mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-08 08:34:19 +00:00
minor fix
This commit is contained in:
parent
092fb4766d
commit
914cdce956
@ -69,7 +69,7 @@ def get_parser():
|
||||
|
||||
parser.add_argument(
|
||||
"--otc-token", type=str, default="▁<star>", help="OTC token",
|
||||
)
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
@ -173,17 +173,11 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc2/exp",
|
||||
help="The experiment dir",
|
||||
"--exp-dir", type=str, default="conformer_ctc2/exp", help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500",
|
||||
help="The lang dir",
|
||||
"--lang-dir", type=str, default="data/lang_bpe_500", help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -230,10 +224,7 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
"--rnn-lm-hidden-dim", type=int, default=2048, help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -449,11 +440,7 @@ def decode_one_batch(
|
||||
return {key: hyps}
|
||||
|
||||
if params.method == "ctc-greedy-search":
|
||||
hyps, _ = ctc_greedy_search(
|
||||
nnet_output,
|
||||
memory,
|
||||
memory_key_padding_mask,
|
||||
)
|
||||
hyps, _ = ctc_greedy_search(nnet_output, memory, memory_key_padding_mask,)
|
||||
|
||||
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||
hyps = bpe_model.decode(hyps)
|
||||
@ -521,16 +508,12 @@ def decode_one_batch(
|
||||
)
|
||||
elif params.method == "whole-lattice-rescoring":
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=lm_scale_list,
|
||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=lm_scale_list,
|
||||
)
|
||||
elif params.method == "attention-decoder":
|
||||
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=None,
|
||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None,
|
||||
)
|
||||
# TODO: pass `lattice` instead of `rescored_lattice` to
|
||||
# `rescore_with_attention_decoder`
|
||||
@ -548,9 +531,7 @@ def decode_one_batch(
|
||||
elif params.method == "rnn-lm":
|
||||
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=None,
|
||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None,
|
||||
)
|
||||
|
||||
best_path_dict = rescore_with_rnn_lm(
|
||||
@ -734,6 +715,8 @@ def main():
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
args.lm_dir = Path(args.lm_dir)
|
||||
assert "▁" not in args.otc_token
|
||||
args.otc_token = f"▁{args.otc_token}"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
@ -769,11 +752,7 @@ def main():
|
||||
|
||||
if params.method == "ctc-decoding" or params.method == "ctc-greedy-search":
|
||||
HLG = None
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=False,
|
||||
device=device,
|
||||
)
|
||||
H = k2.ctc_topo(max_token=max_token_id, modified=False, device=device,)
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
||||
else:
|
||||
@ -943,8 +922,7 @@ def main():
|
||||
)
|
||||
if params.rnn_lm_avg == 1:
|
||||
load_checkpoint(
|
||||
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||
rnn_lm_model,
|
||||
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt", rnn_lm_model,
|
||||
)
|
||||
rnn_lm_model.to(device)
|
||||
else:
|
||||
|
@ -26,23 +26,18 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./conformer_ctc2/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 1 \
|
||||
--manifest-dir data/ssl \
|
||||
--train-manifest librispeech_cuts_train-clean-100_0.17_0.17_0.17.jsonl.gz \
|
||||
--exp-dir conformer_ctc2/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 300
|
||||
|
||||
# For mix precision training:
|
||||
|
||||
./conformer_ctc2/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 1 \
|
||||
--use-fp16 1 \
|
||||
--exp-dir conformer_ctc2/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 550
|
||||
|
||||
--lang-dir data/lang_bpe_200 \
|
||||
--otc-token "<star>" \
|
||||
--allow-bypass-arc true \
|
||||
--allow-self-loop-arc true \
|
||||
--initial-bypass-weight -19 \
|
||||
--initial-self-loop-weight 3.75 \
|
||||
--bypass-weight-decay 0.975 \
|
||||
--self-loop-weight-decay 0.999 \
|
||||
--show-alignment true
|
||||
"""
|
||||
|
||||
|
||||
@ -260,12 +255,12 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--otc-token", type=str, default="<star>", help="OTC token",
|
||||
"--otc-token", type=str, default="_<star>", help="OTC token",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--allow-bypass-arc",
|
||||
type=bool,
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""Whether to add bypass arc to training graph for substitution
|
||||
and insertion errors (wrong or extra words in the transcript).""",
|
||||
@ -273,7 +268,7 @@ def get_parser():
|
||||
|
||||
parser.add_argument(
|
||||
"--allow-self-loop-arc",
|
||||
type=bool,
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""Whether to self-loop bypass arc to training graph for deletion errors
|
||||
(missing words in the transcript).""",
|
||||
@ -311,7 +306,7 @@ def get_parser():
|
||||
|
||||
parser.add_argument(
|
||||
"--show-alignment",
|
||||
type=bool,
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to print OTC alignment during training",
|
||||
)
|
||||
@ -560,7 +555,7 @@ def compute_loss(
|
||||
feature, supervisions, warmup=warmup
|
||||
)
|
||||
# Set the probability of OTC token as the average of non-blank tokens
|
||||
# under the assumption that blank is the first and
|
||||
# under the assumption that blank is the first and
|
||||
# OTC token is the last token in tokens.txt
|
||||
_, _, V = nnet_output.shape
|
||||
|
||||
@ -592,9 +587,7 @@ def compute_loss(
|
||||
self_loop_weight=self_loop_weight,
|
||||
)
|
||||
|
||||
dense_fsa_vec = k2.DenseFsaVec(
|
||||
nnet_output, supervision_segments, allow_truncate=3,
|
||||
)
|
||||
dense_fsa_vec = k2.DenseFsaVec(nnet_output, supervision_segments, allow_truncate=3,)
|
||||
|
||||
otc_loss = k2.ctc_loss(
|
||||
decoding_graph=decoding_graph,
|
||||
@ -632,7 +625,7 @@ def compute_loss(
|
||||
for index, utt_id in enumerate(utt_ids):
|
||||
verbatim_text = verbatim_texts[index]
|
||||
utt_id = utt_ids[index]
|
||||
|
||||
|
||||
lattice = k2.intersect_dense(
|
||||
decoding_graph, dense_fsa_vec, params.beam_size,
|
||||
)
|
||||
@ -642,7 +635,7 @@ def compute_loss(
|
||||
hyp_ids = get_texts(best_path)[index]
|
||||
hyp_text_list = [graph_compiler.token_table[i] for i in hyp_ids]
|
||||
hyp_text = " ".join(hyp_text_list)
|
||||
|
||||
|
||||
logging.info(f"[utterance id]: {utt_id}")
|
||||
logging.info(f"[verbatim text]: {verbatim_text}")
|
||||
logging.info(f"[best alignment]: {hyp_text}")
|
||||
@ -959,7 +952,6 @@ def run(rank, world_size, args):
|
||||
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
|
||||
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||||
# We only load the sampler's state dict when it loads a checkpoint
|
||||
# saved in the middle of an epoch
|
||||
@ -1084,6 +1076,8 @@ def main():
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
assert "▁" not in args.otc_token
|
||||
args.otc_token = f"▁{args.otc_token}"
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
@ -1092,6 +1086,7 @@ def main():
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
@ -18,14 +18,12 @@ def get_args():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--otc-token",
|
||||
type=str,
|
||||
help="OTC token to be added to BPE model",
|
||||
"--otc-token", type=str, help="OTC token to be added to words.txt",
|
||||
)
|
||||
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
|
@ -90,26 +90,18 @@ def modify_cut_text(
|
||||
sub_index_set = set()
|
||||
ins_index_set = set()
|
||||
|
||||
# preprocessing
|
||||
for i in range(len(text_list)):
|
||||
prob = random.random()
|
||||
if prob <= del_ratio:
|
||||
del_index_set.add(i)
|
||||
elif prob <= del_ratio + sub_ratio:
|
||||
sub_index_set.add(i)
|
||||
elif prob <= del_ratio + sub_ratio + ins_ratio:
|
||||
ins_index_set.add(i)
|
||||
|
||||
# We follow the order: deletion -> substitution -> insertion
|
||||
for i, token in enumerate(text_list):
|
||||
for token in text_list:
|
||||
marked_token = token
|
||||
modified_token = token
|
||||
|
||||
if i in del_index_set:
|
||||
prob = random.random()
|
||||
|
||||
if prob <= del_ratio:
|
||||
marked_token = f"-{token}-"
|
||||
modified_token = ""
|
||||
elif i in sub_index_set or i in ins_index_set:
|
||||
if i in sub_index_set:
|
||||
elif prob <= del_ratio + sub_ratio + ins_ratio:
|
||||
if prob <= del_ratio + sub_ratio:
|
||||
marked_token = f"[{token}]"
|
||||
else:
|
||||
marked_verbatim_text_list.append(marked_token)
|
||||
|
411
egs/librispeech/WSASR/local/prepare_lang.py
Executable file
411
egs/librispeech/WSASR/local/prepare_lang.py
Executable file
@ -0,0 +1,411 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This script takes as input a lexicon file "data/lang_phone/lexicon.txt"
|
||||
consisting of words and tokens (i.e., phones) and does the following:
|
||||
|
||||
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
|
||||
|
||||
2. Generate tokens.txt, the token table mapping a token to a unique integer.
|
||||
|
||||
3. Generate words.txt, the word table mapping a word to a unique integer.
|
||||
|
||||
4. Generate L.pt, in k2 format. It can be loaded by
|
||||
|
||||
d = torch.load("L.pt")
|
||||
lexicon = k2.Fsa.from_dict(d)
|
||||
|
||||
5. Generate L_disambig.pt, in k2 format.
|
||||
"""
|
||||
import argparse
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
from icefall.lexicon import read_lexicon, write_lexicon
|
||||
from icefall.utils import str2bool
|
||||
|
||||
Lexicon = List[Tuple[str, List[str]]]
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
It should contain a file lexicon.txt.
|
||||
Generated files by this script are saved into this directory.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--debug",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True for debugging, which will generate
|
||||
a visualization of the lexicon FST.
|
||||
|
||||
Caution: If your lexicon contains hundreds of thousands
|
||||
of lines, please set it to False!
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
||||
"""Write a symbol to ID mapping to a file.
|
||||
|
||||
Note:
|
||||
No need to implement `read_mapping` as it can be done
|
||||
through :func:`k2.SymbolTable.from_file`.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Filename to save the mapping.
|
||||
sym2id:
|
||||
A dict mapping symbols to IDs.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
with open(filename, "w", encoding="utf-8") as f:
|
||||
for sym, i in sym2id.items():
|
||||
f.write(f"{sym} {i}\n")
|
||||
|
||||
|
||||
def get_tokens(lexicon: Lexicon) -> List[str]:
|
||||
"""Get tokens from a lexicon.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
It is the return value of :func:`read_lexicon`.
|
||||
Returns:
|
||||
Return a list of unique tokens.
|
||||
"""
|
||||
ans = set()
|
||||
for _, tokens in lexicon:
|
||||
ans.update(tokens)
|
||||
sorted_ans = sorted(list(ans))
|
||||
return sorted_ans
|
||||
|
||||
|
||||
def get_words(lexicon: Lexicon) -> List[str]:
|
||||
"""Get words from a lexicon.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
It is the return value of :func:`read_lexicon`.
|
||||
Returns:
|
||||
Return a list of unique words.
|
||||
"""
|
||||
ans = set()
|
||||
for word, _ in lexicon:
|
||||
ans.add(word)
|
||||
sorted_ans = sorted(list(ans))
|
||||
return sorted_ans
|
||||
|
||||
|
||||
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
||||
"""It adds pseudo-token disambiguation symbols #1, #2 and so on
|
||||
at the ends of tokens to ensure that all pronunciations are different,
|
||||
and that none is a prefix of another.
|
||||
|
||||
See also add_lex_disambig.pl from kaldi.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
It is returned by :func:`read_lexicon`.
|
||||
Returns:
|
||||
Return a tuple with two elements:
|
||||
|
||||
- The output lexicon with disambiguation symbols
|
||||
- The ID of the max disambiguation symbol that appears
|
||||
in the lexicon
|
||||
"""
|
||||
|
||||
# (1) Work out the count of each token-sequence in the
|
||||
# lexicon.
|
||||
count = defaultdict(int)
|
||||
for _, tokens in lexicon:
|
||||
count[" ".join(tokens)] += 1
|
||||
|
||||
# (2) For each left sub-sequence of each token-sequence, note down
|
||||
# that it exists (for identifying prefixes of longer strings).
|
||||
issubseq = defaultdict(int)
|
||||
for _, tokens in lexicon:
|
||||
tokens = tokens.copy()
|
||||
tokens.pop()
|
||||
while tokens:
|
||||
issubseq[" ".join(tokens)] = 1
|
||||
tokens.pop()
|
||||
|
||||
# (3) For each entry in the lexicon:
|
||||
# if the token sequence is unique and is not a
|
||||
# prefix of another word, no disambig symbol.
|
||||
# Else output #1, or #2, #3, ... if the same token-seq
|
||||
# has already been assigned a disambig symbol.
|
||||
ans = []
|
||||
|
||||
# We start with #1 since #0 has its own purpose
|
||||
first_allowed_disambig = 1
|
||||
max_disambig = first_allowed_disambig - 1
|
||||
last_used_disambig_symbol_of = defaultdict(int)
|
||||
|
||||
for word, tokens in lexicon:
|
||||
tokenseq = " ".join(tokens)
|
||||
assert tokenseq != ""
|
||||
if issubseq[tokenseq] == 0 and count[tokenseq] == 1:
|
||||
ans.append((word, tokens))
|
||||
continue
|
||||
|
||||
cur_disambig = last_used_disambig_symbol_of[tokenseq]
|
||||
if cur_disambig == 0:
|
||||
cur_disambig = first_allowed_disambig
|
||||
else:
|
||||
cur_disambig += 1
|
||||
|
||||
if cur_disambig > max_disambig:
|
||||
max_disambig = cur_disambig
|
||||
last_used_disambig_symbol_of[tokenseq] = cur_disambig
|
||||
tokenseq += f" #{cur_disambig}"
|
||||
ans.append((word, tokenseq.split()))
|
||||
return ans, max_disambig
|
||||
|
||||
|
||||
def generate_id_map(symbols: List[str]) -> Dict[str, int]:
|
||||
"""Generate ID maps, i.e., map a symbol to a unique ID.
|
||||
|
||||
Args:
|
||||
symbols:
|
||||
A list of unique symbols.
|
||||
Returns:
|
||||
A dict containing the mapping between symbols and IDs.
|
||||
"""
|
||||
return {sym: i for i, sym in enumerate(symbols)}
|
||||
|
||||
|
||||
def add_self_loops(
|
||||
arcs: List[List[Any]], disambig_token: int, disambig_word: int
|
||||
) -> List[List[Any]]:
|
||||
"""Adds self-loops to states of an FST to propagate disambiguation symbols
|
||||
through it. They are added on each state with non-epsilon output symbols
|
||||
on at least one arc out of the state.
|
||||
|
||||
See also fstaddselfloops.pl from Kaldi. One difference is that
|
||||
Kaldi uses OpenFst style FSTs and it has multiple final states.
|
||||
This function uses k2 style FSTs and it does not need to add self-loops
|
||||
to the final state.
|
||||
|
||||
The input label of a self-loop is `disambig_token`, while the output
|
||||
label is `disambig_word`.
|
||||
|
||||
Args:
|
||||
arcs:
|
||||
A list-of-list. The sublist contains
|
||||
`[src_state, dest_state, label, aux_label, score]`
|
||||
disambig_token:
|
||||
It is the token ID of the symbol `#0`.
|
||||
disambig_word:
|
||||
It is the word ID of the symbol `#0`.
|
||||
|
||||
Return:
|
||||
Return new `arcs` containing self-loops.
|
||||
"""
|
||||
states_needs_self_loops = set()
|
||||
for arc in arcs:
|
||||
src, dst, ilabel, olabel, score = arc
|
||||
if olabel != 0:
|
||||
states_needs_self_loops.add(src)
|
||||
|
||||
ans = []
|
||||
for s in states_needs_self_loops:
|
||||
ans.append([s, s, disambig_token, disambig_word, 0])
|
||||
|
||||
return arcs + ans
|
||||
|
||||
|
||||
def lexicon_to_fst(
|
||||
lexicon: Lexicon,
|
||||
token2id: Dict[str, int],
|
||||
word2id: Dict[str, int],
|
||||
sil_token: str = "SIL",
|
||||
sil_prob: float = 0.5,
|
||||
need_self_loops: bool = False,
|
||||
) -> k2.Fsa:
|
||||
"""Convert a lexicon to an FST (in k2 format) with optional silence at
|
||||
the beginning and end of each word.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
The input lexicon. See also :func:`read_lexicon`
|
||||
token2id:
|
||||
A dict mapping tokens to IDs.
|
||||
word2id:
|
||||
A dict mapping words to IDs.
|
||||
sil_token:
|
||||
The silence token.
|
||||
sil_prob:
|
||||
The probability for adding a silence at the beginning and end
|
||||
of the word.
|
||||
need_self_loops:
|
||||
If True, add self-loop to states with non-epsilon output symbols
|
||||
on at least one arc out of the state. The input label for this
|
||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||
Returns:
|
||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||
"""
|
||||
assert sil_prob > 0.0 and sil_prob < 1.0
|
||||
# CAUTION: we use score, i.e, negative cost.
|
||||
sil_score = math.log(sil_prob)
|
||||
no_sil_score = math.log(1.0 - sil_prob)
|
||||
|
||||
start_state = 0
|
||||
loop_state = 1 # words enter and leave from here
|
||||
sil_state = 2 # words terminate here when followed by silence; this state
|
||||
# has a silence transition to loop_state.
|
||||
next_state = 3 # the next un-allocated state, will be incremented as we go.
|
||||
arcs = []
|
||||
|
||||
assert token2id["<eps>"] == 0
|
||||
assert word2id["<eps>"] == 0
|
||||
|
||||
eps = 0
|
||||
|
||||
sil_token = token2id[sil_token]
|
||||
|
||||
arcs.append([start_state, loop_state, eps, eps, no_sil_score])
|
||||
arcs.append([start_state, sil_state, eps, eps, sil_score])
|
||||
arcs.append([sil_state, loop_state, sil_token, eps, 0])
|
||||
|
||||
for word, tokens in lexicon:
|
||||
assert len(tokens) > 0, f"{word} has no pronunciations"
|
||||
cur_state = loop_state
|
||||
|
||||
word = word2id[word]
|
||||
tokens = [token2id[i] for i in tokens]
|
||||
|
||||
for i in range(len(tokens) - 1):
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, next_state, tokens[i], w, 0])
|
||||
|
||||
cur_state = next_state
|
||||
next_state += 1
|
||||
|
||||
# now for the last token of this word
|
||||
# It has two out-going arcs, one to the loop state,
|
||||
# the other one to the sil_state.
|
||||
i = len(tokens) - 1
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score])
|
||||
arcs.append([cur_state, sil_state, tokens[i], w, sil_score])
|
||||
|
||||
if need_self_loops:
|
||||
disambig_token = token2id["#0"]
|
||||
disambig_word = word2id["#0"]
|
||||
arcs = add_self_loops(
|
||||
arcs, disambig_token=disambig_token, disambig_word=disambig_word,
|
||||
)
|
||||
|
||||
final_state = next_state
|
||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||
arcs.append([final_state])
|
||||
|
||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||
arcs = [" ".join(arc) for arc in arcs]
|
||||
arcs = "\n".join(arcs)
|
||||
|
||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||
return fsa
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
lexicon_filename = lang_dir / "lexicon.txt"
|
||||
sil_token = "SIL"
|
||||
sil_prob = 0.5
|
||||
|
||||
lexicon = read_lexicon(lexicon_filename)
|
||||
tokens = get_tokens(lexicon)
|
||||
words = get_words(lexicon)
|
||||
|
||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||
|
||||
for i in range(max_disambig + 1):
|
||||
disambig = f"#{i}"
|
||||
assert disambig not in tokens
|
||||
tokens.append(f"#{i}")
|
||||
|
||||
assert "<eps>" not in tokens
|
||||
tokens = ["<eps>"] + tokens
|
||||
|
||||
assert "<eps>" not in words
|
||||
assert "#0" not in words
|
||||
assert "<s>" not in words
|
||||
assert "</s>" not in words
|
||||
|
||||
words = ["<eps>"] + words + ["#0", "<s>", "</s>"]
|
||||
|
||||
token2id = generate_id_map(tokens)
|
||||
word2id = generate_id_map(words)
|
||||
|
||||
write_mapping(lang_dir / "tokens.txt", token2id)
|
||||
write_mapping(lang_dir / "words.txt", word2id)
|
||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||
|
||||
L = lexicon_to_fst(
|
||||
lexicon,
|
||||
token2id=token2id,
|
||||
word2id=word2id,
|
||||
sil_token=sil_token,
|
||||
sil_prob=sil_prob,
|
||||
)
|
||||
|
||||
L_disambig = lexicon_to_fst(
|
||||
lexicon_disambig,
|
||||
token2id=token2id,
|
||||
word2id=word2id,
|
||||
sil_token=sil_token,
|
||||
sil_prob=sil_prob,
|
||||
need_self_loops=True,
|
||||
)
|
||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||
|
||||
if args.debug:
|
||||
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
|
||||
L.labels_sym = labels_sym
|
||||
L.aux_labels_sym = aux_labels_sym
|
||||
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
|
||||
|
||||
L_disambig.labels_sym = labels_sym
|
||||
L_disambig.aux_labels_sym = aux_labels_sym
|
||||
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -53,6 +53,13 @@ def get_args():
|
||||
help="Path to bpe.model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--otc-token",
|
||||
required=True,
|
||||
type=str,
|
||||
help="OTC token",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
@ -67,6 +74,7 @@ def main():
|
||||
sp.load(str(args.bpe_model))
|
||||
|
||||
word_pieces = set(sp.id_to_piece(list(range(sp.vocab_size()))))
|
||||
word_pieces.add(f"▁{args.otc_token}")
|
||||
for word, pieces in lexicon:
|
||||
for p in pieces:
|
||||
if p not in word_pieces:
|
||||
|
@ -37,9 +37,6 @@ feature_dir="data/ssl"
|
||||
lang_dir="data/lang"
|
||||
lm_dir="data/lm"
|
||||
|
||||
log_dir="tdnn_lstm_ctc/prepare/log"
|
||||
mkdir -p "${log_dir}"
|
||||
|
||||
. ./cmd.sh
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
@ -90,7 +87,12 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
# to $dl_dir/LibriSpeech
|
||||
mkdir -p data/manifests
|
||||
if [ ! -e data/manifests/.librispeech.done ]; then
|
||||
lhotse prepare librispeech -j $nj "${dl_dir}/LibriSpeech" "${manifests_dir}"
|
||||
lhotse prepare librispeech -j ${nj} \
|
||||
-p dev-clean \
|
||||
-p dev-other \
|
||||
-p test-clean \
|
||||
-p test-other \
|
||||
-p train-clean-100 "${dl_dir}/LibriSpeech" "${manifests_dir}"
|
||||
touch data/manifests/.librispeech.done
|
||||
fi
|
||||
fi
|
||||
@ -165,18 +167,20 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
|
||||
if [ ! -f ${bpe_lang_dir}/L_disambig.pt ]; then
|
||||
./local/prepare_otc_lang_bpe.py \
|
||||
--lang-dir "${bpe_lang_dir}"
|
||||
--lang-dir "${bpe_lang_dir}" \
|
||||
--otc-token "${otc_token}"
|
||||
|
||||
log "Validating ${bpe_lang_dir}/lexicon.txt"
|
||||
./local/validate_bpe_lexicon.py \
|
||||
--lexicon ${bpe_lang_dir}/lexicon.txt \
|
||||
--bpe-model ${bpe_lang_dir}/bpe.model
|
||||
--bpe-model ${bpe_lang_dir}/bpe.model \
|
||||
--otc-token "${otc_token}"
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 4: Prepare G"
|
||||
log "Stage 5: Prepare G"
|
||||
# We assume you have install kaldilm, if not, please install
|
||||
# it using: pip install kaldilm
|
||||
|
||||
@ -214,4 +218,4 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
--lm-dir "${lm_dir}" \
|
||||
--lang-dir "${bpe_lang_dir}"
|
||||
done
|
||||
fi
|
||||
fi
|
||||
|
Loading…
x
Reference in New Issue
Block a user