mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-09 14:05:33 +00:00
parent
52f3a747be
commit
8d3810e289
@ -27,14 +27,6 @@ ln -s pretrained-iter-1224000-avg-14.pt pretrained.pt
|
|||||||
ln -s pretrained-iter-1224000-avg-14.pt epoch-99.pt
|
ln -s pretrained-iter-1224000-avg-14.pt epoch-99.pt
|
||||||
popd
|
popd
|
||||||
|
|
||||||
log "Test exporting to ONNX format"
|
|
||||||
|
|
||||||
./pruned_transducer_stateless3/export.py \
|
|
||||||
--exp-dir $repo/exp \
|
|
||||||
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
|
||||||
--epoch 99 \
|
|
||||||
--avg 1 \
|
|
||||||
--onnx 1
|
|
||||||
|
|
||||||
log "Export to torchscript model"
|
log "Export to torchscript model"
|
||||||
./pruned_transducer_stateless3/export.py \
|
./pruned_transducer_stateless3/export.py \
|
||||||
@ -51,30 +43,8 @@ log "Export to torchscript model"
|
|||||||
--avg 1 \
|
--avg 1 \
|
||||||
--jit-trace 1
|
--jit-trace 1
|
||||||
|
|
||||||
ls -lh $repo/exp/*.onnx
|
|
||||||
ls -lh $repo/exp/*.pt
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
log "Decode with ONNX models"
|
|
||||||
|
|
||||||
./pruned_transducer_stateless3/onnx_check.py \
|
|
||||||
--jit-filename $repo/exp/cpu_jit.pt \
|
|
||||||
--onnx-encoder-filename $repo/exp/encoder.onnx \
|
|
||||||
--onnx-decoder-filename $repo/exp/decoder.onnx \
|
|
||||||
--onnx-joiner-filename $repo/exp/joiner.onnx \
|
|
||||||
--onnx-joiner-encoder-proj-filename $repo/exp/joiner_encoder_proj.onnx \
|
|
||||||
--onnx-joiner-decoder-proj-filename $repo/exp/joiner_decoder_proj.onnx
|
|
||||||
|
|
||||||
./pruned_transducer_stateless3/onnx_pretrained.py \
|
|
||||||
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
|
||||||
--encoder-model-filename $repo/exp/encoder.onnx \
|
|
||||||
--decoder-model-filename $repo/exp/decoder.onnx \
|
|
||||||
--joiner-model-filename $repo/exp/joiner.onnx \
|
|
||||||
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
|
|
||||||
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
|
|
||||||
$repo/test_wavs/1089-134686-0001.wav \
|
|
||||||
$repo/test_wavs/1221-135766-0001.wav \
|
|
||||||
$repo/test_wavs/1221-135766-0002.wav
|
|
||||||
|
|
||||||
log "Decode with models exported by torch.jit.trace()"
|
log "Decode with models exported by torch.jit.trace()"
|
||||||
|
|
||||||
./pruned_transducer_stateless3/jit_pretrained.py \
|
./pruned_transducer_stateless3/jit_pretrained.py \
|
||||||
|
|||||||
56
.github/scripts/test-onnx-export.sh
vendored
56
.github/scripts/test-onnx-export.sh
vendored
@ -10,9 +10,8 @@ log() {
|
|||||||
|
|
||||||
cd egs/librispeech/ASR
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
|
|
||||||
|
|
||||||
log "=========================================================================="
|
log "=========================================================================="
|
||||||
|
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
|
||||||
log "Downloading pre-trained model from $repo_url"
|
log "Downloading pre-trained model from $repo_url"
|
||||||
git lfs install
|
git lfs install
|
||||||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
@ -68,3 +67,56 @@ log "Run onnx_pretrained.py"
|
|||||||
|
|
||||||
rm -rf $repo
|
rm -rf $repo
|
||||||
log "--------------------------------------------------------------------------"
|
log "--------------------------------------------------------------------------"
|
||||||
|
|
||||||
|
log "=========================================================================="
|
||||||
|
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
git lfs install
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
pushd $repo
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "exp/pretrained-iter-1224000-avg-14.pt"
|
||||||
|
|
||||||
|
cd exp
|
||||||
|
ln -s pretrained-iter-1224000-avg-14.pt epoch-9999.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "Export via torch.jit.script()"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless3/export.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir $repo/exp/ \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
log "Test exporting to ONNX format"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless3/export-onnx.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir $repo/exp/
|
||||||
|
|
||||||
|
ls -lh $repo/exp
|
||||||
|
|
||||||
|
log "Run onnx_check.py"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless3/onnx_check.py \
|
||||||
|
--jit-filename $repo/exp/cpu_jit.pt \
|
||||||
|
--onnx-encoder-filename $repo/exp/encoder-epoch-9999-avg-1.onnx \
|
||||||
|
--onnx-decoder-filename $repo/exp/decoder-epoch-9999-avg-1.onnx \
|
||||||
|
--onnx-joiner-filename $repo/exp/joiner-epoch-9999-avg-1.onnx
|
||||||
|
|
||||||
|
log "Run onnx_pretrained.py"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless3/onnx_pretrained.py \
|
||||||
|
--encoder-model-filename $repo/exp/encoder-epoch-9999-avg-1.onnx \
|
||||||
|
--decoder-model-filename $repo/exp/decoder-epoch-9999-avg-1.onnx \
|
||||||
|
--joiner-model-filename $repo/exp/joiner-epoch-9999-avg-1.onnx \
|
||||||
|
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
|||||||
@ -39,7 +39,7 @@ concurrency:
|
|||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_pruned_transducer_stateless3_2022_05_13:
|
run_librispeech_pruned_transducer_stateless3_2022_05_13:
|
||||||
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
|
|||||||
@ -56,8 +56,6 @@ class Joiner(nn.Module):
|
|||||||
"""
|
"""
|
||||||
if not is_jit_tracing():
|
if not is_jit_tracing():
|
||||||
assert encoder_out.ndim == decoder_out.ndim
|
assert encoder_out.ndim == decoder_out.ndim
|
||||||
assert encoder_out.ndim in (2, 4)
|
|
||||||
assert encoder_out.shape == decoder_out.shape
|
|
||||||
|
|
||||||
if project_input:
|
if project_input:
|
||||||
logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out)
|
logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out)
|
||||||
|
|||||||
497
egs/librispeech/ASR/pruned_transducer_stateless3/export-onnx.py
Executable file
497
egs/librispeech/ASR/pruned_transducer_stateless3/export-onnx.py
Executable file
@ -0,0 +1,497 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script exports a transducer model from PyTorch to ONNX.
|
||||||
|
|
||||||
|
We use the pre-trained model from
|
||||||
|
https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
|
||||||
|
as an example to show how to use this file.
|
||||||
|
|
||||||
|
1. Download the pre-trained model
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
pushd $repo
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "exp/pretrained-iter-1224000-avg-14.pt"
|
||||||
|
|
||||||
|
cd exp
|
||||||
|
ln -s pretrained-iter-1224000-avg-14.pt epoch-9999.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
2. Export the model to ONNX
|
||||||
|
|
||||||
|
./pruned_transducer_stateless3/export-onnx.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir $repo/exp/
|
||||||
|
|
||||||
|
It will generate the following 3 files inside $repo/exp:
|
||||||
|
|
||||||
|
- encoder-epoch-9999-avg-1.onnx
|
||||||
|
- decoder-epoch-9999-avg-1.onnx
|
||||||
|
- joiner-epoch-9999-avg-1.onnx
|
||||||
|
|
||||||
|
See ./onnx_pretrained.py and ./onnx_check.py for how to
|
||||||
|
use the exported ONNX models.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, Tuple
|
||||||
|
|
||||||
|
import onnx
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from conformer import Conformer
|
||||||
|
from decoder import Decoder
|
||||||
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
||||||
|
from icefall.utils import setup_logger
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for averaging.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless3/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def add_meta_data(filename: str, meta_data: Dict[str, str]):
|
||||||
|
"""Add meta data to an ONNX model. It is changed in-place.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filename:
|
||||||
|
Filename of the ONNX model to be changed.
|
||||||
|
meta_data:
|
||||||
|
Key-value pairs.
|
||||||
|
"""
|
||||||
|
model = onnx.load(filename)
|
||||||
|
for key, value in meta_data.items():
|
||||||
|
meta = model.metadata_props.add()
|
||||||
|
meta.key = key
|
||||||
|
meta.value = value
|
||||||
|
|
||||||
|
onnx.save(model, filename)
|
||||||
|
|
||||||
|
|
||||||
|
class OnnxEncoder(nn.Module):
|
||||||
|
"""A wrapper for Conformer and the encoder_proj from the joiner"""
|
||||||
|
|
||||||
|
def __init__(self, encoder: Conformer, encoder_proj: nn.Linear):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder:
|
||||||
|
A Conformer encoder.
|
||||||
|
encoder_proj:
|
||||||
|
The projection layer for encoder from the joiner.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.encoder = encoder
|
||||||
|
self.encoder_proj = encoder_proj
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
x_lens: torch.Tensor,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""Please see the help information of Conformer.forward
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A 3-D tensor of shape (N, T, C)
|
||||||
|
x_lens:
|
||||||
|
A 1-D tensor of shape (N,). Its dtype is torch.int64
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing:
|
||||||
|
- encoder_out, A 3-D tensor of shape (N, T', joiner_dim)
|
||||||
|
- encoder_out_lens, A 1-D tensor of shape (N,)
|
||||||
|
"""
|
||||||
|
encoder_out, encoder_out_lens = self.encoder(x, x_lens)
|
||||||
|
|
||||||
|
encoder_out = self.encoder_proj(encoder_out)
|
||||||
|
# Now encoder_out is of shape (N, T, joiner_dim)
|
||||||
|
|
||||||
|
return encoder_out, encoder_out_lens
|
||||||
|
|
||||||
|
|
||||||
|
class OnnxDecoder(nn.Module):
|
||||||
|
"""A wrapper for Decoder and the decoder_proj from the joiner"""
|
||||||
|
|
||||||
|
def __init__(self, decoder: Decoder, decoder_proj: nn.Linear):
|
||||||
|
super().__init__()
|
||||||
|
self.decoder = decoder
|
||||||
|
self.decoder_proj = decoder_proj
|
||||||
|
|
||||||
|
def forward(self, y: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
y:
|
||||||
|
A 2-D tensor of shape (N, context_size).
|
||||||
|
Returns
|
||||||
|
Return a 2-D tensor of shape (N, joiner_dim)
|
||||||
|
"""
|
||||||
|
need_pad = False
|
||||||
|
decoder_output = self.decoder(y, need_pad=need_pad)
|
||||||
|
decoder_output = decoder_output.squeeze(1)
|
||||||
|
output = self.decoder_proj(decoder_output)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class OnnxJoiner(nn.Module):
|
||||||
|
"""A wrapper for the joiner"""
|
||||||
|
|
||||||
|
def __init__(self, output_linear: nn.Linear):
|
||||||
|
super().__init__()
|
||||||
|
self.output_linear = output_linear
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
decoder_out: torch.Tensor,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder_out:
|
||||||
|
A 2-D tensor of shape (N, joiner_dim)
|
||||||
|
decoder_out:
|
||||||
|
A 2-D tensor of shape (N, joiner_dim)
|
||||||
|
Returns:
|
||||||
|
Return a 2-D tensor of shape (N, vocab_size)
|
||||||
|
"""
|
||||||
|
logit = encoder_out + decoder_out
|
||||||
|
logit = self.output_linear(torch.tanh(logit))
|
||||||
|
return logit
|
||||||
|
|
||||||
|
|
||||||
|
def export_encoder_model_onnx(
|
||||||
|
encoder_model: OnnxEncoder,
|
||||||
|
encoder_filename: str,
|
||||||
|
opset_version: int = 11,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given encoder model to ONNX format.
|
||||||
|
The exported model has two inputs:
|
||||||
|
|
||||||
|
- x, a tensor of shape (N, T, C); dtype is torch.float32
|
||||||
|
- x_lens, a tensor of shape (N,); dtype is torch.int64
|
||||||
|
|
||||||
|
and it has two outputs:
|
||||||
|
|
||||||
|
- encoder_out, a tensor of shape (N, T', joiner_dim)
|
||||||
|
- encoder_out_lens, a tensor of shape (N,)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoder_model:
|
||||||
|
The input encoder model
|
||||||
|
encoder_filename:
|
||||||
|
The filename to save the exported ONNX model.
|
||||||
|
opset_version:
|
||||||
|
The opset version to use.
|
||||||
|
"""
|
||||||
|
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
||||||
|
x_lens = torch.tensor([100], dtype=torch.int64)
|
||||||
|
|
||||||
|
torch.onnx.export(
|
||||||
|
encoder_model,
|
||||||
|
(x, x_lens),
|
||||||
|
encoder_filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=["x", "x_lens"],
|
||||||
|
output_names=["encoder_out", "encoder_out_lens"],
|
||||||
|
dynamic_axes={
|
||||||
|
"x": {0: "N", 1: "T"},
|
||||||
|
"x_lens": {0: "N"},
|
||||||
|
"encoder_out": {0: "N", 1: "T"},
|
||||||
|
"encoder_out_lens": {0: "N"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def export_decoder_model_onnx(
|
||||||
|
decoder_model: OnnxDecoder,
|
||||||
|
decoder_filename: str,
|
||||||
|
opset_version: int = 11,
|
||||||
|
) -> None:
|
||||||
|
"""Export the decoder model to ONNX format.
|
||||||
|
|
||||||
|
The exported model has one input:
|
||||||
|
|
||||||
|
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
|
||||||
|
|
||||||
|
and has one output:
|
||||||
|
|
||||||
|
- decoder_out: a torch.float32 tensor of shape (N, joiner_dim)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
decoder_model:
|
||||||
|
The decoder model to be exported.
|
||||||
|
decoder_filename:
|
||||||
|
Filename to save the exported ONNX model.
|
||||||
|
opset_version:
|
||||||
|
The opset version to use.
|
||||||
|
"""
|
||||||
|
context_size = decoder_model.decoder.context_size
|
||||||
|
vocab_size = decoder_model.decoder.vocab_size
|
||||||
|
|
||||||
|
y = torch.zeros(10, context_size, dtype=torch.int64)
|
||||||
|
torch.onnx.export(
|
||||||
|
decoder_model,
|
||||||
|
y,
|
||||||
|
decoder_filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=["y"],
|
||||||
|
output_names=["decoder_out"],
|
||||||
|
dynamic_axes={
|
||||||
|
"y": {0: "N"},
|
||||||
|
"decoder_out": {0: "N"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
meta_data = {
|
||||||
|
"context_size": str(context_size),
|
||||||
|
"vocab_size": str(vocab_size),
|
||||||
|
}
|
||||||
|
add_meta_data(filename=decoder_filename, meta_data=meta_data)
|
||||||
|
|
||||||
|
|
||||||
|
def export_joiner_model_onnx(
|
||||||
|
joiner_model: nn.Module,
|
||||||
|
joiner_filename: str,
|
||||||
|
opset_version: int = 11,
|
||||||
|
) -> None:
|
||||||
|
"""Export the joiner model to ONNX format.
|
||||||
|
The exported joiner model has two inputs:
|
||||||
|
|
||||||
|
- encoder_out: a tensor of shape (N, joiner_dim)
|
||||||
|
- decoder_out: a tensor of shape (N, joiner_dim)
|
||||||
|
|
||||||
|
and produces one output:
|
||||||
|
|
||||||
|
- logit: a tensor of shape (N, vocab_size)
|
||||||
|
"""
|
||||||
|
joiner_dim = joiner_model.output_linear.weight.shape[1]
|
||||||
|
logging.info(f"joiner dim: {joiner_dim}")
|
||||||
|
|
||||||
|
projected_encoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
|
||||||
|
projected_decoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
|
||||||
|
|
||||||
|
torch.onnx.export(
|
||||||
|
joiner_model,
|
||||||
|
(projected_encoder_out, projected_decoder_out),
|
||||||
|
joiner_filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=[
|
||||||
|
"encoder_out",
|
||||||
|
"decoder_out",
|
||||||
|
],
|
||||||
|
output_names=["logit"],
|
||||||
|
dynamic_axes={
|
||||||
|
"encoder_out": {0: "N"},
|
||||||
|
"decoder_out": {0: "N"},
|
||||||
|
"logit": {0: "N"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
meta_data = {
|
||||||
|
"joiner_dim": str(joiner_dim),
|
||||||
|
}
|
||||||
|
add_meta_data(filename=joiner_filename, meta_data=meta_data)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log-export/log-export-onnx")
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params, enable_giga=False)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints(filenames, device=device), strict=False
|
||||||
|
)
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints(filenames, device=device), strict=False
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
|
|
||||||
|
encoder = OnnxEncoder(
|
||||||
|
encoder=model.encoder,
|
||||||
|
encoder_proj=model.joiner.encoder_proj,
|
||||||
|
)
|
||||||
|
|
||||||
|
decoder = OnnxDecoder(
|
||||||
|
decoder=model.decoder,
|
||||||
|
decoder_proj=model.joiner.decoder_proj,
|
||||||
|
)
|
||||||
|
|
||||||
|
joiner = OnnxJoiner(output_linear=model.joiner.output_linear)
|
||||||
|
|
||||||
|
encoder_num_param = sum([p.numel() for p in encoder.parameters()])
|
||||||
|
decoder_num_param = sum([p.numel() for p in decoder.parameters()])
|
||||||
|
joiner_num_param = sum([p.numel() for p in joiner.parameters()])
|
||||||
|
total_num_param = encoder_num_param + decoder_num_param + joiner_num_param
|
||||||
|
logging.info(f"encoder parameters: {encoder_num_param}")
|
||||||
|
logging.info(f"decoder parameters: {decoder_num_param}")
|
||||||
|
logging.info(f"joiner parameters: {joiner_num_param}")
|
||||||
|
logging.info(f"total parameters: {total_num_param}")
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
suffix = f"iter-{params.iter}"
|
||||||
|
else:
|
||||||
|
suffix = f"epoch-{params.epoch}"
|
||||||
|
|
||||||
|
suffix += f"-avg-{params.avg}"
|
||||||
|
|
||||||
|
opset_version = 13
|
||||||
|
|
||||||
|
logging.info("Exporting encoder")
|
||||||
|
encoder_filename = params.exp_dir / f"encoder-{suffix}.onnx"
|
||||||
|
export_encoder_model_onnx(
|
||||||
|
encoder,
|
||||||
|
encoder_filename,
|
||||||
|
opset_version=opset_version,
|
||||||
|
)
|
||||||
|
logging.info(f"Exported encoder to {encoder_filename}")
|
||||||
|
|
||||||
|
logging.info("Exporting decoder")
|
||||||
|
decoder_filename = params.exp_dir / f"decoder-{suffix}.onnx"
|
||||||
|
export_decoder_model_onnx(
|
||||||
|
decoder,
|
||||||
|
decoder_filename,
|
||||||
|
opset_version=opset_version,
|
||||||
|
)
|
||||||
|
logging.info(f"Exported decoder to {decoder_filename}")
|
||||||
|
|
||||||
|
logging.info("Exporting joiner")
|
||||||
|
joiner_filename = params.exp_dir / f"joiner-{suffix}.onnx"
|
||||||
|
export_joiner_model_onnx(
|
||||||
|
joiner,
|
||||||
|
joiner_filename,
|
||||||
|
opset_version=opset_version,
|
||||||
|
)
|
||||||
|
logging.info(f"Exported joiner to {joiner_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
main()
|
||||||
@ -52,32 +52,7 @@ It will also generate 3 other files: `encoder_jit_script.pt`,
|
|||||||
It will generates 3 files: `encoder_jit_trace.pt`,
|
It will generates 3 files: `encoder_jit_trace.pt`,
|
||||||
`decoder_jit_trace.pt`, and `joiner_jit_trace.pt`.
|
`decoder_jit_trace.pt`, and `joiner_jit_trace.pt`.
|
||||||
|
|
||||||
|
(3) Export `model.state_dict()`
|
||||||
(3) Export to ONNX format
|
|
||||||
|
|
||||||
./pruned_transducer_stateless3/export.py \
|
|
||||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
|
||||||
--bpe-model data/lang_bpe_500/bpe.model \
|
|
||||||
--epoch 20 \
|
|
||||||
--avg 10 \
|
|
||||||
--onnx 1
|
|
||||||
|
|
||||||
It will generate the following files in the given `exp_dir`.
|
|
||||||
Check `onnx_check.py` for how to use them.
|
|
||||||
|
|
||||||
- encoder.onnx
|
|
||||||
- decoder.onnx
|
|
||||||
- joiner.onnx
|
|
||||||
- joiner_encoder_proj.onnx
|
|
||||||
- joiner_decoder_proj.onnx
|
|
||||||
|
|
||||||
Please see ./onnx_pretrained.py for usage of the generated files
|
|
||||||
|
|
||||||
Check
|
|
||||||
https://github.com/k2-fsa/sherpa-onnx
|
|
||||||
for how to use the exported models outside of icefall.
|
|
||||||
|
|
||||||
(4) Export `model.state_dict()`
|
|
||||||
|
|
||||||
./pruned_transducer_stateless3/export.py \
|
./pruned_transducer_stateless3/export.py \
|
||||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
@ -210,23 +185,6 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--onnx",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="""If True, --jit is ignored and it exports the model
|
|
||||||
to onnx format. It will generate the following files:
|
|
||||||
|
|
||||||
- encoder.onnx
|
|
||||||
- decoder.onnx
|
|
||||||
- joiner.onnx
|
|
||||||
- joiner_encoder_proj.onnx
|
|
||||||
- joiner_decoder_proj.onnx
|
|
||||||
|
|
||||||
Refer to ./onnx_check.py and ./onnx_pretrained.py for how to use them.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
@ -370,206 +328,6 @@ def export_joiner_model_jit_trace(
|
|||||||
logging.info(f"Saved to {joiner_filename}")
|
logging.info(f"Saved to {joiner_filename}")
|
||||||
|
|
||||||
|
|
||||||
def export_encoder_model_onnx(
|
|
||||||
encoder_model: nn.Module,
|
|
||||||
encoder_filename: str,
|
|
||||||
opset_version: int = 11,
|
|
||||||
) -> None:
|
|
||||||
"""Export the given encoder model to ONNX format.
|
|
||||||
The exported model has two inputs:
|
|
||||||
|
|
||||||
- x, a tensor of shape (N, T, C); dtype is torch.float32
|
|
||||||
- x_lens, a tensor of shape (N,); dtype is torch.int64
|
|
||||||
|
|
||||||
and it has two outputs:
|
|
||||||
|
|
||||||
- encoder_out, a tensor of shape (N, T, C)
|
|
||||||
- encoder_out_lens, a tensor of shape (N,)
|
|
||||||
|
|
||||||
Note: The warmup argument is fixed to 1.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
encoder_model:
|
|
||||||
The input encoder model
|
|
||||||
encoder_filename:
|
|
||||||
The filename to save the exported ONNX model.
|
|
||||||
opset_version:
|
|
||||||
The opset version to use.
|
|
||||||
"""
|
|
||||||
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
|
||||||
x_lens = torch.tensor([100], dtype=torch.int64)
|
|
||||||
|
|
||||||
# encoder_model = torch.jit.script(encoder_model)
|
|
||||||
# It throws the following error for the above statement
|
|
||||||
#
|
|
||||||
# RuntimeError: Exporting the operator __is_ to ONNX opset version
|
|
||||||
# 11 is not supported. Please feel free to request support or
|
|
||||||
# submit a pull request on PyTorch GitHub.
|
|
||||||
#
|
|
||||||
# I cannot find which statement causes the above error.
|
|
||||||
# torch.onnx.export() will use torch.jit.trace() internally, which
|
|
||||||
# works well for the current reworked model
|
|
||||||
warmup = 1.0
|
|
||||||
torch.onnx.export(
|
|
||||||
encoder_model,
|
|
||||||
(x, x_lens, warmup),
|
|
||||||
encoder_filename,
|
|
||||||
verbose=False,
|
|
||||||
opset_version=opset_version,
|
|
||||||
input_names=["x", "x_lens", "warmup"],
|
|
||||||
output_names=["encoder_out", "encoder_out_lens"],
|
|
||||||
dynamic_axes={
|
|
||||||
"x": {0: "N", 1: "T"},
|
|
||||||
"x_lens": {0: "N"},
|
|
||||||
"encoder_out": {0: "N", 1: "T"},
|
|
||||||
"encoder_out_lens": {0: "N"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
logging.info(f"Saved to {encoder_filename}")
|
|
||||||
|
|
||||||
|
|
||||||
def export_decoder_model_onnx(
|
|
||||||
decoder_model: nn.Module,
|
|
||||||
decoder_filename: str,
|
|
||||||
opset_version: int = 11,
|
|
||||||
) -> None:
|
|
||||||
"""Export the decoder model to ONNX format.
|
|
||||||
|
|
||||||
The exported model has one input:
|
|
||||||
|
|
||||||
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
|
|
||||||
|
|
||||||
and has one output:
|
|
||||||
|
|
||||||
- decoder_out: a torch.float32 tensor of shape (N, 1, C)
|
|
||||||
|
|
||||||
Note: The argument need_pad is fixed to False.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
decoder_model:
|
|
||||||
The decoder model to be exported.
|
|
||||||
decoder_filename:
|
|
||||||
Filename to save the exported ONNX model.
|
|
||||||
opset_version:
|
|
||||||
The opset version to use.
|
|
||||||
"""
|
|
||||||
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
|
|
||||||
need_pad = False # Always False, so we can use torch.jit.trace() here
|
|
||||||
# Note(fangjun): torch.jit.trace() is more efficient than torch.jit.script()
|
|
||||||
# in this case
|
|
||||||
torch.onnx.export(
|
|
||||||
decoder_model,
|
|
||||||
(y, need_pad),
|
|
||||||
decoder_filename,
|
|
||||||
verbose=False,
|
|
||||||
opset_version=opset_version,
|
|
||||||
input_names=["y", "need_pad"],
|
|
||||||
output_names=["decoder_out"],
|
|
||||||
dynamic_axes={
|
|
||||||
"y": {0: "N"},
|
|
||||||
"decoder_out": {0: "N"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
logging.info(f"Saved to {decoder_filename}")
|
|
||||||
|
|
||||||
|
|
||||||
def export_joiner_model_onnx(
|
|
||||||
joiner_model: nn.Module,
|
|
||||||
joiner_filename: str,
|
|
||||||
opset_version: int = 11,
|
|
||||||
) -> None:
|
|
||||||
"""Export the joiner model to ONNX format.
|
|
||||||
The exported joiner model has two inputs:
|
|
||||||
|
|
||||||
- projected_encoder_out: a tensor of shape (N, joiner_dim)
|
|
||||||
- projected_decoder_out: a tensor of shape (N, joiner_dim)
|
|
||||||
|
|
||||||
and produces one output:
|
|
||||||
|
|
||||||
- logit: a tensor of shape (N, vocab_size)
|
|
||||||
|
|
||||||
The exported encoder_proj model has one input:
|
|
||||||
|
|
||||||
- encoder_out: a tensor of shape (N, encoder_out_dim)
|
|
||||||
|
|
||||||
and produces one output:
|
|
||||||
|
|
||||||
- projected_encoder_out: a tensor of shape (N, joiner_dim)
|
|
||||||
|
|
||||||
The exported decoder_proj model has one input:
|
|
||||||
|
|
||||||
- decoder_out: a tensor of shape (N, decoder_out_dim)
|
|
||||||
|
|
||||||
and produces one output:
|
|
||||||
|
|
||||||
- projected_decoder_out: a tensor of shape (N, joiner_dim)
|
|
||||||
"""
|
|
||||||
encoder_proj_filename = str(joiner_filename).replace(".onnx", "_encoder_proj.onnx")
|
|
||||||
|
|
||||||
decoder_proj_filename = str(joiner_filename).replace(".onnx", "_decoder_proj.onnx")
|
|
||||||
|
|
||||||
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
|
|
||||||
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
|
|
||||||
joiner_dim = joiner_model.decoder_proj.weight.shape[0]
|
|
||||||
|
|
||||||
projected_encoder_out = torch.rand(1, joiner_dim, dtype=torch.float32)
|
|
||||||
projected_decoder_out = torch.rand(1, joiner_dim, dtype=torch.float32)
|
|
||||||
|
|
||||||
project_input = False
|
|
||||||
# Note: It uses torch.jit.trace() internally
|
|
||||||
torch.onnx.export(
|
|
||||||
joiner_model,
|
|
||||||
(projected_encoder_out, projected_decoder_out, project_input),
|
|
||||||
joiner_filename,
|
|
||||||
verbose=False,
|
|
||||||
opset_version=opset_version,
|
|
||||||
input_names=[
|
|
||||||
"projected_encoder_out",
|
|
||||||
"projected_decoder_out",
|
|
||||||
"project_input",
|
|
||||||
],
|
|
||||||
output_names=["logit"],
|
|
||||||
dynamic_axes={
|
|
||||||
"projected_encoder_out": {0: "N"},
|
|
||||||
"projected_decoder_out": {0: "N"},
|
|
||||||
"logit": {0: "N"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
logging.info(f"Saved to {joiner_filename}")
|
|
||||||
|
|
||||||
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
|
||||||
torch.onnx.export(
|
|
||||||
joiner_model.encoder_proj,
|
|
||||||
encoder_out,
|
|
||||||
encoder_proj_filename,
|
|
||||||
verbose=False,
|
|
||||||
opset_version=opset_version,
|
|
||||||
input_names=["encoder_out"],
|
|
||||||
output_names=["projected_encoder_out"],
|
|
||||||
dynamic_axes={
|
|
||||||
"encoder_out": {0: "N"},
|
|
||||||
"projected_encoder_out": {0: "N"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
logging.info(f"Saved to {encoder_proj_filename}")
|
|
||||||
|
|
||||||
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
|
||||||
torch.onnx.export(
|
|
||||||
joiner_model.decoder_proj,
|
|
||||||
decoder_out,
|
|
||||||
decoder_proj_filename,
|
|
||||||
verbose=False,
|
|
||||||
opset_version=opset_version,
|
|
||||||
input_names=["decoder_out"],
|
|
||||||
output_names=["projected_decoder_out"],
|
|
||||||
dynamic_axes={
|
|
||||||
"decoder_out": {0: "N"},
|
|
||||||
"projected_decoder_out": {0: "N"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
logging.info(f"Saved to {decoder_proj_filename}")
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def main():
|
def main():
|
||||||
args = get_parser().parse_args()
|
args = get_parser().parse_args()
|
||||||
@ -636,31 +394,7 @@ def main():
|
|||||||
model.to("cpu")
|
model.to("cpu")
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
if params.onnx is True:
|
if params.jit is True:
|
||||||
convert_scaled_to_non_scaled(model, inplace=True)
|
|
||||||
opset_version = 11
|
|
||||||
logging.info("Exporting to onnx format")
|
|
||||||
encoder_filename = params.exp_dir / "encoder.onnx"
|
|
||||||
export_encoder_model_onnx(
|
|
||||||
model.encoder,
|
|
||||||
encoder_filename,
|
|
||||||
opset_version=opset_version,
|
|
||||||
)
|
|
||||||
|
|
||||||
decoder_filename = params.exp_dir / "decoder.onnx"
|
|
||||||
export_decoder_model_onnx(
|
|
||||||
model.decoder,
|
|
||||||
decoder_filename,
|
|
||||||
opset_version=opset_version,
|
|
||||||
)
|
|
||||||
|
|
||||||
joiner_filename = params.exp_dir / "joiner.onnx"
|
|
||||||
export_joiner_model_onnx(
|
|
||||||
model.joiner,
|
|
||||||
joiner_filename,
|
|
||||||
opset_version=opset_version,
|
|
||||||
)
|
|
||||||
elif params.jit is True:
|
|
||||||
convert_scaled_to_non_scaled(model, inplace=True)
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
logging.info("Using torch.jit.script()")
|
logging.info("Using torch.jit.script()")
|
||||||
# We won't use the forward() method of the model in C++, so just ignore
|
# We won't use the forward() method of the model in C++, so just ignore
|
||||||
|
|||||||
@ -19,21 +19,70 @@
|
|||||||
"""
|
"""
|
||||||
This script checks that exported onnx models produce the same output
|
This script checks that exported onnx models produce the same output
|
||||||
with the given torchscript model for the same input.
|
with the given torchscript model for the same input.
|
||||||
|
|
||||||
|
We use the pre-trained model from
|
||||||
|
https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
|
||||||
|
as an example to show how to use this file.
|
||||||
|
|
||||||
|
1. Download the pre-trained model
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
pushd $repo
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "exp/pretrained-iter-1224000-avg-14.pt"
|
||||||
|
|
||||||
|
cd exp
|
||||||
|
ln -s pretrained-iter-1224000-avg-14.pt epoch-9999.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
2. Export the model via torchscript (torch.jit.script())
|
||||||
|
|
||||||
|
./pruned_transducer_stateless3/export.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir $repo/exp/ \
|
||||||
|
--jit 1
|
||||||
|
|
||||||
|
It will generate the following file in $repo/exp:
|
||||||
|
- cpu_jit.pt
|
||||||
|
|
||||||
|
3. Export the model to ONNX
|
||||||
|
|
||||||
|
./pruned_transducer_stateless3/export-onnx.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir $repo/exp/
|
||||||
|
|
||||||
|
It will generate the following 3 files inside $repo/exp:
|
||||||
|
|
||||||
|
- encoder-epoch-9999-avg-1.onnx
|
||||||
|
- decoder-epoch-9999-avg-1.onnx
|
||||||
|
- joiner-epoch-9999-avg-1.onnx
|
||||||
|
|
||||||
|
4. Run this file
|
||||||
|
|
||||||
|
./pruned_transducer_stateless3/onnx_check.py \
|
||||||
|
--jit-filename $repo/exp/cpu_jit.pt \
|
||||||
|
--onnx-encoder-filename $repo/exp/encoder-epoch-9999-avg-1.onnx \
|
||||||
|
--onnx-decoder-filename $repo/exp/decoder-epoch-9999-avg-1.onnx \
|
||||||
|
--onnx-joiner-filename $repo/exp/joiner-epoch-9999-avg-1.onnx
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
|
|
||||||
from icefall import is_module_available
|
from icefall import is_module_available
|
||||||
|
from onnx_pretrained import OnnxModel
|
||||||
|
|
||||||
if not is_module_available("onnxruntime"):
|
|
||||||
raise ValueError("Please 'pip install onnxruntime' first.")
|
|
||||||
|
|
||||||
import onnxruntime as ort
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
ort.set_default_logger_severity(3)
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
@ -68,163 +117,81 @@ def get_parser():
|
|||||||
help="Path to the onnx joiner model",
|
help="Path to the onnx joiner model",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--onnx-joiner-encoder-proj-filename",
|
|
||||||
required=True,
|
|
||||||
type=str,
|
|
||||||
help="Path to the onnx joiner encoder projection model",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--onnx-joiner-decoder-proj-filename",
|
|
||||||
required=True,
|
|
||||||
type=str,
|
|
||||||
help="Path to the onnx joiner decoder projection model",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
def test_encoder(
|
def test_encoder(
|
||||||
model: torch.jit.ScriptModule,
|
torch_model: torch.jit.ScriptModule,
|
||||||
encoder_session: ort.InferenceSession,
|
onnx_model: OnnxModel,
|
||||||
):
|
):
|
||||||
inputs = encoder_session.get_inputs()
|
C = 80
|
||||||
outputs = encoder_session.get_outputs()
|
for i in range(10):
|
||||||
input_names = [n.name for n in inputs]
|
N = torch.randint(low=1, high=20, size=(1,)).item()
|
||||||
output_names = [n.name for n in outputs]
|
T = torch.randint(low=50, high=100, size=(1,)).item()
|
||||||
|
logging.info(f"test_encoder: iter {i}, N={N}, T={T}")
|
||||||
|
|
||||||
assert inputs[0].shape == ["N", "T", 80]
|
x = torch.rand(N, T, C)
|
||||||
assert inputs[1].shape == ["N"]
|
x_lens = torch.randint(low=10, high=T + 1, size=(N,))
|
||||||
|
x_lens[0] = T
|
||||||
|
|
||||||
for N in [1, 5]:
|
torch_encoder_out, torch_encoder_out_lens = torch_model.encoder(x, x_lens)
|
||||||
for T in [12, 25]:
|
torch_encoder_out = torch_model.joiner.encoder_proj(torch_encoder_out)
|
||||||
print("N, T", N, T)
|
|
||||||
x = torch.rand(N, T, 80, dtype=torch.float32)
|
|
||||||
x_lens = torch.randint(low=10, high=T + 1, size=(N,))
|
|
||||||
x_lens[0] = T
|
|
||||||
|
|
||||||
encoder_inputs = {
|
onnx_encoder_out, onnx_encoder_out_lens = onnx_model.run_encoder(x, x_lens)
|
||||||
input_names[0]: x.numpy(),
|
|
||||||
input_names[1]: x_lens.numpy(),
|
|
||||||
}
|
|
||||||
encoder_out, encoder_out_lens = encoder_session.run(
|
|
||||||
output_names,
|
|
||||||
encoder_inputs,
|
|
||||||
)
|
|
||||||
|
|
||||||
torch_encoder_out, torch_encoder_out_lens = model.encoder(x, x_lens)
|
assert torch.allclose(torch_encoder_out, onnx_encoder_out, atol=1e-05), (
|
||||||
|
(torch_encoder_out - onnx_encoder_out).abs().max()
|
||||||
encoder_out = torch.from_numpy(encoder_out)
|
)
|
||||||
assert torch.allclose(encoder_out, torch_encoder_out, atol=1e-05), (
|
|
||||||
(encoder_out - torch_encoder_out).abs().max(),
|
|
||||||
encoder_out.shape,
|
|
||||||
torch_encoder_out.shape,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def test_decoder(
|
def test_decoder(
|
||||||
model: torch.jit.ScriptModule,
|
torch_model: torch.jit.ScriptModule,
|
||||||
decoder_session: ort.InferenceSession,
|
onnx_model: OnnxModel,
|
||||||
):
|
):
|
||||||
inputs = decoder_session.get_inputs()
|
context_size = onnx_model.context_size
|
||||||
outputs = decoder_session.get_outputs()
|
vocab_size = onnx_model.vocab_size
|
||||||
input_names = [n.name for n in inputs]
|
for i in range(10):
|
||||||
output_names = [n.name for n in outputs]
|
N = torch.randint(1, 100, size=(1,)).item()
|
||||||
|
logging.info(f"test_decoder: iter {i}, N={N}")
|
||||||
|
x = torch.randint(
|
||||||
|
low=1,
|
||||||
|
high=vocab_size,
|
||||||
|
size=(N, context_size),
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
torch_decoder_out = torch_model.decoder(x, need_pad=torch.tensor([False]))
|
||||||
|
torch_decoder_out = torch_model.joiner.decoder_proj(torch_decoder_out)
|
||||||
|
torch_decoder_out = torch_decoder_out.squeeze(1)
|
||||||
|
|
||||||
assert inputs[0].shape == ["N", 2]
|
onnx_decoder_out = onnx_model.run_decoder(x)
|
||||||
for N in [1, 5, 10]:
|
assert torch.allclose(torch_decoder_out, onnx_decoder_out, atol=1e-4), (
|
||||||
y = torch.randint(low=1, high=500, size=(10, 2))
|
(torch_decoder_out - onnx_decoder_out).abs().max()
|
||||||
|
|
||||||
decoder_inputs = {input_names[0]: y.numpy()}
|
|
||||||
decoder_out = decoder_session.run(
|
|
||||||
output_names,
|
|
||||||
decoder_inputs,
|
|
||||||
)[0]
|
|
||||||
decoder_out = torch.from_numpy(decoder_out)
|
|
||||||
|
|
||||||
torch_decoder_out = model.decoder(y, need_pad=False)
|
|
||||||
assert torch.allclose(decoder_out, torch_decoder_out, atol=1e-5), (
|
|
||||||
(decoder_out - torch_decoder_out).abs().max()
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def test_joiner(
|
def test_joiner(
|
||||||
model: torch.jit.ScriptModule,
|
torch_model: torch.jit.ScriptModule,
|
||||||
joiner_session: ort.InferenceSession,
|
onnx_model: OnnxModel,
|
||||||
joiner_encoder_proj_session: ort.InferenceSession,
|
|
||||||
joiner_decoder_proj_session: ort.InferenceSession,
|
|
||||||
):
|
):
|
||||||
joiner_inputs = joiner_session.get_inputs()
|
encoder_dim = torch_model.joiner.encoder_proj.weight.shape[1]
|
||||||
joiner_outputs = joiner_session.get_outputs()
|
decoder_dim = torch_model.joiner.decoder_proj.weight.shape[1]
|
||||||
joiner_input_names = [n.name for n in joiner_inputs]
|
for i in range(10):
|
||||||
joiner_output_names = [n.name for n in joiner_outputs]
|
N = torch.randint(1, 100, size=(1,)).item()
|
||||||
|
logging.info(f"test_joiner: iter {i}, N={N}")
|
||||||
|
encoder_out = torch.rand(N, encoder_dim)
|
||||||
|
decoder_out = torch.rand(N, decoder_dim)
|
||||||
|
|
||||||
assert joiner_inputs[0].shape == ["N", 512]
|
projected_encoder_out = torch_model.joiner.encoder_proj(encoder_out)
|
||||||
assert joiner_inputs[1].shape == ["N", 512]
|
projected_decoder_out = torch_model.joiner.decoder_proj(decoder_out)
|
||||||
|
|
||||||
joiner_encoder_proj_inputs = joiner_encoder_proj_session.get_inputs()
|
torch_joiner_out = torch_model.joiner(encoder_out, decoder_out)
|
||||||
encoder_proj_input_name = joiner_encoder_proj_inputs[0].name
|
onnx_joiner_out = onnx_model.run_joiner(
|
||||||
|
projected_encoder_out, projected_decoder_out
|
||||||
assert joiner_encoder_proj_inputs[0].shape == ["N", 512]
|
|
||||||
|
|
||||||
joiner_encoder_proj_outputs = joiner_encoder_proj_session.get_outputs()
|
|
||||||
encoder_proj_output_name = joiner_encoder_proj_outputs[0].name
|
|
||||||
|
|
||||||
joiner_decoder_proj_inputs = joiner_decoder_proj_session.get_inputs()
|
|
||||||
decoder_proj_input_name = joiner_decoder_proj_inputs[0].name
|
|
||||||
|
|
||||||
assert joiner_decoder_proj_inputs[0].shape == ["N", 512]
|
|
||||||
|
|
||||||
joiner_decoder_proj_outputs = joiner_decoder_proj_session.get_outputs()
|
|
||||||
decoder_proj_output_name = joiner_decoder_proj_outputs[0].name
|
|
||||||
|
|
||||||
for N in [1, 5, 10]:
|
|
||||||
encoder_out = torch.rand(N, 512)
|
|
||||||
decoder_out = torch.rand(N, 512)
|
|
||||||
|
|
||||||
projected_encoder_out = torch.rand(N, 512)
|
|
||||||
projected_decoder_out = torch.rand(N, 512)
|
|
||||||
|
|
||||||
joiner_inputs = {
|
|
||||||
joiner_input_names[0]: projected_encoder_out.numpy(),
|
|
||||||
joiner_input_names[1]: projected_decoder_out.numpy(),
|
|
||||||
}
|
|
||||||
joiner_out = joiner_session.run(joiner_output_names, joiner_inputs)[0]
|
|
||||||
joiner_out = torch.from_numpy(joiner_out)
|
|
||||||
|
|
||||||
torch_joiner_out = model.joiner(
|
|
||||||
projected_encoder_out,
|
|
||||||
projected_decoder_out,
|
|
||||||
project_input=False,
|
|
||||||
)
|
|
||||||
assert torch.allclose(joiner_out, torch_joiner_out, atol=1e-5), (
|
|
||||||
(joiner_out - torch_joiner_out).abs().max()
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# Now test encoder_proj
|
assert torch.allclose(torch_joiner_out, onnx_joiner_out, atol=1e-4), (
|
||||||
joiner_encoder_proj_inputs = {encoder_proj_input_name: encoder_out.numpy()}
|
(torch_joiner_out - onnx_joiner_out).abs().max()
|
||||||
joiner_encoder_proj_out = joiner_encoder_proj_session.run(
|
)
|
||||||
[encoder_proj_output_name], joiner_encoder_proj_inputs
|
|
||||||
)[0]
|
|
||||||
joiner_encoder_proj_out = torch.from_numpy(joiner_encoder_proj_out)
|
|
||||||
|
|
||||||
torch_joiner_encoder_proj_out = model.joiner.encoder_proj(encoder_out)
|
|
||||||
assert torch.allclose(
|
|
||||||
joiner_encoder_proj_out, torch_joiner_encoder_proj_out, atol=1e-5
|
|
||||||
), ((joiner_encoder_proj_out - torch_joiner_encoder_proj_out).abs().max())
|
|
||||||
|
|
||||||
# Now test decoder_proj
|
|
||||||
joiner_decoder_proj_inputs = {decoder_proj_input_name: decoder_out.numpy()}
|
|
||||||
joiner_decoder_proj_out = joiner_decoder_proj_session.run(
|
|
||||||
[decoder_proj_output_name], joiner_decoder_proj_inputs
|
|
||||||
)[0]
|
|
||||||
joiner_decoder_proj_out = torch.from_numpy(joiner_decoder_proj_out)
|
|
||||||
|
|
||||||
torch_joiner_decoder_proj_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
assert torch.allclose(
|
|
||||||
joiner_decoder_proj_out, torch_joiner_decoder_proj_out, atol=1e-5
|
|
||||||
), ((joiner_decoder_proj_out - torch_joiner_decoder_proj_out).abs().max())
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
@ -232,48 +199,38 @@ def main():
|
|||||||
args = get_parser().parse_args()
|
args = get_parser().parse_args()
|
||||||
logging.info(vars(args))
|
logging.info(vars(args))
|
||||||
|
|
||||||
model = torch.jit.load(args.jit_filename)
|
torch_model = torch.jit.load(args.jit_filename)
|
||||||
|
|
||||||
options = ort.SessionOptions()
|
onnx_model = OnnxModel(
|
||||||
options.inter_op_num_threads = 1
|
encoder_model_filename=args.onnx_encoder_filename,
|
||||||
options.intra_op_num_threads = 1
|
decoder_model_filename=args.onnx_decoder_filename,
|
||||||
|
joiner_model_filename=args.onnx_joiner_filename,
|
||||||
|
)
|
||||||
|
|
||||||
logging.info("Test encoder")
|
logging.info("Test encoder")
|
||||||
encoder_session = ort.InferenceSession(
|
test_encoder(torch_model, onnx_model)
|
||||||
args.onnx_encoder_filename,
|
|
||||||
sess_options=options,
|
|
||||||
)
|
|
||||||
test_encoder(model, encoder_session)
|
|
||||||
|
|
||||||
logging.info("Test decoder")
|
logging.info("Test decoder")
|
||||||
decoder_session = ort.InferenceSession(
|
test_decoder(torch_model, onnx_model)
|
||||||
args.onnx_decoder_filename,
|
|
||||||
sess_options=options,
|
|
||||||
)
|
|
||||||
test_decoder(model, decoder_session)
|
|
||||||
|
|
||||||
logging.info("Test joiner")
|
logging.info("Test joiner")
|
||||||
joiner_session = ort.InferenceSession(
|
test_joiner(torch_model, onnx_model)
|
||||||
args.onnx_joiner_filename,
|
|
||||||
sess_options=options,
|
|
||||||
)
|
|
||||||
joiner_encoder_proj_session = ort.InferenceSession(
|
|
||||||
args.onnx_joiner_encoder_proj_filename,
|
|
||||||
sess_options=options,
|
|
||||||
)
|
|
||||||
joiner_decoder_proj_session = ort.InferenceSession(
|
|
||||||
args.onnx_joiner_decoder_proj_filename,
|
|
||||||
sess_options=options,
|
|
||||||
)
|
|
||||||
test_joiner(
|
|
||||||
model,
|
|
||||||
joiner_session,
|
|
||||||
joiner_encoder_proj_session,
|
|
||||||
joiner_decoder_proj_session,
|
|
||||||
)
|
|
||||||
logging.info("Finished checking ONNX models")
|
logging.info("Finished checking ONNX models")
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
# See https://github.com/pytorch/pytorch/issues/38342
|
||||||
|
# and https://github.com/pytorch/pytorch/issues/33354
|
||||||
|
#
|
||||||
|
# If we don't do this, the delay increases whenever there is
|
||||||
|
# a new request that changes the actual batch size.
|
||||||
|
# If you use `py-spy dump --pid <server-pid> --native`, you will
|
||||||
|
# see a lot of time is spent in re-compiling the torch script model.
|
||||||
|
torch._C._jit_set_profiling_executor(False)
|
||||||
|
torch._C._jit_set_profiling_mode(False)
|
||||||
|
torch._C._set_graph_executor_optimize(False)
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
torch.manual_seed(20220727)
|
torch.manual_seed(20220727)
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|||||||
@ -18,35 +18,61 @@
|
|||||||
This script loads ONNX models and uses them to decode waves.
|
This script loads ONNX models and uses them to decode waves.
|
||||||
You can use the following command to get the exported models:
|
You can use the following command to get the exported models:
|
||||||
|
|
||||||
./pruned_transducer_stateless3/export.py \
|
We use the pre-trained model from
|
||||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
|
||||||
--bpe-model data/lang_bpe_500/bpe.model \
|
as an example to show how to use this file.
|
||||||
--epoch 20 \
|
|
||||||
--avg 10 \
|
|
||||||
--onnx 1
|
|
||||||
|
|
||||||
Usage of this script:
|
1. Download the pre-trained model
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
pushd $repo
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "exp/pretrained-iter-1224000-avg-14.pt"
|
||||||
|
|
||||||
|
cd exp
|
||||||
|
ln -s pretrained-iter-1224000-avg-14.pt epoch-9999.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
2. Export the model to ONNX
|
||||||
|
|
||||||
|
./pruned_transducer_stateless3/export-onnx.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir $repo/exp/
|
||||||
|
|
||||||
|
It will generate the following 3 files inside $repo/exp:
|
||||||
|
|
||||||
|
- encoder-epoch-9999-avg-1.onnx
|
||||||
|
- decoder-epoch-9999-avg-1.onnx
|
||||||
|
- joiner-epoch-9999-avg-1.onnx
|
||||||
|
|
||||||
|
3. Run this file
|
||||||
|
|
||||||
./pruned_transducer_stateless3/onnx_pretrained.py \
|
./pruned_transducer_stateless3/onnx_pretrained.py \
|
||||||
--encoder-model-filename ./pruned_transducer_stateless3/exp/encoder.onnx \
|
--encoder-model-filename $repo/exp/encoder-epoch-9999-avg-1.onnx \
|
||||||
--decoder-model-filename ./pruned_transducer_stateless3/exp/decoder.onnx \
|
--decoder-model-filename $repo/exp/decoder-epoch-9999-avg-1.onnx \
|
||||||
--joiner-model-filename ./pruned_transducer_stateless3/exp/joiner.onnx \
|
--joiner-model-filename $repo/exp/joiner-epoch-9999-avg-1.onnx \
|
||||||
--joiner-encoder-proj-model-filename ./pruned_transducer_stateless3/exp/joiner_encoder_proj.onnx \
|
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||||
--joiner-decoder-proj-model-filename ./pruned_transducer_stateless3/exp/joiner_decoder_proj.onnx \
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
/path/to/foo.wav \
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
/path/to/bar.wav
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
import math
|
import math
|
||||||
from typing import List
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
import kaldifeat
|
import kaldifeat
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import onnxruntime as ort
|
import onnxruntime as ort
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
import torch
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
@ -79,23 +105,9 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--joiner-encoder-proj-model-filename",
|
"--tokens",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
help="""Path to tokens.txt.""",
|
||||||
help="Path to the joiner encoder_proj onnx model. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--joiner-decoder-proj-model-filename",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="Path to the joiner decoder_proj onnx model. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=str,
|
|
||||||
help="""Path to bpe.model.""",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -115,16 +127,122 @@ def get_parser():
|
|||||||
help="The sample rate of the input sound file",
|
help="The sample rate of the input sound file",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="Context size of the decoder model",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
class OnnxModel:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder_model_filename: str,
|
||||||
|
decoder_model_filename: str,
|
||||||
|
joiner_model_filename: str,
|
||||||
|
):
|
||||||
|
session_opts = ort.SessionOptions()
|
||||||
|
session_opts.inter_op_num_threads = 1
|
||||||
|
session_opts.intra_op_num_threads = 1
|
||||||
|
|
||||||
|
self.session_opts = session_opts
|
||||||
|
|
||||||
|
self.init_encoder(encoder_model_filename)
|
||||||
|
self.init_decoder(decoder_model_filename)
|
||||||
|
self.init_joiner(joiner_model_filename)
|
||||||
|
|
||||||
|
def init_encoder(self, encoder_model_filename: str):
|
||||||
|
self.encoder = ort.InferenceSession(
|
||||||
|
encoder_model_filename,
|
||||||
|
sess_options=self.session_opts,
|
||||||
|
)
|
||||||
|
|
||||||
|
def init_decoder(self, decoder_model_filename: str):
|
||||||
|
self.decoder = ort.InferenceSession(
|
||||||
|
decoder_model_filename,
|
||||||
|
sess_options=self.session_opts,
|
||||||
|
)
|
||||||
|
|
||||||
|
decoder_meta = self.decoder.get_modelmeta().custom_metadata_map
|
||||||
|
self.context_size = int(decoder_meta["context_size"])
|
||||||
|
self.vocab_size = int(decoder_meta["vocab_size"])
|
||||||
|
|
||||||
|
logging.info(f"context_size: {self.context_size}")
|
||||||
|
logging.info(f"vocab_size: {self.vocab_size}")
|
||||||
|
|
||||||
|
def init_joiner(self, joiner_model_filename: str):
|
||||||
|
self.joiner = ort.InferenceSession(
|
||||||
|
joiner_model_filename,
|
||||||
|
sess_options=self.session_opts,
|
||||||
|
)
|
||||||
|
|
||||||
|
joiner_meta = self.joiner.get_modelmeta().custom_metadata_map
|
||||||
|
self.joiner_dim = int(joiner_meta["joiner_dim"])
|
||||||
|
|
||||||
|
logging.info(f"joiner_dim: {self.joiner_dim}")
|
||||||
|
|
||||||
|
def run_encoder(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
x_lens: torch.Tensor,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A 3-D tensor of shape (N, T, C)
|
||||||
|
x_lens:
|
||||||
|
A 2-D tensor of shape (N,). Its dtype is torch.int64
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing:
|
||||||
|
- encoder_out, its shape is (N, T', joiner_dim)
|
||||||
|
- encoder_out_lens, its shape is (N,)
|
||||||
|
"""
|
||||||
|
out = self.encoder.run(
|
||||||
|
[
|
||||||
|
self.encoder.get_outputs()[0].name,
|
||||||
|
self.encoder.get_outputs()[1].name,
|
||||||
|
],
|
||||||
|
{
|
||||||
|
self.encoder.get_inputs()[0].name: x.numpy(),
|
||||||
|
self.encoder.get_inputs()[1].name: x_lens.numpy(),
|
||||||
|
},
|
||||||
|
)
|
||||||
|
return torch.from_numpy(out[0]), torch.from_numpy(out[1])
|
||||||
|
|
||||||
|
def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
decoder_input:
|
||||||
|
A 2-D tensor of shape (N, context_size)
|
||||||
|
Returns:
|
||||||
|
Return a 2-D tensor of shape (N, joiner_dim)
|
||||||
|
"""
|
||||||
|
out = self.decoder.run(
|
||||||
|
[self.decoder.get_outputs()[0].name],
|
||||||
|
{self.decoder.get_inputs()[0].name: decoder_input.numpy()},
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
return torch.from_numpy(out)
|
||||||
|
|
||||||
|
def run_joiner(
|
||||||
|
self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder_out:
|
||||||
|
A 2-D tensor of shape (N, joiner_dim)
|
||||||
|
decoder_out:
|
||||||
|
A 2-D tensor of shape (N, joiner_dim)
|
||||||
|
Returns:
|
||||||
|
Return a 2-D tensor of shape (N, vocab_size)
|
||||||
|
"""
|
||||||
|
out = self.joiner.run(
|
||||||
|
[self.joiner.get_outputs()[0].name],
|
||||||
|
{
|
||||||
|
self.joiner.get_inputs()[0].name: encoder_out.numpy(),
|
||||||
|
self.joiner.get_inputs()[1].name: decoder_out.numpy(),
|
||||||
|
},
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
return torch.from_numpy(out)
|
||||||
|
|
||||||
|
|
||||||
def read_sound_files(
|
def read_sound_files(
|
||||||
filenames: List[str], expected_sample_rate: float
|
filenames: List[str], expected_sample_rate: float
|
||||||
) -> List[torch.Tensor]:
|
) -> List[torch.Tensor]:
|
||||||
@ -149,36 +267,22 @@ def read_sound_files(
|
|||||||
|
|
||||||
|
|
||||||
def greedy_search(
|
def greedy_search(
|
||||||
decoder: ort.InferenceSession,
|
model: OnnxModel,
|
||||||
joiner: ort.InferenceSession,
|
encoder_out: torch.Tensor,
|
||||||
joiner_encoder_proj: ort.InferenceSession,
|
encoder_out_lens: torch.Tensor,
|
||||||
joiner_decoder_proj: ort.InferenceSession,
|
|
||||||
encoder_out: np.ndarray,
|
|
||||||
encoder_out_lens: np.ndarray,
|
|
||||||
context_size: int,
|
|
||||||
) -> List[List[int]]:
|
) -> List[List[int]]:
|
||||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||||
Args:
|
Args:
|
||||||
decoder:
|
model:
|
||||||
The decoder model.
|
The transducer model.
|
||||||
joiner:
|
|
||||||
The joiner model.
|
|
||||||
joiner_encoder_proj:
|
|
||||||
The joiner encoder projection model.
|
|
||||||
joiner_decoder_proj:
|
|
||||||
The joiner decoder projection model.
|
|
||||||
encoder_out:
|
encoder_out:
|
||||||
A 3-D tensor of shape (N, T, C)
|
A 3-D tensor of shape (N, T, joiner_dim)
|
||||||
encoder_out_lens:
|
encoder_out_lens:
|
||||||
A 1-D tensor of shape (N,).
|
A 1-D tensor of shape (N,).
|
||||||
context_size:
|
|
||||||
The context size of the decoder model.
|
|
||||||
Returns:
|
Returns:
|
||||||
Return the decoded results for each utterance.
|
Return the decoded results for each utterance.
|
||||||
"""
|
"""
|
||||||
encoder_out = torch.from_numpy(encoder_out)
|
assert encoder_out.ndim == 3, encoder_out.shape
|
||||||
encoder_out_lens = torch.from_numpy(encoder_out_lens)
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||||
|
|
||||||
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
||||||
@ -188,11 +292,6 @@ def greedy_search(
|
|||||||
enforce_sorted=False,
|
enforce_sorted=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
projected_encoder_out = joiner_encoder_proj.run(
|
|
||||||
[joiner_encoder_proj.get_outputs()[0].name],
|
|
||||||
{joiner_encoder_proj.get_inputs()[0].name: packed_encoder_out.data.numpy()},
|
|
||||||
)[0]
|
|
||||||
|
|
||||||
blank_id = 0 # hard-code to 0
|
blank_id = 0 # hard-code to 0
|
||||||
|
|
||||||
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
||||||
@ -201,50 +300,27 @@ def greedy_search(
|
|||||||
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
||||||
assert N == batch_size_list[0], (N, batch_size_list)
|
assert N == batch_size_list[0], (N, batch_size_list)
|
||||||
|
|
||||||
|
context_size = model.context_size
|
||||||
hyps = [[blank_id] * context_size for _ in range(N)]
|
hyps = [[blank_id] * context_size for _ in range(N)]
|
||||||
|
|
||||||
decoder_input_nodes = decoder.get_inputs()
|
|
||||||
decoder_output_nodes = decoder.get_outputs()
|
|
||||||
|
|
||||||
joiner_input_nodes = joiner.get_inputs()
|
|
||||||
joiner_output_nodes = joiner.get_outputs()
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor(
|
||||||
hyps,
|
hyps,
|
||||||
dtype=torch.int64,
|
dtype=torch.int64,
|
||||||
) # (N, context_size)
|
) # (N, context_size)
|
||||||
|
|
||||||
decoder_out = decoder.run(
|
decoder_out = model.run_decoder(decoder_input)
|
||||||
[decoder_output_nodes[0].name],
|
|
||||||
{
|
|
||||||
decoder_input_nodes[0].name: decoder_input.numpy(),
|
|
||||||
},
|
|
||||||
)[0].squeeze(1)
|
|
||||||
projected_decoder_out = joiner_decoder_proj.run(
|
|
||||||
[joiner_decoder_proj.get_outputs()[0].name],
|
|
||||||
{joiner_decoder_proj.get_inputs()[0].name: decoder_out},
|
|
||||||
)[0]
|
|
||||||
|
|
||||||
projected_decoder_out = torch.from_numpy(projected_decoder_out)
|
|
||||||
|
|
||||||
offset = 0
|
offset = 0
|
||||||
for batch_size in batch_size_list:
|
for batch_size in batch_size_list:
|
||||||
start = offset
|
start = offset
|
||||||
end = offset + batch_size
|
end = offset + batch_size
|
||||||
current_encoder_out = projected_encoder_out[start:end]
|
current_encoder_out = packed_encoder_out.data[start:end]
|
||||||
# current_encoder_out's shape: (batch_size, encoder_out_dim)
|
# current_encoder_out's shape: (batch_size, joiner_dim)
|
||||||
offset = end
|
offset = end
|
||||||
|
|
||||||
projected_decoder_out = projected_decoder_out[:batch_size]
|
decoder_out = decoder_out[:batch_size]
|
||||||
|
logits = model.run_joiner(current_encoder_out, decoder_out)
|
||||||
|
|
||||||
logits = joiner.run(
|
|
||||||
[joiner_output_nodes[0].name],
|
|
||||||
{
|
|
||||||
joiner_input_nodes[0].name: current_encoder_out,
|
|
||||||
joiner_input_nodes[1].name: projected_decoder_out.numpy(),
|
|
||||||
},
|
|
||||||
)[0]
|
|
||||||
logits = torch.from_numpy(logits).squeeze(1).squeeze(1)
|
|
||||||
# logits'shape (batch_size, vocab_size)
|
# logits'shape (batch_size, vocab_size)
|
||||||
|
|
||||||
assert logits.ndim == 2, logits.shape
|
assert logits.ndim == 2, logits.shape
|
||||||
@ -261,17 +337,7 @@ def greedy_search(
|
|||||||
decoder_input,
|
decoder_input,
|
||||||
dtype=torch.int64,
|
dtype=torch.int64,
|
||||||
)
|
)
|
||||||
decoder_out = decoder.run(
|
decoder_out = model.run_decoder(decoder_input)
|
||||||
[decoder_output_nodes[0].name],
|
|
||||||
{
|
|
||||||
decoder_input_nodes[0].name: decoder_input.numpy(),
|
|
||||||
},
|
|
||||||
)[0].squeeze(1)
|
|
||||||
projected_decoder_out = joiner_decoder_proj.run(
|
|
||||||
[joiner_decoder_proj.get_outputs()[0].name],
|
|
||||||
{joiner_decoder_proj.get_inputs()[0].name: decoder_out},
|
|
||||||
)[0]
|
|
||||||
projected_decoder_out = torch.from_numpy(projected_decoder_out)
|
|
||||||
|
|
||||||
sorted_ans = [h[context_size:] for h in hyps]
|
sorted_ans = [h[context_size:] for h in hyps]
|
||||||
ans = []
|
ans = []
|
||||||
@ -287,39 +353,12 @@ def main():
|
|||||||
parser = get_parser()
|
parser = get_parser()
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
logging.info(vars(args))
|
logging.info(vars(args))
|
||||||
|
model = OnnxModel(
|
||||||
session_opts = ort.SessionOptions()
|
encoder_model_filename=args.encoder_model_filename,
|
||||||
session_opts.inter_op_num_threads = 1
|
decoder_model_filename=args.decoder_model_filename,
|
||||||
session_opts.intra_op_num_threads = 1
|
joiner_model_filename=args.joiner_model_filename,
|
||||||
|
|
||||||
encoder = ort.InferenceSession(
|
|
||||||
args.encoder_model_filename,
|
|
||||||
sess_options=session_opts,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
decoder = ort.InferenceSession(
|
|
||||||
args.decoder_model_filename,
|
|
||||||
sess_options=session_opts,
|
|
||||||
)
|
|
||||||
|
|
||||||
joiner = ort.InferenceSession(
|
|
||||||
args.joiner_model_filename,
|
|
||||||
sess_options=session_opts,
|
|
||||||
)
|
|
||||||
|
|
||||||
joiner_encoder_proj = ort.InferenceSession(
|
|
||||||
args.joiner_encoder_proj_model_filename,
|
|
||||||
sess_options=session_opts,
|
|
||||||
)
|
|
||||||
|
|
||||||
joiner_decoder_proj = ort.InferenceSession(
|
|
||||||
args.joiner_decoder_proj_model_filename,
|
|
||||||
sess_options=session_opts,
|
|
||||||
)
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(args.bpe_model)
|
|
||||||
|
|
||||||
logging.info("Constructing Fbank computer")
|
logging.info("Constructing Fbank computer")
|
||||||
opts = kaldifeat.FbankOptions()
|
opts = kaldifeat.FbankOptions()
|
||||||
opts.device = "cpu"
|
opts.device = "cpu"
|
||||||
@ -347,30 +386,27 @@ def main():
|
|||||||
)
|
)
|
||||||
|
|
||||||
feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64)
|
feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64)
|
||||||
|
encoder_out, encoder_out_lens = model.run_encoder(features, feature_lengths)
|
||||||
encoder_input_nodes = encoder.get_inputs()
|
|
||||||
encoder_out_nodes = encoder.get_outputs()
|
|
||||||
encoder_out, encoder_out_lens = encoder.run(
|
|
||||||
[encoder_out_nodes[0].name, encoder_out_nodes[1].name],
|
|
||||||
{
|
|
||||||
encoder_input_nodes[0].name: features.numpy(),
|
|
||||||
encoder_input_nodes[1].name: feature_lengths.numpy(),
|
|
||||||
},
|
|
||||||
)
|
|
||||||
|
|
||||||
hyps = greedy_search(
|
hyps = greedy_search(
|
||||||
decoder=decoder,
|
model=model,
|
||||||
joiner=joiner,
|
|
||||||
joiner_encoder_proj=joiner_encoder_proj,
|
|
||||||
joiner_decoder_proj=joiner_decoder_proj,
|
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
encoder_out_lens=encoder_out_lens,
|
encoder_out_lens=encoder_out_lens,
|
||||||
context_size=args.context_size,
|
|
||||||
)
|
)
|
||||||
s = "\n"
|
s = "\n"
|
||||||
|
|
||||||
|
symbol_table = k2.SymbolTable.from_file(args.tokens)
|
||||||
|
|
||||||
|
def token_ids_to_words(token_ids: List[int]) -> str:
|
||||||
|
text = ""
|
||||||
|
for i in token_ids:
|
||||||
|
text += symbol_table[i]
|
||||||
|
return text.replace("▁", " ").strip()
|
||||||
|
|
||||||
|
context_size = model.context_size
|
||||||
for filename, hyp in zip(args.sound_files, hyps):
|
for filename, hyp in zip(args.sound_files, hyps):
|
||||||
words = sp.decode(hyp)
|
words = token_ids_to_words(hyp[context_size:])
|
||||||
s += f"{filename}:\n{words}\n\n"
|
s += f"{filename}:\n{words}\n"
|
||||||
logging.info(s)
|
logging.info(s)
|
||||||
|
|
||||||
logging.info("Decoding Done")
|
logging.info("Decoding Done")
|
||||||
|
|||||||
@ -146,7 +146,7 @@ class OnnxEncoder(nn.Module):
|
|||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
encoder:
|
encoder:
|
||||||
A zipformer encoder.
|
A Zipformer encoder.
|
||||||
encoder_proj:
|
encoder_proj:
|
||||||
The projection layer for encoder from the joiner.
|
The projection layer for encoder from the joiner.
|
||||||
"""
|
"""
|
||||||
|
|||||||
@ -76,14 +76,8 @@ from zipformer import stack_states
|
|||||||
|
|
||||||
from icefall import is_module_available
|
from icefall import is_module_available
|
||||||
|
|
||||||
if not is_module_available("onnxruntime"):
|
|
||||||
raise ValueError("Please 'pip install onnxruntime' first.")
|
|
||||||
|
|
||||||
import onnxruntime as ort
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
ort.set_default_logger_severity(3)
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
|
|||||||
@ -333,7 +333,6 @@ class OnnxModel:
|
|||||||
self.joiner.get_inputs()[1].name: decoder_out.numpy(),
|
self.joiner.get_inputs()[1].name: decoder_out.numpy(),
|
||||||
},
|
},
|
||||||
)[0]
|
)[0]
|
||||||
return torch.from_numpy(out)
|
|
||||||
|
|
||||||
return torch.from_numpy(out)
|
return torch.from_numpy(out)
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user