Integrate LinearWithAuxLoss into SqueezeExcite1d

This commit is contained in:
Daniel Povey 2022-11-25 16:24:28 +08:00
commit 8f1ef60951

View File

@ -1613,6 +1613,49 @@ class ConvolutionModule(nn.Module):
x = x.permute(2, 0, 1) # (time, batch, channel)
return x
class SqueezeExcite1d(nn.Module):
def __init__(self,
channels: int,
bottleneck_channels: int):
super().__init__()
self.to_bottleneck_proj = LinearWithAuxLoss(channels,
bottleneck_channels)
self.bottleneck_activation = TanSwish()
self.from_bottleneck_proj = nn.Linear(bottleneck_channels,
channels)
self.balancer = ActivationBalancer(
channels, channel_dim=-1,
min_abs=0.05,
max_abs=ScheduledFloat((0.0, 0.2),
(4000.0, 2.0),
(10000.0, 10.0),
default=1.0),
max_factor=0.02,
min_prob=0.1,
)
self.activation = nn.Sigmoid()
def forward(self, x: Tensor):
"""
x: a Tensor of shape (batch_size, T, channels).
Returns: something with the same shape as x.
"""
# project before mean, needed for LinearWithAuxLoss (or, at least, better)
bottleneck = self.to_bottleneck_proj(x)
# would replace this mean with cumsum for a causal model.
bottleneck = bottleneck.mean(dim=1, keepdim=True)
bottleneck = self.bottleneck_activation(bottleneck)
scale = self.from_bottleneck_proj(bottleneck)
scale = self.balancer(scale)
scale = self.activation(scale)
return x * scale
class Conv2dSubsampling(nn.Module):
"""Convolutional 2D subsampling (to 1/2 length).
@ -1631,6 +1674,7 @@ class Conv2dSubsampling(nn.Module):
layer1_channels: int = 8,
layer2_channels: int = 32,
layer3_channels: int = 128,
bottleneck_channels: int = 64,
dropout: float = 0.1,
) -> None:
"""
@ -1644,6 +1688,8 @@ class Conv2dSubsampling(nn.Module):
Number of channels in layer1
layer1_channels:
Number of channels in layer2
bottleneck:
bottleneck dimension for 1d squeeze-excite
"""
assert in_channels >= 7
super().__init__()
@ -1679,6 +1725,10 @@ class Conv2dSubsampling(nn.Module):
DoubleSwish(),
)
out_height = (((in_channels - 1) // 2) - 1) // 2
self.squeeze_excite = SqueezeExcite1d(out_height * layer3_channels,
bottleneck_channels)
self.out = ScaledLinear(out_height * layer3_channels, out_channels)
self.dropout = nn.Dropout(dropout)
@ -1698,7 +1748,11 @@ class Conv2dSubsampling(nn.Module):
x = self.conv(x)
# Now x is of shape (N, odim, ((T-3)//2 - 1)//2, ((idim-1)//2 - 1)//2)
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).reshape(b, t, c * f))
x = x.transpose(1, 2).reshape(b, t, c * f)
# now x: (N, ((T-1)//2 - 1))//2, out_height * layer3_channels))
x = self.squeeze_excite(x)
x = self.out(x)
# Now x is of shape (N, ((T-1)//2 - 1))//2, odim)
x = self.dropout(x)
return x