mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Add SmallConvModule; decrease feedforward dims to keep about same num params.
This commit is contained in:
parent
f7c99ed1d1
commit
8a095c1cd1
@ -122,7 +122,7 @@ def add_model_arguments(parser: argparse.ArgumentParser):
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--feedforward-dim",
|
"--feedforward-dim",
|
||||||
type=str,
|
type=str,
|
||||||
default="1536,1536,2048,1536,1536,1536",
|
default="1280,1280,1536,1280,1280,1280",
|
||||||
help="Feedforward dimension of the zipformer encoder layers, per stack, comma separated.",
|
help="Feedforward dimension of the zipformer encoder layers, per stack, comma separated.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
@ -405,6 +405,8 @@ class ZipformerEncoderLayer(nn.Module):
|
|||||||
self.nonlin_attention_module = NonlinAttentionModule(embed_dim)
|
self.nonlin_attention_module = NonlinAttentionModule(embed_dim)
|
||||||
|
|
||||||
|
|
||||||
|
self.small_conv_module = SmallConvolutionModule(embed_dim)
|
||||||
|
|
||||||
self.conv_module = ConvolutionModule(embed_dim,
|
self.conv_module = ConvolutionModule(embed_dim,
|
||||||
cnn_module_kernel)
|
cnn_module_kernel)
|
||||||
|
|
||||||
@ -483,6 +485,10 @@ class ZipformerEncoderLayer(nn.Module):
|
|||||||
src = src + self.nonlin_attention_module(src,
|
src = src + self.nonlin_attention_module(src,
|
||||||
attn_weights[0:1])
|
attn_weights[0:1])
|
||||||
|
|
||||||
|
|
||||||
|
if torch.jit.is_scripting() or random.random() >= dynamic_skip_rate:
|
||||||
|
src = src + self.small_conv_module(src, src_key_padding_mask=src_key_padding_mask)
|
||||||
|
|
||||||
src = src + self.feed_forward1(src)
|
src = src + self.feed_forward1(src)
|
||||||
|
|
||||||
# pooling module
|
# pooling module
|
||||||
@ -1569,6 +1575,80 @@ class ConvolutionModule(nn.Module):
|
|||||||
return x.permute(2, 0, 1)
|
return x.permute(2, 0, 1)
|
||||||
|
|
||||||
|
|
||||||
|
class SmallConvolutionModule(nn.Module):
|
||||||
|
"""Part of Zipformer model: a small version of the Convolution module that uses a small kernel.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
channels (int): The number of channels of conv layers.
|
||||||
|
kernel_size (int): Kernerl size of conv layers.
|
||||||
|
bias (bool): Whether to use bias in conv layers (default=True).
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, channels: int, hidden_dim: int = 256,
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.conv1 = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
hidden_dim,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
padding=1,
|
||||||
|
bias=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.deriv_balancer = ActivationBalancer(
|
||||||
|
hidden_dim, channel_dim=1,
|
||||||
|
min_positive=0.05, max_positive=1.0,
|
||||||
|
max_abs=20.0,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.activation = DoubleSwish()
|
||||||
|
|
||||||
|
self.conv2 = ScaledConv1d(
|
||||||
|
hidden_dim,
|
||||||
|
channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0,
|
||||||
|
bias=True,
|
||||||
|
initial_scale=0.05,
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self,
|
||||||
|
x: Tensor,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tensor:
|
||||||
|
"""Compute convolution module.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input tensor (#time, batch, channels).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional):
|
||||||
|
(batch, #time), contains bool in masked positions.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: Output tensor (#time, batch, channels).
|
||||||
|
|
||||||
|
"""
|
||||||
|
# exchange the temporal dimension and the feature dimension
|
||||||
|
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
||||||
|
|
||||||
|
x = self.conv1(x) # (batch, hidden_dim, time)
|
||||||
|
|
||||||
|
x = self.deriv_balancer(x)
|
||||||
|
x = self.activation(x)
|
||||||
|
|
||||||
|
if src_key_padding_mask is not None:
|
||||||
|
x.masked_fill_(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0)
|
||||||
|
|
||||||
|
x = self.conv2(x)
|
||||||
|
|
||||||
|
return x.permute(2, 0, 1)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class Conv2dSubsampling(nn.Module):
|
class Conv2dSubsampling(nn.Module):
|
||||||
"""Convolutional 2D subsampling (to 1/2 length).
|
"""Convolutional 2D subsampling (to 1/2 length).
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user