This commit is contained in:
JinZr 2023-07-25 16:02:48 +08:00
parent 49e9d15733
commit 90cb518398
3 changed files with 115 additions and 74 deletions

View File

@ -4,6 +4,7 @@ import random
from typing import Optional, Tuple
import torch
import torch.nn.functional as F
from scaling import (
Balancer,
FloatLike,
@ -67,7 +68,12 @@ class CrossAttention(nn.Module):
(am_seq_len, batch_size, embed_dim) = x.shape
(_, _, lm_seq_len, _) = attn_weights.shape
num_heads = attn_weights.shape[0]
assert attn_weights.shape == (num_heads, batch_size, lm_seq_len, am_seq_len)
assert attn_weights.shape == (
num_heads,
batch_size,
lm_seq_len,
am_seq_len,
), f"{attn_weights.shape}"
x = self.in_proj(x) # (am_seq_len, batch_size, num_heads * value_head_dim)
# print("projected x.shape", x.shape)
@ -181,6 +187,7 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
num_heads: int = 5,
query_head_dim: int = 32,
pos_head_dim: int = 4,
prune_range: int = 5,
dropout: float = 0.0,
pos_emb_skip_rate: FloatLike = ScheduledFloat((0.0, 0.5), (4000.0, 0.0)),
) -> None:
@ -190,6 +197,7 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
self.num_heads = num_heads
self.query_head_dim = query_head_dim
self.pos_head_dim = pos_head_dim
self.prune_range = prune_range
self.dropout = dropout
self.pos_emb_skip_rate = copy.deepcopy(pos_emb_skip_rate)
self.name = None # will be overwritten in training code; for diagnostics.
@ -201,7 +209,8 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
# the initial_scale is supposed to take over the "scaling" factor of
# head_dim ** -0.5 that has been used in previous forms of attention,
# dividing it between the query and key. Note: this module is intended
# to be used with the ScaledAdam optimizer; with most other optimizers,
# to be used with the ScaledAdam optimizer; with most other optimizers
# ,
# it would be necessary to apply the scaling factor in the forward function.
self.in_lm_proj = ScaledLinear(
lm_embed_dim, in_lm_dim, bias=True, initial_scale=query_head_dim**-0.25
@ -294,6 +303,9 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
..., query_dim:
] # (lm_seq_len, batch * prune_range, pos_head_dim * num_heads)
assert p.shape[-1] == num_heads * pos_head_dim
# print("q.shape", q.shape)
# print("p.shape", p.shape)
# print("k.shape", k.shape)
q = self.copy_query(q) # for diagnostics only, does nothing.
k = self.whiten_keys(self.balance_keys(k)) # does nothing in the forward pass.
@ -303,7 +315,8 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
p = p.reshape(lm_seq_len, b_p_dim, num_heads, pos_head_dim)
k = k.reshape(am_seq_len, b_p_dim, num_heads, query_head_dim)
# time1 refers to target (query: lm), time2 refers to source (key: am).
# time1 refers to target (query: lm), tim
# e2 refers to source (key: am).
q = q.permute(
2, 1, 0, 3
) # (head, batch * prune_range, lm_seq_len, query_head_dim)
@ -314,48 +327,48 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
attn_scores = torch.matmul(q, k) # (head, batch, lm_seq_len, am_seq_len)
use_pos_scores = False
if torch.jit.is_scripting() or torch.jit.is_tracing():
# We can't put random.random() in the same line
use_pos_scores = True
elif not self.training or random.random() >= float(self.pos_emb_skip_rate):
use_pos_scores = True
# use_pos_scores = False
# if torch.jit.is_scripting() or torch.jit.is_tracing():
# # We can't put random.random() in the same line
# use_pos_scores = True
# elif not self.training or random.random() >= float(self.pos_emb_skip_rate):
# use_pos_scores = True
if use_pos_scores:
pos_emb = self.linear_pos(pos_emb)
seq_len2 = 2 * lm_seq_len - 1
pos_emb = pos_emb.reshape(-1, seq_len2, num_heads, pos_head_dim).permute(
2, 0, 3, 1
)
# pos shape now: (head, {1 or batch_size}, pos_dim, seq_len2)
# if use_pos_scores:
# pos_emb = self.linear_pos(pos_emb)
# seq_len2 = 2 * lm_seq_len - 1
# pos_emb = pos_emb.reshape(-1, seq_len2, num_heads, pos_head_dim).permute(
# 2, 0, 3, 1
# )
# # pos shape now: (head, {1 or batch_size}, pos_dim, seq_len2)
# (head, batch, time1, pos_dim) x (head, 1, pos_dim, seq_len2) -> (head, batch, time1, seq_len2)
# [where seq_len2 represents relative position.]
pos_scores = torch.matmul(p, pos_emb)
# the following .as_strided() expression converts the last axis of pos_scores from relative
# to absolute position. I don't know whether I might have got the time-offsets backwards or
# not, but let this code define which way round it is supposed to be.
if torch.jit.is_tracing():
(num_heads, b_p_dim, time1, n) = pos_scores.shape
rows = torch.arange(start=time1 - 1, end=-1, step=-1)
cols = torch.arange(lm_seq_len)
rows = rows.repeat(b_p_dim * num_heads).unsqueeze(-1)
indexes = rows + cols
pos_scores = pos_scores.reshape(-1, n)
pos_scores = torch.gather(pos_scores, dim=1, index=indexes)
pos_scores = pos_scores.reshape(num_heads, b_p_dim, time1, lm_seq_len)
else:
pos_scores = pos_scores.as_strided(
(num_heads, b_p_dim, lm_seq_len, lm_seq_len),
(
pos_scores.stride(0),
pos_scores.stride(1),
pos_scores.stride(2) - pos_scores.stride(3),
pos_scores.stride(3),
),
storage_offset=pos_scores.stride(3) * (lm_seq_len - 1),
)
attn_scores = attn_scores + pos_scores
# # (head, batch, time1, pos_dim) x (head, 1, pos_dim, seq_len2) -> (head, batch, time1, seq_len2)
# # [where seq_len2 represents relative position.]
# pos_scores = torch.matmul(p, pos_emb)
# # the following .as_strided() expression converts the last axis of pos_scores from relative
# # to absolute position. I don't know whether I might have got the time-offsets backwards or
# # not, but let this code define which way round it is supposed to be.
# if torch.jit.is_tracing():
# (num_heads, b_p_dim, time1, n) = pos_scores.shape
# rows = torch.arange(start=time1 - 1, end=-1, step=-1)
# cols = torch.arange(lm_seq_len)
# rows = rows.repeat(b_p_dim * num_heads).unsqueeze(-1)
# indexes = rows + cols
# pos_scores = pos_scores.reshape(-1, n)
# pos_scores = torch.gather(pos_scores, dim=1, index=indexes)
# pos_scores = pos_scores.reshape(num_heads, b_p_dim, time1, lm_seq_len)
# else:
# pos_scores = pos_scores.as_strided(
# (num_heads, b_p_dim, lm_seq_len, lm_seq_len),
# (
# pos_scores.stride(0),
# pos_scores.stride(1),
# pos_scores.stride(2) - pos_scores.stride(3),
# pos_scores.stride(3),
# ),
# storage_offset=pos_scores.stride(3) * (lm_seq_len - 1),
# )
# attn_scores = attn_scores + pos_scores
if torch.jit.is_scripting() or torch.jit.is_tracing():
pass
@ -375,7 +388,12 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
attn_scores = penalize_abs_values_gt(
attn_scores, limit=25.0, penalty=1.0e-04, name=self.name
)
assert attn_scores.shape == (num_heads, b_p_dim, lm_seq_len, am_seq_len)
assert attn_scores.shape == (
num_heads,
b_p_dim,
lm_seq_len,
am_seq_len,
), attn_scores.shape
if attn_mask is not None:
assert attn_mask.dtype == torch.bool
@ -386,12 +404,20 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
attn_scores = attn_scores.masked_fill(attn_mask, -1000)
if key_padding_mask is not None:
assert key_padding_mask.shape == (
b_p_dim,
am_seq_len,
), key_padding_mask.shape
# (batch, max_len)
key_padding_mask = (
(
key_padding_mask.unsqueeze(0)
.repeat(1, self.prune_range, 1)
.unsqueeze(2)
)
if key_padding_mask.shape[0] != attn_scores.shape[1]
else key_padding_mask.unsqueeze(0).unsqueeze(2)
)
attn_scores = attn_scores.masked_fill(
key_padding_mask.unsqueeze(1),
key_padding_mask,
-1000,
)
@ -438,6 +464,7 @@ class AlignmentAttentionModule(nn.Module):
query_head_dim: int = 32,
value_head_dim: int = 12,
pos_head_dim: int = 4,
prune_range: int = 5,
dropout: float = 0.0,
):
super().__init__()
@ -458,10 +485,13 @@ class AlignmentAttentionModule(nn.Module):
embed_dim=pos_dim, dropout_rate=0.15
)
def forward(self, am_pruned: Tensor, lm_pruned: Tensor) -> Tensor:
if len(am_pruned.shape) == 4 and len(lm_pruned.shape) == 4:
# src_key_padding_mask = make_pad_mask(am_pruned_lens)
def forward(
self, am_pruned: Tensor, lm_pruned: Tensor, lengths: torch.Tensor
) -> Tensor:
src_key_padding_mask = make_pad_mask(lengths)
# (batch, max_len)
if am_pruned.ndim == 4 and lm_pruned.ndim == 4:
# am_pruned : [B, am_T, prune_range, encoder_dim]
# lm_pruned : [B, lm_T, prune_range, decoder_dim]
(batch_size, am_T, prune_range, encoder_dim) = am_pruned.shape
@ -478,35 +508,40 @@ class AlignmentAttentionModule(nn.Module):
pos_emb = self.pos_encode(merged_lm_pruned)
attn_weights = self.cross_attn_weights(
merged_lm_pruned, merged_am_pruned, pos_emb
merged_lm_pruned,
merged_am_pruned,
pos_emb,
key_padding_mask=src_key_padding_mask,
)
# (num_heads, b_p_dim, lm_seq_len, am_seq_len)
# print("attn_weights.shape", attn_weights.shape)
label_level_am_representation = self.cross_attn(
merged_am_pruned, attn_weights
)
# print(
# "label_level_am_representation.shape",
# label_level_am_representation.shape,
# )
# (lm_seq_len, batch_size * prune_range, encoder_dim)
return label_level_am_representation.reshape(
lm_T, batch_size, prune_range, encoder_dim
).permute(1, 0, 2, 3)
elif len(am_pruned.shape) == 3 and len(lm_pruned.shape) == 3:
# am_pruned : [am_T, B, encoder_dim]
# lm_pruned : [lm_T, B, decoder_dim]
(am_T, batch_size, encoder_dim) = am_pruned.shape
(lm_T, batch_size, decoder_dim) = lm_pruned.shape
# elif len(am_pruned.shape) == 3 and len(lm_pruned.shape) == 3:
# am_pruned = am_pruned.permute(1, 0, 2)
# lm_pruned = lm_pruned.permute(1, 0, 2)
pos_emb = self.pos_encode(lm_pruned)
# # am_pruned : [am_T, B, encoder_dim]
# # lm_pruned : [lm_T, B, decoder_dim]
# (am_T, batch_size, encoder_dim) = am_pruned.shape
# (lm_T, batch_size, decoder_dim) = lm_pruned.shape
attn_weights = self.cross_attn_weights(lm_pruned, am_pruned, pos_emb)
label_level_am_representation = self.cross_attn(am_pruned, attn_weights)
# (T, batch_size, encoder_dim)
# pos_emb = self.pos_encode(lm_pruned)
return label_level_am_representation
# attn_weights = self.cross_attn_weights(
# lm_pruned,
# am_pruned,
# pos_emb,
# key_padding_mask=src_key_padding_mask,
# )
# label_level_am_representation = self.cross_attn(am_pruned, attn_weights)
# # (T, batch_size, encoder_dim)
# return label_level_am_representation
else:
raise NotImplementedError("Dim Error")
@ -526,7 +561,7 @@ if __name__ == "__main__":
# attn_weights = weights(lm, am, pos_emb)
# print("weights(am_pruned, lm_pruned, pos_emb).shape", attn_weights.shape)
# res = attn(am, attn_weights)
res = attn(am, lm)
res = attn(am, lm, torch.Tensor([70, 80]))
print("__main__ res", res.shape)
print("__main__ === for training ===")
@ -534,5 +569,6 @@ if __name__ == "__main__":
# lm_pruned : [B, T, prune_range, decoder_dim]
am_pruned = torch.rand(2, 100, 5, 512)
lm_pruned = torch.rand(2, 100, 5, 512)
res = attn(am_pruned, lm_pruned)
lengths = Tensor([100, 100])
res = attn(am_pruned, lm_pruned, lengths)
print("__main__ res", res.shape)

View File

@ -39,6 +39,7 @@ class Joiner(nn.Module):
self,
encoder_out: torch.Tensor,
decoder_out: torch.Tensor,
lengths: torch.Tensor,
apply_attn: bool = True,
project_input: bool = True,
) -> torch.Tensor:
@ -62,8 +63,10 @@ class Joiner(nn.Module):
decoder_out.shape,
)
if apply_attn:
encoder_out = self.label_level_am_attention(encoder_out, decoder_out)
if apply_attn and lengths is not None:
encoder_out = self.label_level_am_attention(
encoder_out, decoder_out, lengths
)
if project_input:
logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out)

View File

@ -264,7 +264,9 @@ class AsrModel(nn.Module):
# project_input=False since we applied the decoder's input projections
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
logits = self.joiner(
am_pruned, lm_pruned, encoder_out_lens, project_input=False
)
with torch.cuda.amp.autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(