mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 10:16:14 +00:00
add librilight
This commit is contained in:
parent
660f647886
commit
9321f8ab7a
1
egs/librilight/SSL/zipformer/asr_datamodule.py
Symbolic link
1
egs/librilight/SSL/zipformer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/asr_datamodule.py
|
1
egs/librilight/SSL/zipformer/beam_search.py
Symbolic link
1
egs/librilight/SSL/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/beam_search.py
|
1
egs/librilight/SSL/zipformer/dataset.py
Symbolic link
1
egs/librilight/SSL/zipformer/dataset.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/dataset.py
|
1045
egs/librilight/SSL/zipformer/decode.py
Normal file
1045
egs/librilight/SSL/zipformer/decode.py
Normal file
File diff suppressed because it is too large
Load Diff
1
egs/librilight/SSL/zipformer/decoder.py
Symbolic link
1
egs/librilight/SSL/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/decoder.py
|
1
egs/librilight/SSL/zipformer/encoder_interface.py
Symbolic link
1
egs/librilight/SSL/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/encoder_interface.py
|
1552
egs/librilight/SSL/zipformer/finetune.py
Normal file
1552
egs/librilight/SSL/zipformer/finetune.py
Normal file
File diff suppressed because it is too large
Load Diff
1
egs/librilight/SSL/zipformer/hubert_ce.py
Symbolic link
1
egs/librilight/SSL/zipformer/hubert_ce.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/hubert_ce.py
|
1
egs/librilight/SSL/zipformer/joiner.py
Symbolic link
1
egs/librilight/SSL/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/joiner.py
|
1
egs/librilight/SSL/zipformer/model.py
Symbolic link
1
egs/librilight/SSL/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/model.py
|
1
egs/librilight/SSL/zipformer/optim.py
Symbolic link
1
egs/librilight/SSL/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/optim.py
|
1366
egs/librilight/SSL/zipformer/pretrain.py
Normal file
1366
egs/librilight/SSL/zipformer/pretrain.py
Normal file
File diff suppressed because it is too large
Load Diff
1
egs/librilight/SSL/zipformer/scaling.py
Symbolic link
1
egs/librilight/SSL/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/scaling.py
|
334
egs/librilight/SSL/zipformer/ssl_datamodule.py
Normal file
334
egs/librilight/SSL/zipformer/ssl_datamodule.py
Normal file
@ -0,0 +1,334 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2023 Xiaomi Corporation (Author: Yifan Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import logging
|
||||
import re
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from dataset import HubertDataset
|
||||
from lhotse import CutSet, combine, load_manifest_lazy
|
||||
from lhotse.dataset import DynamicBucketingSampler, SimpleCutSampler
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class LibriLightDataModule:
|
||||
"""
|
||||
DataModule for SSL experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in SSL
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
|
||||
This class should be derived for specific corpora used in SSL tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR SSL related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/kmeans"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=float,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--do-normalize",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="whether to normalize the data",
|
||||
)
|
||||
group.add_argument(
|
||||
"--random-crop",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="audio sample rate",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sample_rate: float = 16000,
|
||||
label_rate: float = 50,
|
||||
random_crop: bool = True,
|
||||
pad_audio: bool = False,
|
||||
num_classes: list = [504],
|
||||
do_normalize: bool = True,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
logging.info("About to create train dataset")
|
||||
train = HubertDataset(
|
||||
sample_rate=sample_rate,
|
||||
label_rate=label_rate,
|
||||
random_crop=random_crop,
|
||||
pad_audio=pad_audio,
|
||||
num_classes=num_classes,
|
||||
do_normalize=do_normalize,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SimpleCutSampler.")
|
||||
train_sampler = SimpleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(
|
||||
self,
|
||||
cuts_valid: CutSet,
|
||||
sample_rate: float = 16000,
|
||||
label_rate: float = 50,
|
||||
random_crop: bool = True,
|
||||
pad_audio: bool = False,
|
||||
num_classes: list = [504],
|
||||
do_normalize: bool = True,
|
||||
) -> DataLoader:
|
||||
logging.info("About to create dev dataset")
|
||||
validate = HubertDataset(
|
||||
sample_rate=sample_rate,
|
||||
label_rate=label_rate,
|
||||
random_crop=random_crop,
|
||||
pad_audio=pad_audio,
|
||||
num_classes=num_classes,
|
||||
do_normalize=do_normalize,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(
|
||||
self,
|
||||
cuts: CutSet,
|
||||
sample_rate: float = 16000,
|
||||
label_rate: float = 50,
|
||||
random_crop: bool = True,
|
||||
pad_audio: bool = False,
|
||||
num_classes: list = [504],
|
||||
do_normalize: bool = True,
|
||||
) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = HubertDataset(
|
||||
sample_rate=sample_rate,
|
||||
label_rate=label_rate,
|
||||
random_crop=random_crop,
|
||||
pad_audio=pad_audio,
|
||||
num_classes=num_classes,
|
||||
do_normalize=do_normalize,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def small_cuts(self) -> CutSet:
|
||||
logging.info("About to get small cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librilight_cuts_small.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def medium_cuts(self) -> CutSet:
|
||||
logging.info("About to get medium cuts")
|
||||
filenames = glob.glob(
|
||||
f"{self.args.manifest_dir}/medium_splits/librilight_cuts_medium.*.jsonl.gz"
|
||||
)
|
||||
pattern = re.compile(r"librilight_cuts_medium.([0-9]+).jsonl.gz")
|
||||
idx_filenames = ((int(pattern.search(f).group(1)), f) for f in filenames)
|
||||
idx_filenames = sorted(idx_filenames, key=lambda x: x[0])
|
||||
sorted_filenames = [f[1] for f in idx_filenames]
|
||||
logging.info(
|
||||
f"Loading LibriLight medium {len(sorted_filenames)} splits in lazy mode"
|
||||
)
|
||||
|
||||
return combine(load_manifest_lazy(p) for p in sorted_filenames)
|
||||
|
||||
@lru_cache()
|
||||
def large_cuts(self) -> CutSet:
|
||||
logging.info("About to get large cuts")
|
||||
filenames = glob.glob(
|
||||
f"{self.args.manifest_dir}/large_splits/librilight_cuts_large.*.jsonl.gz"
|
||||
)
|
||||
pattern = re.compile(r"librilight_cuts_large.([0-9]+).jsonl.gz")
|
||||
idx_filenames = ((int(pattern.search(f).group(1)), f) for f in filenames)
|
||||
idx_filenames = sorted(idx_filenames, key=lambda x: x[0])
|
||||
sorted_filenames = [f[1] for f in idx_filenames]
|
||||
logging.info(
|
||||
f"Loading LibriLight large {len(sorted_filenames)} splits in lazy mode"
|
||||
)
|
||||
|
||||
return combine(load_manifest_lazy(p) for p in sorted_filenames)
|
||||
|
||||
@lru_cache()
|
||||
def train_all_shuf_cuts(self) -> CutSet:
|
||||
logging.info("About to get the shuffled small, medium and large cuts")
|
||||
small_cuts = self.small_cuts()
|
||||
medium_cuts = self.medium_cuts()
|
||||
large_cuts = self.large_cuts()
|
||||
return CutSet.mux(
|
||||
small_cuts,
|
||||
medium_cuts,
|
||||
large_cuts,
|
||||
weights=[
|
||||
122867, # len(small_cuts)
|
||||
1104071, # len(medium_cuts)
|
||||
11012085, # len(large_cuts)
|
||||
],
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_clean_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev-clean cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_dev-clean.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_other_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev-other cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_dev-other.jsonl.gz"
|
||||
)
|
1
egs/librilight/SSL/zipformer/utils.py
Symbolic link
1
egs/librilight/SSL/zipformer/utils.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/utils.py
|
1
egs/librilight/SSL/zipformer/wav2vec2_module.py
Symbolic link
1
egs/librilight/SSL/zipformer/wav2vec2_module.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/wav2vec2_module.py
|
1
egs/librilight/SSL/zipformer/zipformer.py
Symbolic link
1
egs/librilight/SSL/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/SSL/zipformer/zipformer.py
|
Loading…
x
Reference in New Issue
Block a user