Add modified beam search in batch mode.

This commit is contained in:
Fangjun Kuang 2022-03-23 15:44:33 +08:00
parent 7fa5860073
commit 8cc5cd81b3
6 changed files with 286 additions and 276 deletions

View File

@ -127,7 +127,7 @@ def get_parser():
parser.add_argument( parser.add_argument(
"--max-sym-per-frame", "--max-sym-per-frame",
type=int, type=int,
default=3, default=1,
help="""Maximum number of symbols per frame. Used only when help="""Maximum number of symbols per frame. Used only when
--method is greedy_search. --method is greedy_search.
""", """,

View File

@ -17,6 +17,7 @@
from dataclasses import dataclass from dataclasses import dataclass
from typing import Dict, List, Optional from typing import Dict, List, Optional
import k2
import torch import torch
from model import Transducer from model import Transducer
@ -385,13 +386,158 @@ def run_joiner(
return log_prob return log_prob
def _get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
"""Return a ragged shape with axes [utt][num_hyps].
Args:
hyps:
len(hyps) == batch_size. It contains the current hypothesis for
each utterance in the batch.
Returns:
Return a ragged shape with 2 axes [utt][num_hyps]. Note that
the shape is on CPU.
"""
num_hyps = [len(h) for h in hyps]
# torch.cumsum() is inclusive sum, so we put a 0 at the beginning
# to get exclusive sum later.
num_hyps.insert(0, 0)
num_hyps = torch.tensor(num_hyps)
row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
ans = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=row_splits[-1].item()
)
return ans
def modified_beam_search( def modified_beam_search(
model: Transducer, model: Transducer,
encoder_out: torch.Tensor, encoder_out: torch.Tensor,
beam: int = 4, beam: int = 4,
) -> List[List[int]]:
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcodded.
Args:
model:
The transducer model.
encoder_out:
Output from the encoder. Its shape is (N, T, C).
beam:
Number of active paths during the beam search.
Returns:
Return a list-of-list of token IDs. ans[i] is the decoding results
for the i-th utterance.
"""
assert encoder_out.ndim == 3, encoder_out.shape
batch_size = encoder_out.size(0)
T = encoder_out.size(1)
blank_id = model.decoder.blank_id
context_size = model.decoder.context_size
device = model.device
B = [HypothesisList() for _ in range(batch_size)]
for i in range(batch_size):
B[i].add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
)
)
encoder_out_len = torch.tensor([1])
decoder_out_len = torch.tensor([1])
for t in range(T):
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
# current_encoder_out's shape is: (batch_size, 1, encoder_out_dim)
hyps_shape = _get_hyps_shape(B).to(device)
A = [list(b) for b in B]
B = [HypothesisList() for _ in range(batch_size)]
ys_log_probs = torch.cat(
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
) # (num_hyps, 1)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
device=device,
dtype=torch.int64,
) # (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
# decoder_output is of shape (num_hyps, 1, decoder_output_dim)
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
# as index, so we use `to(torch.int64)` below.
current_encoder_out = torch.index_select(
current_encoder_out,
dim=0,
index=hyps_shape.row_ids(1).to(torch.int64),
) # (num_hyps, 1, encoder_out_dim)
logits = model.joiner(
current_encoder_out,
decoder_out,
encoder_out_len.expand(decoder_out.size(0)),
decoder_out_len.expand(decoder_out.size(0)),
)
# logits is of shape (num_hyps, vocab_size)
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
log_probs.add_(ys_log_probs)
vocab_size = log_probs.size(-1)
log_probs = log_probs.reshape(-1)
row_splits = hyps_shape.row_splits(1) * vocab_size
log_probs_shape = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=log_probs.numel()
)
ragged_log_probs = k2.RaggedTensor(
shape=log_probs_shape, value=log_probs
)
for i in range(batch_size):
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
topk_token_indexes = (topk_indexes % vocab_size).tolist()
for k in range(len(topk_hyp_indexes)):
hyp_idx = topk_hyp_indexes[k]
hyp = A[i][hyp_idx]
new_ys = hyp.ys[:]
new_token = topk_token_indexes[k]
if new_token != blank_id:
new_ys.append(new_token)
new_log_prob = topk_log_probs[k]
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
B[i].add(new_hyp)
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
ans = [h.ys[context_size:] for h in best_hyps]
return ans
def _deprecated_modified_beam_search(
model: Transducer,
encoder_out: torch.Tensor,
beam: int = 4,
) -> List[int]: ) -> List[int]:
"""It limits the maximum number of symbols per frame to 1. """It limits the maximum number of symbols per frame to 1.
It decodes only one utterance at a time. We keep it only for reference.
The function :func:`modified_beam_search` should be preferred as it
supports batch decoding.
Args: Args:
model: model:
An instance of `Transducer`. An instance of `Transducer`.

View File

@ -198,6 +198,12 @@ def decode_one_batch(
model=model, model=model,
encoder_out=encoder_out, encoder_out=encoder_out,
) )
elif params.decoding_method == "modified_beam_search":
hyp_list = modified_beam_search(
model=model,
encoder_out=encoder_out,
beam=params.beam_size,
)
else: else:
batch_size = encoder_out.size(0) batch_size = encoder_out.size(0)
for i in range(batch_size): for i in range(batch_size):
@ -216,12 +222,6 @@ def decode_one_batch(
encoder_out=encoder_out_i, encoder_out=encoder_out_i,
beam=params.beam_size, beam=params.beam_size,
) )
elif params.decoding_method == "modified_beam_search":
hyp = modified_beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else: else:
raise ValueError( raise ValueError(
f"Unsupported decoding method: {params.decoding_method}" f"Unsupported decoding method: {params.decoding_method}"

View File

@ -61,14 +61,15 @@ import sentencepiece as spm
import torch import torch
import torch.nn as nn import torch.nn as nn
import torchaudio import torchaudio
from beam_search import beam_search, greedy_search, modified_beam_search from beam_search import (
from conformer import Conformer beam_search,
from decoder import Decoder greedy_search,
from joiner import Joiner greedy_search_batch,
from model import Transducer modified_beam_search,
)
from torch.nn.utils.rnn import pad_sequence from torch.nn.utils.rnn import pad_sequence
from train import get_params, get_transducer_model
from icefall.env import get_env_info
from icefall.utils import AttributeDict from icefall.utils import AttributeDict
@ -115,6 +116,13 @@ def get_parser():
"The sample rate has to be 16kHz.", "The sample rate has to be 16kHz.",
) )
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument( parser.add_argument(
"--beam-size", "--beam-size",
type=int, type=int,
@ -132,7 +140,7 @@ def get_parser():
parser.add_argument( parser.add_argument(
"--max-sym-per-frame", "--max-sym-per-frame",
type=int, type=int,
default=3, default=1,
help="""Maximum number of symbols per frame. Used only when help="""Maximum number of symbols per frame. Used only when
--method is greedy_search. --method is greedy_search.
""", """,
@ -141,70 +149,6 @@ def get_parser():
return parser return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
"sample_rate": 16000,
# parameters for conformer
"feature_dim": 80,
"encoder_out_dim": 512,
"subsampling_factor": 4,
"attention_dim": 512,
"nhead": 8,
"dim_feedforward": 2048,
"num_encoder_layers": 12,
"vgg_frontend": False,
"env_info": get_env_info(),
}
)
return params
def get_encoder_model(params: AttributeDict) -> nn.Module:
encoder = Conformer(
num_features=params.feature_dim,
output_dim=params.encoder_out_dim,
subsampling_factor=params.subsampling_factor,
d_model=params.attention_dim,
nhead=params.nhead,
dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers,
vgg_frontend=params.vgg_frontend,
)
return encoder
def get_decoder_model(params: AttributeDict) -> nn.Module:
decoder = Decoder(
vocab_size=params.vocab_size,
embedding_dim=params.encoder_out_dim,
blank_id=params.blank_id,
context_size=params.context_size,
)
return decoder
def get_joiner_model(params: AttributeDict) -> nn.Module:
joiner = Joiner(
input_dim=params.encoder_out_dim,
output_dim=params.vocab_size,
)
return joiner
def get_transducer_model(params: AttributeDict) -> nn.Module:
encoder = get_encoder_model(params)
decoder = get_decoder_model(params)
joiner = get_joiner_model(params)
model = Transducer(
encoder=encoder,
decoder=decoder,
joiner=joiner,
)
return model
def read_sound_files( def read_sound_files(
filenames: List[str], expected_sample_rate: float filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]: ) -> List[torch.Tensor]:
@ -294,11 +238,23 @@ def main():
) )
num_waves = encoder_out.size(0) num_waves = encoder_out.size(0)
hyps = [] hyp_list = []
msg = f"Using {params.method}" msg = f"Using {params.method}"
if params.method == "beam_search": if params.method == "beam_search":
msg += f" with beam size {params.beam_size}" msg += f" with beam size {params.beam_size}"
logging.info(msg) logging.info(msg)
if params.method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_list = greedy_search_batch(
model=model,
encoder_out=encoder_out,
)
elif params.method == "modified_beam_search":
hyp_list = modified_beam_search(
model=model,
encoder_out=encoder_out,
beam=params.beam_size,
)
for i in range(num_waves): for i in range(num_waves):
# fmt: off # fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
@ -313,14 +269,11 @@ def main():
hyp = beam_search( hyp = beam_search(
model=model, encoder_out=encoder_out_i, beam=params.beam_size model=model, encoder_out=encoder_out_i, beam=params.beam_size
) )
elif params.method == "modified_beam_search":
hyp = modified_beam_search(
model=model, encoder_out=encoder_out_i, beam=params.beam_size
)
else: else:
raise ValueError(f"Unsupported method: {params.method}") raise ValueError(f"Unsupported method: {params.method}")
hyp_list.append(hyp)
hyps.append(sp.decode(hyp).split()) hyps = [sp.decode(hyp).split() for hyp in hyp_list]
s = "\n" s = "\n"
for filename, hyp in zip(params.sound_files, hyps): for filename, hyp in zip(params.sound_files, hyps):

View File

@ -46,15 +46,16 @@ import sentencepiece as spm
import torch import torch
import torch.nn as nn import torch.nn as nn
from asr_datamodule import AsrDataModule from asr_datamodule import AsrDataModule
from beam_search import beam_search, greedy_search, modified_beam_search from beam_search import (
from conformer import Conformer beam_search,
from decoder import Decoder greedy_search,
from joiner import Joiner greedy_search_batch,
modified_beam_search,
)
from librispeech import LibriSpeech from librispeech import LibriSpeech
from model import Transducer from train import get_params, get_transducer_model
from icefall.checkpoint import average_checkpoints, load_checkpoint from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.env import get_env_info
from icefall.utils import ( from icefall.utils import (
AttributeDict, AttributeDict,
setup_logger, setup_logger,
@ -127,7 +128,7 @@ def get_parser():
parser.add_argument( parser.add_argument(
"--max-sym-per-frame", "--max-sym-per-frame",
type=int, type=int,
default=3, default=1,
help="""Maximum number of symbols per frame. help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""", Used only when --decoding_method is greedy_search""",
) )
@ -135,71 +136,6 @@ def get_parser():
return parser return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
# parameters for conformer
"feature_dim": 80,
"encoder_out_dim": 512,
"subsampling_factor": 4,
"attention_dim": 512,
"nhead": 8,
"dim_feedforward": 2048,
"num_encoder_layers": 12,
"vgg_frontend": False,
"env_info": get_env_info(),
}
)
return params
def get_encoder_model(params: AttributeDict):
# TODO: We can add an option to switch between Conformer and Transformer
encoder = Conformer(
num_features=params.feature_dim,
output_dim=params.encoder_out_dim,
subsampling_factor=params.subsampling_factor,
d_model=params.attention_dim,
nhead=params.nhead,
dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers,
vgg_frontend=params.vgg_frontend,
)
return encoder
def get_decoder_model(params: AttributeDict):
decoder = Decoder(
vocab_size=params.vocab_size,
embedding_dim=params.encoder_out_dim,
blank_id=params.blank_id,
context_size=params.context_size,
)
return decoder
def get_joiner_model(params: AttributeDict):
joiner = Joiner(
input_dim=params.encoder_out_dim,
output_dim=params.vocab_size,
)
return joiner
def get_transducer_model(params: AttributeDict):
encoder = get_encoder_model(params)
decoder = get_decoder_model(params)
joiner = get_joiner_model(params)
model = Transducer(
encoder=encoder,
decoder=decoder,
joiner=joiner,
)
return model
def decode_one_batch( def decode_one_batch(
params: AttributeDict, params: AttributeDict,
model: nn.Module, model: nn.Module,
@ -244,32 +180,53 @@ def decode_one_batch(
encoder_out, encoder_out_lens = model.encoder( encoder_out, encoder_out_lens = model.encoder(
x=feature, x_lens=feature_lens x=feature, x_lens=feature_lens
) )
hyps = [] hyp_list = []
batch_size = encoder_out.size(0) batch_size = encoder_out.size(0)
for i in range(batch_size): if (
# fmt: off params.decoding_method == "greedy_search"
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] and params.max_sym_per_frame == 1
# fmt: on ):
if params.decoding_method == "greedy_search": hyp_list = greedy_search_batch(
hyp = greedy_search( model=model,
model=model, encoder_out=encoder_out,
encoder_out=encoder_out_i, )
max_sym_per_frame=params.max_sym_per_frame, elif params.decoding_method == "modified_beam_search":
) hyp_list = modified_beam_search(
elif params.decoding_method == "beam_search": model=model,
hyp = beam_search( encoder_out=encoder_out,
model=model, encoder_out=encoder_out_i, beam=params.beam_size beam=params.beam_size,
) )
elif params.decoding_method == "modified_beam_search": else:
hyp = modified_beam_search( for i in range(batch_size):
model=model, encoder_out=encoder_out_i, beam=params.beam_size # fmt: off
) encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
else: # fmt: on
raise ValueError( if params.decoding_method == "greedy_search":
f"Unsupported decoding method: {params.decoding_method}" hyp = greedy_search(
) model=model,
hyps.append(sp.decode(hyp).split()) encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
elif params.decoding_method == "modified_beam_search":
hyp = modified_beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyp_list.append(sp.decode(hyp).split())
hyps = [sp.decode(hyp).split() for hyp in hyp_list]
if params.decoding_method == "greedy_search": if params.decoding_method == "greedy_search":
return {"greedy_search": hyps} return {"greedy_search": hyps}
@ -483,8 +440,5 @@ def main():
logging.info("Done!") logging.info("Done!")
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -61,14 +61,15 @@ import sentencepiece as spm
import torch import torch
import torch.nn as nn import torch.nn as nn
import torchaudio import torchaudio
from beam_search import beam_search, greedy_search, modified_beam_search from beam_search import (
from conformer import Conformer beam_search,
from decoder import Decoder greedy_search,
from joiner import Joiner greedy_search_batch,
from model import Transducer modified_beam_search,
)
from torch.nn.utils.rnn import pad_sequence from torch.nn.utils.rnn import pad_sequence
from train import get_params, get_transducer_model
from icefall.env import get_env_info
from icefall.utils import AttributeDict from icefall.utils import AttributeDict
@ -115,6 +116,13 @@ def get_parser():
"The sample rate has to be 16kHz.", "The sample rate has to be 16kHz.",
) )
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument( parser.add_argument(
"--beam-size", "--beam-size",
type=int, type=int,
@ -132,7 +140,7 @@ def get_parser():
parser.add_argument( parser.add_argument(
"--max-sym-per-frame", "--max-sym-per-frame",
type=int, type=int,
default=3, default=1,
help="""Maximum number of symbols per frame. Used only when help="""Maximum number of symbols per frame. Used only when
--method is greedy_search. --method is greedy_search.
""", """,
@ -141,70 +149,6 @@ def get_parser():
return parser return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
"sample_rate": 16000,
# parameters for conformer
"feature_dim": 80,
"encoder_out_dim": 512,
"subsampling_factor": 4,
"attention_dim": 512,
"nhead": 8,
"dim_feedforward": 2048,
"num_encoder_layers": 12,
"vgg_frontend": False,
"env_info": get_env_info(),
}
)
return params
def get_encoder_model(params: AttributeDict) -> nn.Module:
encoder = Conformer(
num_features=params.feature_dim,
output_dim=params.encoder_out_dim,
subsampling_factor=params.subsampling_factor,
d_model=params.attention_dim,
nhead=params.nhead,
dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers,
vgg_frontend=params.vgg_frontend,
)
return encoder
def get_decoder_model(params: AttributeDict) -> nn.Module:
decoder = Decoder(
vocab_size=params.vocab_size,
embedding_dim=params.encoder_out_dim,
blank_id=params.blank_id,
context_size=params.context_size,
)
return decoder
def get_joiner_model(params: AttributeDict) -> nn.Module:
joiner = Joiner(
input_dim=params.encoder_out_dim,
output_dim=params.vocab_size,
)
return joiner
def get_transducer_model(params: AttributeDict) -> nn.Module:
encoder = get_encoder_model(params)
decoder = get_decoder_model(params)
joiner = get_joiner_model(params)
model = Transducer(
encoder=encoder,
decoder=decoder,
joiner=joiner,
)
return model
def read_sound_files( def read_sound_files(
filenames: List[str], expected_sample_rate: float filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]: ) -> List[torch.Tensor]:
@ -294,33 +238,46 @@ def main():
) )
num_waves = encoder_out.size(0) num_waves = encoder_out.size(0)
hyps = [] hyp_list = []
msg = f"Using {params.method}" msg = f"Using {params.method}"
if params.method == "beam_search": if params.method == "beam_search":
msg += f" with beam size {params.beam_size}" msg += f" with beam size {params.beam_size}"
logging.info(msg) logging.info(msg)
for i in range(num_waves):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.method == "beam_search":
hyp = beam_search(
model=model, encoder_out=encoder_out_i, beam=params.beam_size
)
elif params.method == "modified_beam_search":
hyp = modified_beam_search(
model=model, encoder_out=encoder_out_i, beam=params.beam_size
)
else:
raise ValueError(f"Unsupported method: {params.method}")
hyps.append(sp.decode(hyp).split()) if params.method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_list = greedy_search_batch(
model=model,
encoder_out=encoder_out,
)
elif params.method == "modified_beam_search":
hyp_list = modified_beam_search(
model=model,
encoder_out=encoder_out,
beam=params.beam_size,
)
else:
for i in range(num_waves):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(f"Unsupported method: {params.method}")
hyp_list.append(hyp)
hyps = [sp.decode(hyp).split() for hyp in hyp_list]
s = "\n" s = "\n"
for filename, hyp in zip(params.sound_files, hyps): for filename, hyp in zip(params.sound_files, hyps):