mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 22:54:18 +00:00
Update docs of arguments.
This commit is contained in:
parent
87b4619f12
commit
8be385f3bd
@ -6,12 +6,12 @@ from torch import Tensor, nn
|
||||
|
||||
|
||||
class TensorDiagnosticOptions(object):
|
||||
"""
|
||||
Options object for tensor diagnostics:
|
||||
"""Options object for tensor diagnostics:
|
||||
|
||||
Args:
|
||||
memory_limit: the maximum number of bytes per tensor (limits how many
|
||||
copies of the tensor we cache).
|
||||
memory_limit:
|
||||
The maximum number of bytes per tensor (limits how many copies
|
||||
of the tensor we cache).
|
||||
"""
|
||||
|
||||
def __init__(self, memory_limit: int):
|
||||
@ -24,22 +24,24 @@ class TensorDiagnosticOptions(object):
|
||||
def get_sum_abs_stats(
|
||||
x: Tensor, dim: int, stats_type: str
|
||||
) -> Tuple[Tensor, int]:
|
||||
"""
|
||||
Returns the sum-of-absolute-value of this Tensor, for each index into
|
||||
"""Returns the sum-of-absolute-value of this Tensor, for each index into
|
||||
the specified axis/dim of the tensor.
|
||||
|
||||
Args:
|
||||
x: Tensor, tensor to be analyzed
|
||||
dim: dimension with 0 <= dim < x.ndim
|
||||
stats_type: either "mean-abs" in which case the stats represent the
|
||||
mean absolute value, or "pos-ratio" in which case the stats represent
|
||||
the proportion of positive values (actually: the tensor is count of
|
||||
positive values, count is the count of all values).
|
||||
x:
|
||||
Tensor, tensor to be analyzed
|
||||
dim:
|
||||
Dimension with 0 <= dim < x.ndim
|
||||
stats_type:
|
||||
Either "mean-abs" in which case the stats represent the mean absolute
|
||||
value, or "pos-ratio" in which case the stats represent the proportion
|
||||
of positive values (actually: the tensor is count of positive values,
|
||||
count is the count of all values).
|
||||
|
||||
Returns (sum_abs, count):
|
||||
where sum_abs is a Tensor of shape (x.shape[dim],), and the count
|
||||
is an integer saying how many items were counted in each element
|
||||
of sum_abs.
|
||||
Returns:
|
||||
(sum_abs, count) where sum_abs is a Tensor of shape (x.shape[dim],),
|
||||
and the count is an integer saying how many items were counted in
|
||||
each element of sum_abs.
|
||||
"""
|
||||
if stats_type == "mean-abs":
|
||||
x = x.abs()
|
||||
@ -63,21 +65,24 @@ def get_diagnostics_for_dim(
|
||||
sizes_same: bool,
|
||||
stats_type: str,
|
||||
) -> str:
|
||||
"""
|
||||
This function gets diagnostics for a dimension of a module.
|
||||
"""This function gets diagnostics for a dimension of a module.
|
||||
|
||||
Args:
|
||||
dim: the dimension to analyze, with 0 <= dim < tensors[0].ndim
|
||||
tensors: list of cached tensors to get the stats
|
||||
options: options object
|
||||
sizes_same: true if all the tensor sizes are the same on this dimension
|
||||
dim:
|
||||
The dimension to analyze, with 0 <= dim < tensors[0].ndim
|
||||
tensors:
|
||||
List of cached tensors to get the stats
|
||||
options:
|
||||
Options object
|
||||
sizes_same:
|
||||
True if all the tensor sizes are the same on this dimension
|
||||
stats_type: either "mean-abs" or "pos-ratio", dictates the type of
|
||||
stats we accumulate, mean-abs is mean absolute value, "pos-ratio" is
|
||||
proportion of positive to nonnegative values.
|
||||
|
||||
Returns:
|
||||
Diagnostic as a string, either percentiles or the actual values,
|
||||
see the code.
|
||||
Diagnostic as a string, either percentiles or the actual values,
|
||||
see the code.
|
||||
"""
|
||||
|
||||
# stats_and_counts is a list of pair (Tensor, int)
|
||||
@ -92,11 +97,11 @@ def get_diagnostics_for_dim(
|
||||
stats = [x[0] / x[1] for x in stats_and_counts]
|
||||
stats = torch.cat(stats, dim=0)
|
||||
|
||||
# if `summarize` we print percentiles of the stats; else,
|
||||
# we print out individual elements.
|
||||
# If `summarize` we print percentiles of the stats;
|
||||
# else, we print out individual elements.
|
||||
summarize = (not sizes_same) or options.dim_is_summarized(stats.numel())
|
||||
if summarize:
|
||||
# print out percentiles.
|
||||
# Print out percentiles.
|
||||
stats = stats.sort()[0]
|
||||
num_percentiles = 10
|
||||
size = stats.numel()
|
||||
@ -117,14 +122,17 @@ def get_diagnostics_for_dim(
|
||||
def print_diagnostics_for_dim(
|
||||
name: str, dim: int, tensors: List[Tensor], options: TensorDiagnosticOptions
|
||||
):
|
||||
"""
|
||||
This function prints diagnostics for a dimension of a tensor.
|
||||
"""This function prints diagnostics for a dimension of a tensor.
|
||||
|
||||
Args:
|
||||
name: the tensor name
|
||||
dim: the dimension to analyze, with 0 <= dim < tensors[0].ndim
|
||||
tensors: list of cached tensors to get the stats
|
||||
options: options object
|
||||
name:
|
||||
The tensor name.
|
||||
dim:
|
||||
The dimension to analyze, with 0 <= dim < tensors[0].ndim.
|
||||
tensors:
|
||||
List of cached tensors to get the stats.
|
||||
options:
|
||||
Options object.
|
||||
"""
|
||||
|
||||
for stats_type in ["mean-abs", "pos-ratio"]:
|
||||
@ -142,19 +150,20 @@ def print_diagnostics_for_dim(
|
||||
|
||||
|
||||
class TensorDiagnostic(object):
|
||||
"""
|
||||
This class is not directly used by the user, it is responsible for
|
||||
"""This class is not directly used by the user, it is responsible for
|
||||
collecting diagnostics for a single parameter tensor of a torch.nn.Module.
|
||||
|
||||
Attributes:
|
||||
opts: options object.
|
||||
name: tensor name.
|
||||
saved_tensors: list of cached tensors.
|
||||
Args:
|
||||
opts:
|
||||
Options object.
|
||||
name:
|
||||
The tensor name.
|
||||
"""
|
||||
|
||||
def __init__(self, opts: TensorDiagnosticOptions, name: str):
|
||||
self.name = name
|
||||
self.opts = opts
|
||||
# A list to cache the tensors.
|
||||
self.saved_tensors = []
|
||||
|
||||
def accumulate(self, x):
|
||||
@ -195,7 +204,7 @@ class TensorDiagnostic(object):
|
||||
return
|
||||
|
||||
if self.saved_tensors[0].ndim == 0:
|
||||
# ensure there is at least one dim.
|
||||
# Ensure there is at least one dim.
|
||||
self.saved_tensors = [x.unsqueeze(0) for x in self.saved_tensors]
|
||||
|
||||
ndim = self.saved_tensors[0].ndim
|
||||
@ -206,16 +215,16 @@ class TensorDiagnostic(object):
|
||||
|
||||
|
||||
class ModelDiagnostic(object):
|
||||
"""
|
||||
This class stores diagnostics for all tensors in the torch.nn.Module.
|
||||
"""This class stores diagnostics for all tensors in the torch.nn.Module.
|
||||
|
||||
Attributes:
|
||||
diagnostics: a dictionary, whose keys are the tensors names and
|
||||
the values are corresponding TensorDiagnostic objects.
|
||||
opts: options object.
|
||||
Args:
|
||||
opts:
|
||||
Options object.
|
||||
"""
|
||||
|
||||
def __init__(self, opts: TensorDiagnosticOptions):
|
||||
# In this dictionary, the keys are tensors names and the values
|
||||
# are corresponding TensorDiagnostic objects.
|
||||
self.diagnostics = dict()
|
||||
self.opts = opts
|
||||
|
||||
@ -233,19 +242,20 @@ class ModelDiagnostic(object):
|
||||
def attach_diagnostics(
|
||||
model: nn.Module, opts: TensorDiagnosticOptions
|
||||
) -> ModelDiagnostic:
|
||||
"""
|
||||
Attach a ModelDiagnostic object to the model by
|
||||
"""Attach a ModelDiagnostic object to the model by
|
||||
1) registering forward hook and backward hook on each module, to accumulate
|
||||
its output tensors and gradient tensors, respectively;
|
||||
2) registering backward hook on each module parameter, to accumulate its
|
||||
values and gradients.
|
||||
|
||||
Args:
|
||||
model: the model to be analyzed.
|
||||
opts: options object.
|
||||
model:
|
||||
the model to be analyzed.
|
||||
opts:
|
||||
Options object.
|
||||
|
||||
Returns:
|
||||
The ModelDiagnostic object attached to the model.
|
||||
The ModelDiagnostic object attached to the model.
|
||||
"""
|
||||
|
||||
ans = ModelDiagnostic(opts)
|
||||
@ -253,10 +263,10 @@ def attach_diagnostics(
|
||||
if name == "":
|
||||
name = "<top-level>"
|
||||
|
||||
# setting model_diagnostic=ans and n=name below, instead of trying to
|
||||
# Setting model_diagnostic=ans and n=name below, instead of trying to
|
||||
# capture the variables, ensures that we use the current values.
|
||||
# (matters for name, since the variable gets overwritten).
|
||||
# these closures don't really capture by value, only by
|
||||
# These closures don't really capture by value, only by
|
||||
# "the final value the variable got in the function" :-(
|
||||
def forward_hook(
|
||||
_module, _input, _output, _model_diagnostic=ans, _name=name
|
||||
|
Loading…
x
Reference in New Issue
Block a user