diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index e02802b80..66d3265fa 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index 6e73be508..ad9222398 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -499,7 +499,7 @@ class Data2VecAudioModel(BaseFairseqModel): prompt_padding_mask = torch.zeros(prompt.size()[0], prompt.size()[1]).type(torch.BoolTensor).to(features.device) print(prompt_padding_mask.size()) print(padding_mask.size()) - padding_mask = torch.cat([prompt_padding_mask, padding_mask]) + padding_mask = torch.cat([prompt_padding_mask, padding_mask], dim=1) print(padding_mask.size()) features = self.layer_norm(features)