diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train_adapter.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train_adapter.py.swp index 15e53574e..1e53d130d 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train_adapter.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train_adapter.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train_adapter.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train_adapter.py index 9c5bd69a6..c51e753c7 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train_adapter.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train_adapter.py @@ -835,7 +835,10 @@ def compute_loss( #texts = batch["supervisions"]["text"] texts = [] - for utt_id in + for utt_id in batch["id"]: + print(utt_id) + print(pl_texts[utt_id]) + texts.append(pl_texts[utt_id]) token_ids = sp.encode(texts, out_type=int) y = k2.RaggedTensor(token_ids).to(device)