add prepare.sh

This commit is contained in:
yifanyeung 2024-10-30 10:39:05 -07:00
parent 23137c2987
commit 8ca2b2695e
4 changed files with 497 additions and 0 deletions

View File

@ -0,0 +1,289 @@
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import math
import os
from pathlib import Path
from typing import Optional
import fairseq
import joblib
import numpy as np
import torch
from lhotse import CutSet, SupervisionSegment
from lhotse.utils import fastcopy
from tqdm import tqdm
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
class ApplyKmeans(object):
def __init__(self, km_path):
self.km_model = joblib.load(km_path)
self.C_np = self.km_model.cluster_centers_.transpose()
self.Cnorm_np = (self.C_np**2).sum(0, keepdims=True)
self.C = torch.from_numpy(self.C_np)
self.Cnorm = torch.from_numpy(self.Cnorm_np)
if torch.cuda.is_available():
self.C = self.C.cuda()
self.Cnorm = self.Cnorm.cuda()
def __call__(self, x):
if isinstance(x, torch.Tensor):
dist = (
x.pow(2).sum(1, keepdim=True) - 2 * torch.matmul(x, self.C) + self.Cnorm
)
return dist.argmin(dim=1).cpu().numpy()
else:
dist = (
(x**2).sum(1, keepdims=True)
- 2 * np.matmul(x, self.C_np)
+ self.Cnorm_np
)
return np.argmin(dist, axis=1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--subset",
type=str,
default="small",
)
parser.add_argument(
"--model-path",
type=str,
default="download/hubert_base_ls960.pt",
)
parser.add_argument(
"--kmeans-model-path",
type=str,
default="download/hubert_base_ls960_L9_km500.bin",
)
parser.add_argument(
"--start",
type=int,
default=0,
help="Process pieces starting from this number (inclusive).",
)
parser.add_argument(
"--stop",
type=int,
default=-1,
help="Stop processing pieces until this number (exclusive).",
)
parser.add_argument(
"--window-duration",
type=float,
default=300.0,
)
parser.add_argument(
"--shift-duration",
type=float,
default=250.0,
)
return parser.parse_args()
@torch.no_grad()
def extract_and_save_one_cuts(
raw_cuts_path,
cuts_path,
model,
apply_kmeans,
do_normalize,
window_duration,
shift_duration,
):
logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)
logging.info("Extracting kmeans")
cuts = []
assert window_duration >= shift_duration
window_size = int(window_duration * 16000)
shift_size = int(shift_duration * 16000)
overlap_size = window_size - shift_size
out_overlap_size = get_out_length(overlap_size)
for cut in tqdm(cut_set):
assert cut.sampling_rate == 16000, f"Sampling rate: {cut.sampling_rate}"
audio = cut.load_audio()
T = audio.shape[1]
start = 0
kmeans = []
while start < T:
real_window_size = min(window_size, T - start)
audio_window = audio[:, start : start + real_window_size]
x = (
torch.from_numpy(audio_window)
.float()
.to(next(model.parameters()).device)
)
if do_normalize:
x = torch.nn.functional.layer_norm(x, x.shape)
feature, _ = model.extract_features(
source=x,
padding_mask=None,
mask=False,
output_layer=9,
)
feature = feature.squeeze(0)
current_kmeans = apply_kmeans(feature).tolist()
if start == 0:
kmeans.extend(current_kmeans)
else:
kmeans.extend(current_kmeans[out_overlap_size:])
if T - start <= window_size:
break
start += shift_size
kmeans = " ".join(map(str, kmeans))
cut_with_kmeans = fastcopy(
cut,
custom={"kmeans": kmeans},
)
cuts.append(cut_with_kmeans)
cuts = CutSet(cuts)
logging.info(f"Saving to {cuts_path}")
cuts.to_file(cuts_path)
def extract_kmeans(args):
assert args.subset in ("small", "medium", "large"), f"{args.subset}"
output_dir = (
f"data/kmeans/{args.subset}_split" if args.subset != "small" else "data/kmeans"
)
output_dir = Path(output_dir)
assert output_dir.exists(), f"{output_dir} does not exist!"
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
prefix = "librilight"
apply_kmeans = ApplyKmeans(args.kmeans_model_path)
model, _, task = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[args.model_path]
)
model = model[0].eval().to(device)
do_normalize = task.cfg.normalize
window_duration = args.window_duration
shift_duration = args.shift_duration
if args.subset == "small":
cuts_path = output_dir / f"{prefix}_cuts_{args.subset}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
return
raw_cuts_path = output_dir / f"{prefix}_cuts_{args.subset}_raw.jsonl.gz"
if not raw_cuts_path.is_file():
logging.info(f"{raw_cuts_path} does not exist - skipping it")
return
extract_and_save_one_cuts(
raw_cuts_path,
cuts_path,
model,
apply_kmeans,
do_normalize,
window_duration,
shift_duration,
)
else:
num_digits = 8 # num_digits is fixed by lhotse split-lazy
start = args.start
stop = args.stop
assert stop > start, "stop must be larger than start!"
for i in range(start, stop):
idx = f"{i}".zfill(num_digits)
logging.info(f"Processing {idx}/{stop - 1}")
cuts_path = output_dir / f"{prefix}_cuts_{args.subset}.{idx}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue
raw_cuts_path = (
output_dir / f"{prefix}_cuts_{args.subset}_raw.{idx}.jsonl.gz"
)
if not raw_cuts_path.is_file():
logging.info(f"{raw_cuts_path} does not exist - skipping it")
continue
extract_and_save_one_cuts(
raw_cuts_path,
cuts_path,
model,
apply_kmeans,
do_normalize,
window_duration,
shift_duration,
)
def get_out_length(T):
conv_layers = [(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512, 2, 2)] * 2
for i, (out_channels, kernel_size, stride) in enumerate(conv_layers):
T = math.floor((T - kernel_size) / stride) + 1
return max(0, T)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
extract_kmeans(args)

View File

@ -0,0 +1,76 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gzip
import json
import re
import sys
from pathlib import Path
from tn.english.normalizer import Normalizer as EnNormalizer
from icefall.utils import str2bool
class TextNormlizer:
def __init__(self):
self.en_tn_model = EnNormalizer()
def __call__(self, text):
# brackets
# Always text inside brackets with numbers in them. Usually corresponds to "(Sam 23:17)"
text = re.sub(r"\([^\)]*\d[^\)]*\)", " ", text)
if remove_brackets:
text = re.sub(r"\([^\)]*\)", " ", text)
# Apply mappings
table = str.maketrans("’‘,。;?!():-《》、“”【】", "'',.;?!(): <>/\"\"[]")
text = text.translate(table)
# Remove extra spaces
text = re.sub(r"\s+", " ", text).strip()
normalized_text = re.sub(r"\s+", " ", normalized_text).strip()
text = self.en_tn_model.normalize(text)
return text.strip()
# Assign text of the supervisions and remove unnecessary entries.
def main():
assert (
len(sys.argv) == 4
), "Usage: ./local/prepare_manifest.py INPUT OUTPUT_DIR KEEP_CUSTOM_FIELDS"
fname = Path(sys.argv[1]).name
oname = Path(sys.argv[2]) / fname
keep_custom_fields = str2bool(sys.argv[3])
tn = TextNormlizer()
with gzip.open(sys.argv[1], "r") as fin, gzip.open(oname, "w") as fout:
for line in fin:
cut = json.loads(line)
cut["supervisions"][0]["text"] = tn(
cut["supervisions"][0]["custom"]["texts"][0]
)
if not keep_custom_fields:
del cut["supervisions"][0]["custom"]
del cut["custom"]
fout.write((json.dumps(cut) + "\n").encode())
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../libriheavy/ASR/local/train_bpe_model.py

131
egs/libriheavy/TTS/prepare.sh Normal file → Executable file
View File

@ -0,0 +1,131 @@
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/librilight
# You can find small, medium, large, etc. inside it.
#
# - $dl_dir/libriheavy
# You can find libriheavy_cuts_small.jsonl.gz, libriheavy_cuts_medium.jsonl.gz, etc. inside it.
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
4000
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
tokens_dir=data/tokens
manifests_dir=data/manifests
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download audio data."
# If you have pre-downloaded it to /path/to/librilight,
# you can create a symlink
#
# ln -sfv /path/to/librilight $dl_dir/librilight
#
mkdir -p $dl_dir/librilight
for subset in small medium large; do
log "Downloading ${subset} subset."
if [ ! -d $dl_dir/librilight/${subset} ]; then
wget -P $dl_dir/librilight -c https://dl.fbaipublicfiles.com/librilight/data/${subset}.tar
tar xf $dl_dir/librilight/${subset}.tar -C $dl_dir/librilight
else
log "Skipping download, ${subset} subset exists."
fi
done
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download manifests from huggingface."
# If you have pre-downloaded it to /path/to/libriheavy,
# you can create a symlink
#
# ln -sfv /path/to/libriheavy $dl_dir/libriheavy
#
mkdir -p $dl_dir/libriheavy
for subset in small medium large dev test_clean test_other; do
if [ ! -e $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz ]; then
log "Downloading ${subset} subset."
wget -P $dl_dir/libriheavy -c https://huggingface.co/datasets/pkufool/libriheavy/resolve/main/libriheavy_cuts_${subset}.jsonl.gz
else
log "Skipping download, ${subset} subset exists."
fi
done
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare Libriheavy manifests"
mkdir -p $manifests_dir
for subset in small medium large dev test_clean test_other; do
if [ ! -e $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then
log "Prepare manifest for subset : ${subset}"
./local/prepare_manifest.py $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz $manifests_dir False
fi
done
fi
num_per_split=200000
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Split medium and large subsets."
for subset in medium large; do
log "Spliting subset : $subset"
split_dir=$manifests_dir/libriheavy_${subset}_split
mkdir -p $split_dir
if [ ! -e $split_dir/.split_completed ]; then
lhotse split-lazy $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz $split_dir $num_per_split
touch $split_dir/.split_completed
fi
done
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Train BPE model for unnormalized text"
if [ ! -f data/punc_texts ]; then
gunzip -c $manifests_dir/libriheavy_cuts_medium.jsonl.gz \
| jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' > data/punc_texts
fi
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_punc_bpe_${vocab_size}
mkdir -p $lang_dir
cp data/punc_texts $lang_dir/text
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--byte-fallback \
--vocab-size ${vocab_size} \
--byte-fallback \
--character-coverage 0.99 \
--transcript $lang_dir/text
fi
done
fi