Refactor decoder and joiner to remove extra nn.Linear().

This commit is contained in:
Fangjun Kuang 2022-03-09 22:59:01 +08:00
parent 7d1b064c96
commit 9071b1420d
4 changed files with 28 additions and 116 deletions

View File

@ -1,100 +0,0 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
class Decoder(nn.Module):
"""This class modifies the stateless decoder from the following paper:
RNN-transducer with stateless prediction network
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
It removes the recurrent connection from the decoder, i.e., the prediction
network. Different from the above paper, it adds an extra Conv1d
right after the embedding layer.
TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
"""
def __init__(
self,
vocab_size: int,
embedding_dim: int,
blank_id: int,
context_size: int,
):
"""
Args:
vocab_size:
Number of tokens of the modeling unit including blank.
embedding_dim:
Dimension of the input embedding.
blank_id:
The ID of the blank symbol.
context_size:
Number of previous words to use to predict the next word.
1 means bigram; 2 means trigram. n means (n+1)-gram.
"""
super().__init__()
self.embedding = nn.Embedding(
num_embeddings=vocab_size,
embedding_dim=embedding_dim,
padding_idx=blank_id,
)
self.blank_id = blank_id
assert context_size >= 1, context_size
self.context_size = context_size
if context_size > 1:
self.conv = nn.Conv1d(
in_channels=embedding_dim,
out_channels=embedding_dim,
kernel_size=context_size,
padding=0,
groups=embedding_dim,
bias=False,
)
self.output_linear = nn.Linear(embedding_dim, vocab_size)
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
"""
Args:
y:
A 2-D tensor of shape (N, U) with blank prepended.
need_pad:
True to left pad the input. Should be True during training.
False to not pad the input. Should be False during inference.
Returns:
Return a tensor of shape (N, U, embedding_dim).
"""
embedding_out = self.embedding(y)
if self.context_size > 1:
embedding_out = embedding_out.permute(0, 2, 1)
if need_pad is True:
embedding_out = F.pad(
embedding_out, pad=(self.context_size - 1, 0)
)
else:
# During inference time, there is no need to do extra padding
# as we only need one output
assert embedding_out.size(-1) == self.context_size
embedding_out = self.conv(embedding_out)
embedding_out = embedding_out.permute(0, 2, 1)
embedding_out = self.output_linear(F.relu(embedding_out))
return embedding_out

View File

@ -0,0 +1 @@
../transducer_stateless/decoder.py

View File

@ -20,11 +20,20 @@ import torch.nn.functional as F
class Joiner(nn.Module):
def __init__(self, input_dim: int, inner_dim: int, output_dim: int):
def __init__(self, input_dim: int, output_dim: int):
"""
Args:
input_dim:
Input dim of the joiner. It should be equal
to the output dim of the encoder and decoder.
output_dim:
Output dim of the joiner. It should be equal
to the vocab_size.
"""
super().__init__()
self.inner_linear = nn.Linear(input_dim, inner_dim)
self.output_linear = nn.Linear(inner_dim, output_dim)
self.input_dim = input_dim
self.output_dim = output_dim
self.output_linear = nn.Linear(input_dim, output_dim)
def forward(
self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
@ -40,11 +49,10 @@ class Joiner(nn.Module):
"""
assert encoder_out.ndim == decoder_out.ndim == 4
assert encoder_out.shape == decoder_out.shape
assert encoder_out.size(-1) == self.input_dim
logit = encoder_out + decoder_out
x = encoder_out + decoder_out
activations = torch.tanh(x)
logits = self.output_linear(activations)
logit = self.inner_linear(torch.tanh(logit))
output = self.output_linear(F.relu(logit))
return output
return logits

View File

@ -46,8 +46,8 @@ class Transducer(nn.Module):
is (N, U) and its output shape is (N, U, C). It should contain
one attribute: `blank_id`.
joiner:
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
output shape is (N, T, U, C). Note that its output contains
It has two inputs with shapes: (N, T, U, C) and (N, T, U, C). Its
output shape is also (N, T, U, C). Note that its output contains
unnormalized probs, i.e., not processed by log-softmax.
"""
super().__init__()

View File

@ -246,6 +246,7 @@ def get_params() -> AttributeDict:
"log_diagnostics": False,
# parameters for conformer
"feature_dim": 80,
"encoder_out_dim": 512,
"subsampling_factor": 4,
"attention_dim": 512,
"nhead": 8,
@ -267,7 +268,7 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
# TODO: We can add an option to switch between Conformer and Transformer
encoder = Conformer(
num_features=params.feature_dim,
output_dim=params.vocab_size,
output_dim=params.encoder_out_dim,
subsampling_factor=params.subsampling_factor,
d_model=params.attention_dim,
nhead=params.nhead,
@ -279,9 +280,12 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
def get_decoder_model(params: AttributeDict) -> nn.Module:
# Note: We set the embedding_dim of the decoder to
# vocab_size so that its output can be added with
# that of the encoder
decoder = Decoder(
vocab_size=params.vocab_size,
embedding_dim=params.embedding_dim,
embedding_dim=params.encoder_out_dim,
blank_id=params.blank_id,
context_size=params.context_size,
)
@ -290,8 +294,7 @@ def get_decoder_model(params: AttributeDict) -> nn.Module:
def get_joiner_model(params: AttributeDict) -> nn.Module:
joiner = Joiner(
input_dim=params.vocab_size,
inner_dim=params.embedding_dim,
input_dim=params.encoder_out_dim,
output_dim=params.vocab_size,
)
return joiner