diff --git a/egs/librispeech/ASR/transducer_stateless/decode.py b/egs/librispeech/ASR/transducer_stateless/decode.py index d51af397a..82175e8db 100755 --- a/egs/librispeech/ASR/transducer_stateless/decode.py +++ b/egs/librispeech/ASR/transducer_stateless/decode.py @@ -24,15 +24,15 @@ Usage: --exp-dir ./transducer_stateless/exp \ --max-duration 100 \ --decoding-method greedy_search -(2) beam search +(2) beam search ./transducer_stateless/decode.py \ --epoch 14 \ --avg 7 \ --exp-dir ./transducer_stateless/exp \ --max-duration 100 \ --decoding-method beam_search \ - --beam-size 8 + --beam-size 4 """ @@ -70,14 +70,14 @@ def get_parser(): parser.add_argument( "--epoch", type=int, - default=77, + default=20, help="It specifies the checkpoint to use for decoding." "Note: Epoch counts from 0.", ) parser.add_argument( "--avg", type=int, - default=55, + default=10, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch'. ", @@ -110,7 +110,7 @@ def get_parser(): parser.add_argument( "--beam-size", type=int, - default=5, + default=4, help="Used only when --decoding-method is beam_search", ) @@ -132,7 +132,6 @@ def get_params() -> AttributeDict: "use_feat_batchnorm": True, # parameters for decoder "context_size": 2, # tri-gram - # decoder params "env_info": get_env_info(), } ) @@ -395,9 +394,8 @@ def main(): sp = spm.SentencePieceProcessor() sp.load(params.bpe_model) - # and are defined in local/train_bpe_model.py + # is defined in local/train_bpe_model.py params.blank_id = sp.piece_to_id("") - params.sos_id = sp.piece_to_id("") params.vocab_size = sp.get_piece_size() logging.info(params) diff --git a/egs/librispeech/ASR/transducer_stateless/export.py b/egs/librispeech/ASR/transducer_stateless/export.py new file mode 100755 index 000000000..a877b5067 --- /dev/null +++ b/egs/librispeech/ASR/transducer_stateless/export.py @@ -0,0 +1,244 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" +Usage: +./transducer_stateless/export.py \ + --exp-dir ./transducer_stateless/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 20 \ + --avg 10 + +It will generate a file exp_dir/pretrained.pt + +To use the generated file with `transducer_stateless/decode.py`, you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/librispeech/ASR + ./transducer_stateless/decode.py \ + --exp-dir ./transducer_stateless/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 1 \ + --bpe-model data/lang_bpe_500/bpe.model +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +import torch +from conformer import Conformer +from decoder import Decoder +from joiner import Joiner +from model import Transducer + +from icefall.checkpoint import average_checkpoints, load_checkpoint +from icefall.env import get_env_info +from icefall.utils import AttributeDict, str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=20, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + + parser.add_argument( + "--avg", + type=int, + default=10, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="transducer_stateless/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--jit", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + """, + ) + + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + # parameters for conformer + "feature_dim": 80, + "encoder_out_dim": 512, + "subsampling_factor": 4, + "attention_dim": 512, + "nhead": 8, + "dim_feedforward": 2048, + "num_encoder_layers": 12, + "vgg_frontend": False, + "use_feat_batchnorm": True, + # parameters for decoder + "context_size": 2, # tri-gram + "env_info": get_env_info(), + } + ) + return params + + +def get_encoder_model(params: AttributeDict): + encoder = Conformer( + num_features=params.feature_dim, + output_dim=params.encoder_out_dim, + subsampling_factor=params.subsampling_factor, + d_model=params.attention_dim, + nhead=params.nhead, + dim_feedforward=params.dim_feedforward, + num_encoder_layers=params.num_encoder_layers, + vgg_frontend=params.vgg_frontend, + use_feat_batchnorm=params.use_feat_batchnorm, + ) + return encoder + + +def get_decoder_model(params: AttributeDict): + decoder = Decoder( + vocab_size=params.vocab_size, + embedding_dim=params.encoder_out_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict): + joiner = Joiner( + input_dim=params.encoder_out_dim, + output_dim=params.vocab_size, + ) + return joiner + + +def get_transducer_model(params: AttributeDict): + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + ) + return model + + +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + assert args.jit is False, "Support torchscript will be added later" + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + model.to(device) + + if params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if start >= 0: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + + model.eval() + + model.to("cpu") + model.eval() + + if params.jit: + logging.info("Using torch.jit.script") + model = torch.jit.script(model) + filename = params.exp_dir / "cpu_jit.pt" + model.save(str(filename)) + logging.info(f"Saved to {filename}") + else: + logging.info("Not using torch.jit.script") + # Save it using a format so that it can be loaded + # by :func:`load_checkpoint` + filename = params.exp_dir / "pretrained.pt" + torch.save({"model": model.state_dict()}, str(filename)) + logging.info(f"Saved to {filename}") + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/transducer_stateless/pretrained.py b/egs/librispeech/ASR/transducer_stateless/pretrained.py new file mode 100755 index 000000000..49efa6749 --- /dev/null +++ b/egs/librispeech/ASR/transducer_stateless/pretrained.py @@ -0,0 +1,307 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +(1) greedy search +./transducer_stateless/pretrained.py \ + --checkpoint ./transducer_stateless/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method greedy_search \ + /path/to/foo.wav \ + /path/to/bar.wav \ + +(1) beam search +./transducer_stateless/pretrained.py \ + --checkpoint ./transducer_stateless/exp/pretrained.pt \ + --bpe-model ./data/lang_bpe_500/bpe.model \ + --method beam_search \ + --beam-size 4 \ + /path/to/foo.wav \ + /path/to/bar.wav \ + +You can also use `./transducer_stateless/exp/epoch-xx.pt`. + +Note: ./transducer_stateless/exp/pretrained.pt is generated by +./transducer_stateless/export.py +""" + + +import argparse +import logging +import math +from typing import List + +import kaldifeat +import sentencepiece as spm +import torch +import torchaudio +from beam_search import beam_search, greedy_search +from conformer import Conformer +from decoder import Decoder +from joiner import Joiner +from model import Transducer +from torch.nn.utils.rnn import pad_sequence + +from icefall.env import get_env_info +from icefall.utils import AttributeDict + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--bpe-model", + type=str, + help="""Path to bpe.model. + Used only when method is ctc-decoding. + """, + ) + + parser.add_argument( + "--method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - beam_search + """, + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="Used only when --method is beam_search", + ) + + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "sample_rate": 16000, + # parameters for conformer + "feature_dim": 80, + "encoder_out_dim": 512, + "subsampling_factor": 4, + "attention_dim": 512, + "nhead": 8, + "dim_feedforward": 2048, + "num_encoder_layers": 12, + "vgg_frontend": False, + "use_feat_batchnorm": True, + # parameters for decoder + "context_size": 2, # tri-gram + "env_info": get_env_info(), + } + ) + return params + + +def get_encoder_model(params: AttributeDict): + encoder = Conformer( + num_features=params.feature_dim, + output_dim=params.encoder_out_dim, + subsampling_factor=params.subsampling_factor, + d_model=params.attention_dim, + nhead=params.nhead, + dim_feedforward=params.dim_feedforward, + num_encoder_layers=params.num_encoder_layers, + vgg_frontend=params.vgg_frontend, + use_feat_batchnorm=params.use_feat_batchnorm, + ) + return encoder + + +def get_decoder_model(params: AttributeDict): + decoder = Decoder( + vocab_size=params.vocab_size, + embedding_dim=params.encoder_out_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict): + joiner = Joiner( + input_dim=params.encoder_out_dim, + output_dim=params.vocab_size, + ) + return joiner + + +def get_transducer_model(params: AttributeDict): + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + ) + return model + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert sample_rate == expected_sample_rate, ( + f"expected sample rate: {expected_sample_rate}. " + f"Given: {sample_rate}" + ) + # We use only the first channel + ans.append(wave[0]) + return ans + + +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + + params.update(vars(args)) + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = get_transducer_model(params) + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"], strict=False) + model.to(device) + model.eval() + model.device = device + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + feature_lengths = [f.size(0) for f in features] + + features = pad_sequence( + features, batch_first=True, padding_value=math.log(1e-10) + ) + + feature_lengths = torch.tensor(feature_lengths, device=device) + + with torch.no_grad(): + encoder_out, encoder_out_lens = model.encoder( + x=features, x_lens=feature_lengths + ) + + num_waves = encoder_out.size(0) + hyps = [] + msg = f"Using {params.method}" + if params.method == "beam_search": + msg += f" with beam size {params.beam_size}" + logging.info(msg) + for i in range(num_waves): + # fmt: off + encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] + # fmt: on + if params.method == "greedy_search": + hyp = greedy_search(model=model, encoder_out=encoder_out_i) + elif params.method == "beam_search": + hyp = beam_search( + model=model, encoder_out=encoder_out_i, beam=params.beam_size + ) + else: + raise ValueError(f"Unsupported method: {params.method}") + + hyps.append(sp.decode(hyp).split()) + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/transducer_stateless/train.py b/egs/librispeech/ASR/transducer_stateless/train.py index 4e0515cbf..a2bf4700c 100755 --- a/egs/librispeech/ASR/transducer_stateless/train.py +++ b/egs/librispeech/ASR/transducer_stateless/train.py @@ -92,7 +92,7 @@ def get_parser(): parser.add_argument( "--num-epochs", type=int, - default=78, + default=30, help="Number of epochs to train.", )