Update utils.py

This commit is contained in:
Mingshuang Luo 2021-09-29 13:11:52 +08:00 committed by GitHub
parent 1c0792796b
commit 8d07ce2185
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,4 +1,5 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
# Mingshuang Luo)
#
# See ../../LICENSE for clarification regarding multiple authors
#
@ -17,6 +18,7 @@
import argparse
import logging
import collections
import os
import subprocess
from collections import defaultdict
@ -29,6 +31,7 @@ import k2
import kaldialign
import torch
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
Pathlike = Union[str, Path]
@ -419,3 +422,73 @@ def write_error_stats(
print(f"{word} {corr} {tot_errs} {ref_count} {hyp_count}", file=f)
return float(tot_err_rate)
class LossRecord(collections.defaultdict):
def __init__(self):
# Passing the type 'int' to the base-class constructor
# makes undefined items default to int() which is zero.
super(LossRecord, self).__init__(int)
def __add__(self, other: 'LossRecord') -> 'LossRecord':
ans = LossRecord()
for k, v in self.items():
ans[k] = v
for k, v in other.items():
ans[k] = ans[k] + v
return ans
def __mul__(self, alpha: float) -> 'LossRecord':
ans = LossRecord()
for k, v in self.items():
ans[k] = v * alpha
return ans
def __str__(self) -> str:
ans = ''
for k, v in self.norm_items():
norm_value = '%.4g' % v
ans += (str(k) + '=' + str(norm_value) + ', ')
frames = str(self['frames'])
ans += 'over ' + frames + ' frames.'
return ans
def norm_items(self) -> List[Tuple[str, float]]:
"""
Returns a list of pairs, like:
[('ctc_loss', 0.1), ('att_loss', 0.07)]
"""
num_frames = self['frames'] if 'frames' in self else 1
ans = []
for k, v in self.items():
if k != 'frames':
norm_value = float(v) / num_frames
ans.append((k, norm_value))
return ans
def reduce(self, device):
"""
Reduce using torch.distributed, which I believe ensures that
all processes get the total.
"""
keys = sorted(self.keys())
s = torch.tensor([ float(self[k]) for k in keys ],
device=device)
dist.all_reduce(s, op=dist.ReduceOp.SUM)
for k, v in zip(keys, s.cpu().tolist()):
self[k] = v
def write_summary(self,
tb_writer: SummaryWriter,
prefix: str,
batch_idx: int) -> None:
"""Add logging information to a TensorBoard writer.
Args:
tb_writer: a TensorBoard writer
prefix: a prefix for the name of the loss, e.g. "train/valid_",
or "train/current_"
batch_idx: The current batch index, used as the x-axis of the plot.
"""
for k, v in self.norm_items():
tb_writer.add_scalar(prefix + k, v, batch_idx)