mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Add export-onnx.py
This commit is contained in:
parent
fd1054de75
commit
8d269156a0
@ -1,6 +1,42 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
#
|
#
|
||||||
# Copyright 2023 Xiaomi Corporation
|
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script exports a transducer model from PyTorch to ONNX.
|
||||||
|
|
||||||
|
Export the model to ONNX
|
||||||
|
|
||||||
|
./rnn_lm/export-onnx.py \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir ./rnn_lm/exp
|
||||||
|
|
||||||
|
It will generate the following 4 files inside ./rnn_lm/exp:
|
||||||
|
|
||||||
|
- no-state-epoch-99-avg-1.int8.onnx
|
||||||
|
- no-state-epoch-99-avg-1.int8.onnx
|
||||||
|
- with-state-epoch-99-avg-1.int8.onnx
|
||||||
|
- with-state-epoch-99-avg-1.int8.onnx
|
||||||
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
@ -13,7 +49,12 @@ from model import RnnLmModel
|
|||||||
from onnxruntime.quantization import QuantType, quantize_dynamic
|
from onnxruntime.quantization import QuantType, quantize_dynamic
|
||||||
from train import get_params
|
from train import get_params
|
||||||
|
|
||||||
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
from icefall.utils import AttributeDict, str2bool
|
from icefall.utils import AttributeDict, str2bool
|
||||||
|
|
||||||
|
|
||||||
@ -37,10 +78,6 @@ def add_meta_data(filename: str, meta_data: Dict[str, str]):
|
|||||||
|
|
||||||
# A wrapper for RnnLm model to simpily the C++ calling code
|
# A wrapper for RnnLm model to simpily the C++ calling code
|
||||||
# when exporting the model to ONNX.
|
# when exporting the model to ONNX.
|
||||||
#
|
|
||||||
# TODO(fangjun): The current wrapper works only for non-streaming ASR
|
|
||||||
# since we don't expose the LM state and it is used to score
|
|
||||||
# a complete sentence at once.
|
|
||||||
class RnnLmModelWrapper(torch.nn.Module):
|
class RnnLmModelWrapper(torch.nn.Module):
|
||||||
def __init__(self, model: RnnLmModel, sos_id: int, eos_id: int):
|
def __init__(self, model: RnnLmModel, sos_id: int, eos_id: int):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -91,18 +128,10 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=29,
|
default=20,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help="""It specifies the checkpoint to use for averaging.
|
||||||
"Note: Epoch counts from 0.",
|
Note: Epoch counts from 1.
|
||||||
)
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--avg",
|
|
||||||
type=int,
|
|
||||||
default=5,
|
|
||||||
help="Number of checkpoints to average. Automatically select "
|
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
|
||||||
"'--epoch'. ",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -115,6 +144,35 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="rnn_lm/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--vocab-size",
|
"--vocab-size",
|
||||||
type=int,
|
type=int,
|
||||||
@ -152,15 +210,6 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--exp-dir",
|
|
||||||
type=str,
|
|
||||||
default="rnn_lm/exp",
|
|
||||||
help="""It specifies the directory where all training related
|
|
||||||
files, e.g., checkpoints, log, etc, are saved
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -308,13 +357,15 @@ def main():
|
|||||||
|
|
||||||
model.to(device)
|
model.to(device)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
: params.avg
|
: params.avg
|
||||||
]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg:
|
elif len(filenames) < params.avg:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -323,21 +374,64 @@ def main():
|
|||||||
)
|
)
|
||||||
logging.info(f"averaging {filenames}")
|
logging.info(f"averaging {filenames}")
|
||||||
model.to(device)
|
model.to(device)
|
||||||
model.load_state_dict(
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
average_checkpoints(filenames, device=device), strict=False
|
|
||||||
)
|
|
||||||
elif params.avg == 1:
|
elif params.avg == 1:
|
||||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
else:
|
else:
|
||||||
start = params.epoch - params.avg + 1
|
start = params.epoch - params.avg + 1
|
||||||
filenames = []
|
filenames = []
|
||||||
for i in range(start, params.epoch + 1):
|
for i in range(start, params.epoch + 1):
|
||||||
if i >= 0:
|
if i >= 1:
|
||||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
logging.info(f"averaging {filenames}")
|
logging.info(f"averaging {filenames}")
|
||||||
model.to(device)
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
model.load_state_dict(
|
model.load_state_dict(
|
||||||
average_checkpoints(filenames, device=device), strict=False
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
model.to("cpu")
|
model.to("cpu")
|
||||||
|
|||||||
@ -18,6 +18,7 @@ python3 ./export-onnx.py \
|
|||||||
--exp-dir ./icefall-librispeech-rnn-lm/exp \
|
--exp-dir ./icefall-librispeech-rnn-lm/exp \
|
||||||
--epoch 99 \
|
--epoch 99 \
|
||||||
--avg 1 \
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
--vocab-size 500 \
|
--vocab-size 500 \
|
||||||
--embedding-dim 2048 \
|
--embedding-dim 2048 \
|
||||||
--hidden-dim 2048 \
|
--hidden-dim 2048 \
|
||||||
|
|||||||
4
icefall/rnn_lm/export.py
Normal file → Executable file
4
icefall/rnn_lm/export.py
Normal file → Executable file
@ -1,6 +1,7 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
#
|
#
|
||||||
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang)
|
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Yifan Yang)
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -44,6 +45,7 @@ for how to use the exported models outside of icefall.
|
|||||||
|
|
||||||
./rnn_lm/export.py \
|
./rnn_lm/export.py \
|
||||||
--exp-dir ./rnn_lm/exp \
|
--exp-dir ./rnn_lm/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
--epoch 20 \
|
--epoch 20 \
|
||||||
--avg 10
|
--avg 10
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user