL from {args.HL}")
|
||||
HL = kaldifst.StdVectorFst.read(args.HL)
|
||||
|
||||
sample_rate = 16000
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = sample_rate
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files, expected_sample_rate=sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.shape[0] for f in features]
|
||||
feature_lengths = torch.tensor(feature_lengths)
|
||||
|
||||
supervisions = dict()
|
||||
supervisions["sequence_idx"] = torch.arange(len(features))
|
||||
supervisions["start_frame"] = torch.zeros(len(features))
|
||||
supervisions["num_frames"] = feature_lengths
|
||||
|
||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||
|
||||
nnet_output, _, _ = model(features, supervisions)
|
||||
feature_lengths = ((feature_lengths - 1) // 2 - 1) // 2
|
||||
|
||||
id2word = read_words(args.words)
|
||||
|
||||
hyps = []
|
||||
for i in range(nnet_output.shape[0]):
|
||||
hyp = decode(
|
||||
filename=args.sound_files[i],
|
||||
nnet_output=nnet_output[i, : feature_lengths[i]],
|
||||
HL=HL,
|
||||
id2word=id2word,
|
||||
)
|
||||
hyps.append(hyp)
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(args.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
127
egs/librispeech/ASR/local/prepare_lang_fst.py
Executable file
127
egs/librispeech/ASR/local/prepare_lang_fst.py
Executable file
@ -0,0 +1,127 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2023 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This script takes as input lang_dir containing lexicon_disambig.txt,
|
||||
tokens.txt, and words.txt and generates the following files:
|
||||
|
||||
- H.fst
|
||||
- HL.fst
|
||||
|
||||
Note that saved files are in OpenFst binary format.
|
||||
|
||||
Usage:
|
||||
|
||||
./local/prepare_lang_fst.py \
|
||||
--lang-dir ./data/lang_phone \
|
||||
--has-silence 1
|
||||
|
||||
Or
|
||||
|
||||
./local/prepare_lang_fst.py \
|
||||
--lang-dir ./data/lang_bpe_500
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import kaldifst
|
||||
|
||||
from icefall.ctc import (
|
||||
Lexicon,
|
||||
add_disambig_self_loops,
|
||||
add_one,
|
||||
build_standard_ctc_topo,
|
||||
make_lexicon_fst_no_silence,
|
||||
make_lexicon_fst_with_silence,
|
||||
)
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--has-silence",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="True if the lexicon has silence.",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = args.lang_dir
|
||||
|
||||
lexicon = Lexicon(lang_dir)
|
||||
|
||||
logging.info("Building standard CTC topology")
|
||||
max_token_id = max(lexicon.tokens)
|
||||
H = build_standard_ctc_topo(max_token_id=max_token_id)
|
||||
|
||||
# We need to add one to all tokens since we want to use ID 0
|
||||
# for epsilon
|
||||
add_one(H, treat_ilabel_zero_specially=False, update_olabel=True)
|
||||
H.write(f"{lang_dir}/H.fst")
|
||||
|
||||
logging.info("Building L")
|
||||
# Now for HL
|
||||
|
||||
if args.has_silence:
|
||||
L = make_lexicon_fst_with_silence(lexicon, attach_symbol_table=False)
|
||||
else:
|
||||
L = make_lexicon_fst_no_silence(lexicon, attach_symbol_table=False)
|
||||
|
||||
if args.has_silence:
|
||||
# We also need to change the input labels of L
|
||||
add_one(L, treat_ilabel_zero_specially=True, update_olabel=False)
|
||||
else:
|
||||
add_one(L, treat_ilabel_zero_specially=False, update_olabel=False)
|
||||
|
||||
# Invoke add_disambig_self_loops() so that it eats the disambig symbols
|
||||
# from L after composition
|
||||
add_disambig_self_loops(
|
||||
H,
|
||||
start=lexicon.token2id["#0"] + 1,
|
||||
end=lexicon.max_disambig_id + 1,
|
||||
)
|
||||
with open("H_1.fst.txt", "w") as f:
|
||||
print(H, file=f)
|
||||
|
||||
kaldifst.arcsort(H, sort_type="olabel")
|
||||
kaldifst.arcsort(L, sort_type="ilabel")
|
||||
|
||||
logging.info("Building HL")
|
||||
HL = kaldifst.compose(H, L)
|
||||
kaldifst.determinize_star(HL)
|
||||
|
||||
disambig0 = lexicon.token2id["#0"] + 1
|
||||
max_disambig = lexicon.max_disambig_id + 1
|
||||
for state in kaldifst.StateIterator(HL):
|
||||
for arc in kaldifst.ArcIterator(HL, state):
|
||||
# If treat_ilabel_zero_specially is False, we always change it
|
||||
# Otherwise, we only change non-zero input labels
|
||||
if disambig0 <= arc.ilabel <= max_disambig:
|
||||
arc.ilabel = 0
|
||||
|
||||
# Note: We are not composing L with G, so there is no need to add
|
||||
# self-loops to L to handle #0
|
||||
|
||||
HL.write(f"{lang_dir}/HL.fst")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -242,6 +242,10 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
$lang_dir/L_disambig.pt \
|
||||
$lang_dir/L_disambig.fst
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/HL.fst ]; then
|
||||
./local/prepare_lang_fst.py --lang-dir $lang_dir
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
|
@ -1,67 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2023 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This script takes as input data/lang_phone containing lexicon_disambig.txt,
|
||||
tokens.txt, and words.txt and generates the following files:
|
||||
|
||||
- H.fst
|
||||
- HL.fst
|
||||
|
||||
TODO(fangjun): Generate HLG.fst
|
||||
|
||||
Note that saved files are in OpenFst binary format.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import kaldifst
|
||||
|
||||
from icefall.ctc import (
|
||||
Lexicon,
|
||||
add_disambig_self_loops,
|
||||
add_one,
|
||||
build_standard_ctc_topo,
|
||||
make_lexicon_fst_with_silence,
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
lang_dir = Path("data/lang_phone")
|
||||
lexicon = Lexicon(lang_dir)
|
||||
|
||||
max_token_id = max(lexicon.tokens)
|
||||
H = build_standard_ctc_topo(max_token_id=max_token_id)
|
||||
|
||||
# We need to add one to all tokens since we want to use ID 0
|
||||
# for epsilon
|
||||
add_one(H, treat_ilabel_zero_specially=False, update_olabel=True)
|
||||
H.write(f"{lang_dir}/H.fst")
|
||||
|
||||
# Now for HL
|
||||
L = make_lexicon_fst_with_silence(lexicon, attach_symbol_table=False)
|
||||
|
||||
# We also need to change the input labels of L
|
||||
add_one(L, treat_ilabel_zero_specially=True, update_olabel=False)
|
||||
|
||||
# Invoke add_disambig_self_loops() so that it eats the disambig symbols
|
||||
# from L after composition
|
||||
add_disambig_self_loops(
|
||||
H,
|
||||
start=lexicon.token2id["#0"] + 1,
|
||||
end=lexicon.max_disambig_id,
|
||||
)
|
||||
|
||||
kaldifst.arcsort(H, sort_type="olabel")
|
||||
kaldifst.arcsort(L, sort_type="ilabel")
|
||||
HL = kaldifst.compose(H, L)
|
||||
|
||||
# Note: We are not composing L with G, so there is no need to add
|
||||
# self-loops to L to handle #0
|
||||
|
||||
HL.write(f"{lang_dir}/HL.fst")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/yesno/ASR/local/prepare_lang_fst.py
Symbolic link
1
egs/yesno/ASR/local/prepare_lang_fst.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/prepare_lang_fst.py
|
@ -60,7 +60,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
) > $lang_dir/lexicon.txt
|
||||
|
||||
./local/prepare_lang.py
|
||||
./local/prepare_lang_fst.py
|
||||
./local/prepare_lang_fst.py --lang-dir ./data/lang_phone --has-slience 1
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
|
@ -28,11 +28,9 @@ import kaldifeat
|
||||
import kaldifst
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_hmm_gmm import FasterDecoder, FasterDecoderOptions
|
||||
from kaldi_hmm_gmm import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from icefall.ctc import CtcDecodable
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
@ -113,8 +111,8 @@ def decode(
|
||||
H: kaldifst,
|
||||
id2token: Dict[int, str],
|
||||
) -> List[str]:
|
||||
decodable = CtcDecodable(nnet_output)
|
||||
decoder_opts = FasterDecoderOptions()
|
||||
decodable = DecodableCtc(nnet_output)
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(H, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
|
@ -28,11 +28,9 @@ import kaldifeat
|
||||
import kaldifst
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_hmm_gmm import FasterDecoder, FasterDecoderOptions
|
||||
from kaldi_hmm_gmm import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from icefall.ctc import CtcDecodable
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
@ -113,8 +111,8 @@ def decode(
|
||||
HL: kaldifst,
|
||||
id2word: Dict[int, str],
|
||||
) -> List[str]:
|
||||
decodable = CtcDecodable(nnet_output)
|
||||
decoder_opts = FasterDecoderOptions()
|
||||
decodable = DecodableCtc(nnet_output)
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(HL, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
|
@ -1,4 +1,3 @@
|
||||
from .decodable import CtcDecodable
|
||||
from .prepare_lang import (
|
||||
Lexicon,
|
||||
make_lexicon_fst_no_silence,
|
||||
|
@ -1,30 +0,0 @@
|
||||
# Copyright 2023 Xiaomi Corp. (author: Fangjun Kuang)
|
||||
|
||||
import torch
|
||||
from kaldi_hmm_gmm import DecodableInterface
|
||||
|
||||
|
||||
class CtcDecodable(DecodableInterface):
|
||||
"""This class implements the interface
|
||||
https://github.com/kaldi-asr/kaldi/blob/master/src/itf/decodable-itf.h
|
||||
"""
|
||||
|
||||
def __init__(self, nnet_output: torch.Tensor):
|
||||
DecodableInterface.__init__(self)
|
||||
assert nnet_output.ndim == 2, nnet_output.shape
|
||||
self.nnet_output = nnet_output
|
||||
|
||||
def log_likelihood(self, frame: int, index: int) -> float:
|
||||
# Note: We need to use index - 1 here since
|
||||
# all the input labels of the H are incremented during graph
|
||||
# construction
|
||||
return self.nnet_output[frame][index - 1].item()
|
||||
|
||||
def is_last_frame(self, frame: int) -> bool:
|
||||
return frame == self.nnet_output.shape[0] - 1
|
||||
|
||||
def num_frames_ready(self) -> int:
|
||||
return self.nnet_output.shape[0]
|
||||
|
||||
def num_indices(self) -> int:
|
||||
return self.nnet_output.shape[1]
|
@ -5,7 +5,12 @@ from pathlib import Path
|
||||
|
||||
import graphviz
|
||||
import kaldifst
|
||||
from prepare_lang import Lexicon, make_lexicon_fst_with_silence
|
||||
import sentencepiece as spm
|
||||
from prepare_lang import (
|
||||
Lexicon,
|
||||
make_lexicon_fst_no_silence,
|
||||
make_lexicon_fst_with_silence,
|
||||
)
|
||||
from topo import add_disambig_self_loops, add_one, build_standard_ctc_topo
|
||||
|
||||
|
||||
@ -85,8 +90,50 @@ def test_yesno():
|
||||
source.render(outfile="HL_yesno.pdf")
|
||||
|
||||
|
||||
def test_librispeech():
|
||||
lang_dir = (
|
||||
"/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/data/lang_bpe_500"
|
||||
)
|
||||
|
||||
if not Path(lang_dir).is_dir():
|
||||
print(f"{lang_dir} does not exist! Skip testing")
|
||||
return
|
||||
|
||||
lexicon = Lexicon(lang_dir)
|
||||
HL = kaldifst.StdVectorFst.read(lang_dir + "/HL.fst")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(lang_dir + "/bpe.model")
|
||||
|
||||
i = lexicon.word2id["HELLOA"]
|
||||
k = lexicon.word2id["WORLD"]
|
||||
print(i, k)
|
||||
s = f"""
|
||||
0 1 {i} {i}
|
||||
1 2 {k} {k}
|
||||
2
|
||||
"""
|
||||
fst = kaldifst.compile(
|
||||
s=s,
|
||||
acceptor=False,
|
||||
)
|
||||
|
||||
L = make_lexicon_fst_no_silence(lexicon, attach_symbol_table=False)
|
||||
kaldifst.arcsort(L, sort_type="olabel")
|
||||
with open("L.fst.txt", "w") as f:
|
||||
print(L, file=f)
|
||||
|
||||
fst = kaldifst.compose(L, fst)
|
||||
print(fst)
|
||||
fst_dot = kaldifst.draw(fst, acceptor=False, portrait=True)
|
||||
source = graphviz.Source(fst_dot)
|
||||
source.render(outfile="a.pdf")
|
||||
print(sp.encode(["HELLOA", "WORLD"]))
|
||||
|
||||
|
||||
def main():
|
||||
test_yesno()
|
||||
test_librispeech()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -107,9 +107,8 @@ def add_one(
|
||||
def add_disambig_self_loops(fst: kaldifst.StdVectorFst, start: int, end: int):
|
||||
"""Add self-loops to each state.
|
||||
|
||||
For each disambig symbol, we add a self-loop with input label 0 and output
|
||||
label diambig_id of that disambig symbol. Note that input label 0 here
|
||||
represents an epsilon.
|
||||
For each disambig symbol, we add a self-loop with input label disambig_id
|
||||
and output label diambig_id of that disambig symbol.
|
||||
|
||||
Args:
|
||||
fst:
|
||||
@ -119,14 +118,14 @@ def add_disambig_self_loops(fst: kaldifst.StdVectorFst, start: int, end: int):
|
||||
end:
|
||||
The ID of the last disambig symbol. For instance if there are 3
|
||||
disambig symbols ``#0``, ``#1``, and ``#2``, then ``end`` is the ID
|
||||
of ``#3``.
|
||||
of ``#2``.
|
||||
"""
|
||||
for state in kaldifst.StateIterator(fst):
|
||||
for i in range(start, end + 1):
|
||||
fst.add_arc(
|
||||
state=state,
|
||||
arc=kaldifst.StdArc(
|
||||
ilabel=0,
|
||||
ilabel=i,
|
||||
olabel=i,
|
||||
weight=0,
|
||||
nextstate=state,
|
||||
|
Loading…
x
Reference in New Issue
Block a user