mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
show dominant parameters
This commit is contained in:
parent
e5d942696a
commit
89c3982a07
@ -42,7 +42,7 @@ class BatchedOptimizer(Optimizer):
|
|||||||
super(BatchedOptimizer, self).__init__(params, defaults)
|
super(BatchedOptimizer, self).__init__(params, defaults)
|
||||||
|
|
||||||
@contextlib.contextmanager
|
@contextlib.contextmanager
|
||||||
def batched_params(self, param_group):
|
def batched_params(self, param_group, group_params_names=None):
|
||||||
"""
|
"""
|
||||||
This function returns (technically, yields) a list of
|
This function returns (technically, yields) a list of
|
||||||
of tuples (p, state), where
|
of tuples (p, state), where
|
||||||
@ -75,20 +75,28 @@ class BatchedOptimizer(Optimizer):
|
|||||||
batches = defaultdict(
|
batches = defaultdict(
|
||||||
list
|
list
|
||||||
) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
|
) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
|
||||||
|
batches_names = defaultdict(
|
||||||
|
list
|
||||||
|
) # `batches` maps from tuple (dtype_as_str,*shape) to list of str
|
||||||
|
|
||||||
for p in param_group:
|
for p, named_p in zip(param_group, group_params_names):
|
||||||
key = (str(p.dtype), *p.shape)
|
key = (str(p.dtype), *p.shape)
|
||||||
batches[key].append(p)
|
batches[key].append(p)
|
||||||
|
batches_names[key].append(named_p)
|
||||||
|
|
||||||
|
batches_names_keys = list(batches_names.keys())
|
||||||
|
sorted_idx = sorted(range(len(batches_names)), key=lambda i: batches_names_keys[i])
|
||||||
|
batches_names = [batches_names[batches_names_keys[idx]] for idx in sorted_idx]
|
||||||
|
batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
|
||||||
|
|
||||||
stacked_params_dict = dict()
|
stacked_params_dict = dict()
|
||||||
|
|
||||||
# turn batches into a list, in deterministic order.
|
# turn batches into a list, in deterministic order.
|
||||||
batches = [batches[key] for key in sorted(batches.keys())]
|
|
||||||
# pairs will contain pairs of (stacked_param, state), one for each batch
|
# pairs will contain pairs of (stacked_param, state), one for each batch
|
||||||
# in `batches`.
|
# in `batches`.
|
||||||
pairs = []
|
pairs = []
|
||||||
|
|
||||||
for batch in batches:
|
for batch, batch_names in zip(batches, batches_names):
|
||||||
p = batch[0]
|
p = batch[0]
|
||||||
# we arbitrarily store the state in the
|
# we arbitrarily store the state in the
|
||||||
# state corresponding to the 1st parameter in the
|
# state corresponding to the 1st parameter in the
|
||||||
@ -100,11 +108,11 @@ class BatchedOptimizer(Optimizer):
|
|||||||
)
|
)
|
||||||
p_stacked.grad = grad
|
p_stacked.grad = grad
|
||||||
stacked_params_dict[key] = p_stacked
|
stacked_params_dict[key] = p_stacked
|
||||||
pairs.append((p_stacked, state))
|
pairs.append((p_stacked, state, batch_names))
|
||||||
|
|
||||||
yield pairs # <-- calling code will do the actual optimization here!
|
yield pairs # <-- calling code will do the actual optimization here!
|
||||||
|
|
||||||
for ((stacked_params, _state), batch) in zip(pairs, batches):
|
for ((stacked_params, _state, _names), batch) in zip(pairs, batches):
|
||||||
for i, p in enumerate(batch): # batch is list of Parameter
|
for i, p in enumerate(batch): # batch is list of Parameter
|
||||||
p.copy_(stacked_params[i])
|
p.copy_(stacked_params[i])
|
||||||
|
|
||||||
@ -165,6 +173,8 @@ class ScaledAdam(BatchedOptimizer):
|
|||||||
scalar_max=10.0,
|
scalar_max=10.0,
|
||||||
size_update_period=4,
|
size_update_period=4,
|
||||||
clipping_update_period=100,
|
clipping_update_period=100,
|
||||||
|
parameters_names=None,
|
||||||
|
show_dominant_parameters=False,
|
||||||
):
|
):
|
||||||
|
|
||||||
defaults = dict(
|
defaults = dict(
|
||||||
@ -181,6 +191,8 @@ class ScaledAdam(BatchedOptimizer):
|
|||||||
)
|
)
|
||||||
|
|
||||||
super(ScaledAdam, self).__init__(params, defaults)
|
super(ScaledAdam, self).__init__(params, defaults)
|
||||||
|
self.parameters_names = parameters_names
|
||||||
|
self.show_dominant_parameters = show_dominant_parameters
|
||||||
|
|
||||||
def __setstate__(self, state):
|
def __setstate__(self, state):
|
||||||
super(ScaledAdam, self).__setstate__(state)
|
super(ScaledAdam, self).__setstate__(state)
|
||||||
@ -199,9 +211,11 @@ class ScaledAdam(BatchedOptimizer):
|
|||||||
loss = closure()
|
loss = closure()
|
||||||
|
|
||||||
batch = True
|
batch = True
|
||||||
for group in self.param_groups:
|
assert len(self.param_groups) == len(self.parameters_names)
|
||||||
|
|
||||||
with self.batched_params(group["params"]) as batches:
|
for group, group_params_names in zip(self.param_groups, self.parameters_names):
|
||||||
|
|
||||||
|
with self.batched_params(group["params"], group_params_names) as batches:
|
||||||
|
|
||||||
# batches is list of pairs (stacked_param, state). stacked_param is like
|
# batches is list of pairs (stacked_param, state). stacked_param is like
|
||||||
# a regular parameter, and will have a .grad, but the 1st dim corresponds to
|
# a regular parameter, and will have a .grad, but the 1st dim corresponds to
|
||||||
@ -214,7 +228,7 @@ class ScaledAdam(BatchedOptimizer):
|
|||||||
else:
|
else:
|
||||||
clipping_scale = self._get_clipping_scale(group, batches)
|
clipping_scale = self._get_clipping_scale(group, batches)
|
||||||
|
|
||||||
for p, state in batches:
|
for p, state, _ in batches:
|
||||||
# Perform optimization step.
|
# Perform optimization step.
|
||||||
# grad is not going to be None, we handled that when creating the batches.
|
# grad is not going to be None, we handled that when creating the batches.
|
||||||
grad = p.grad
|
grad = p.grad
|
||||||
@ -276,7 +290,7 @@ class ScaledAdam(BatchedOptimizer):
|
|||||||
state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||||
|
|
||||||
def _get_clipping_scale(
|
def _get_clipping_scale(
|
||||||
self, group: dict, pairs: List[Tuple[Tensor, dict]]
|
self, group: dict, pairs: List[Tuple[Tensor, dict, List[str]]]
|
||||||
) -> float:
|
) -> float:
|
||||||
"""
|
"""
|
||||||
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
|
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
|
||||||
@ -289,7 +303,7 @@ class ScaledAdam(BatchedOptimizer):
|
|||||||
"""
|
"""
|
||||||
assert len(pairs) >= 1
|
assert len(pairs) >= 1
|
||||||
clipping_scale = group["clipping_scale"]
|
clipping_scale = group["clipping_scale"]
|
||||||
(first_p, first_state) = pairs[0]
|
(first_p, first_state, _) = pairs[0]
|
||||||
step = first_state["step"]
|
step = first_state["step"]
|
||||||
if clipping_scale is None or step == 0:
|
if clipping_scale is None or step == 0:
|
||||||
# no clipping. return early on step == 0 because the other
|
# no clipping. return early on step == 0 because the other
|
||||||
@ -298,7 +312,7 @@ class ScaledAdam(BatchedOptimizer):
|
|||||||
clipping_update_period = group["clipping_update_period"]
|
clipping_update_period = group["clipping_update_period"]
|
||||||
|
|
||||||
tot_sumsq = torch.tensor(0.0, device=first_p.device)
|
tot_sumsq = torch.tensor(0.0, device=first_p.device)
|
||||||
for (p, state) in pairs:
|
for (p, state, param_names) in pairs:
|
||||||
grad = p.grad
|
grad = p.grad
|
||||||
if grad.is_sparse:
|
if grad.is_sparse:
|
||||||
raise RuntimeError(
|
raise RuntimeError(
|
||||||
@ -361,8 +375,49 @@ class ScaledAdam(BatchedOptimizer):
|
|||||||
logging.warn(
|
logging.warn(
|
||||||
f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}"
|
f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}"
|
||||||
)
|
)
|
||||||
|
if self.show_dominant_parameters:
|
||||||
|
assert p.shape[0] == len(param_names)
|
||||||
|
self._show_gradient_dominating_parameter(pairs, tot_sumsq)
|
||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
def _show_gradient_dominating_parameter(self, pairs, tot_sumsq):
|
||||||
|
# ori means calculated with state["param_rms"]
|
||||||
|
# cur means calculated with "param_rms" of current param.
|
||||||
|
# bt is short batch
|
||||||
|
# all_sumsq_ori_rms
|
||||||
|
all_sumsq_ori = {}
|
||||||
|
all_sumsq_cur = {}
|
||||||
|
for (p, state, batch_param_names) in pairs:
|
||||||
|
# p is a stacked batch parameters.
|
||||||
|
grad = p.grad
|
||||||
|
if p.numel() == p.shape[0]: # a batch of scalars
|
||||||
|
batch_sumsq_ori = grad**2 # sum() to change shape [1] to []
|
||||||
|
batch_sumsq_cur = batch_sumsq_ori # sum() to change shape [1] to []
|
||||||
|
# Dummpy values used by following `zip` statement.
|
||||||
|
batch_rms_ori = torch.zeros(p.shape[0])
|
||||||
|
batch_rms_cur = batch_rms_ori
|
||||||
|
else:
|
||||||
|
batch_rms_ori = state["param_rms"]
|
||||||
|
batch_sumsq_ori = ((grad * batch_rms_ori) ** 2).sum(dim=list(range(1, grad.ndim)))
|
||||||
|
|
||||||
|
batch_rms_cur = (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt()
|
||||||
|
batch_sumsq_cur = ((grad * batch_rms_cur) ** 2).sum(dim=list(range(1, grad.ndim)))
|
||||||
|
|
||||||
|
for name, sumsq_ori, sumsq_cur in zip(
|
||||||
|
batch_param_names, batch_sumsq_ori, batch_sumsq_cur):
|
||||||
|
|
||||||
|
proportion_ori = sumsq_ori / tot_sumsq
|
||||||
|
proportion_cur = sumsq_cur / tot_sumsq
|
||||||
|
|
||||||
|
all_sumsq_ori[name] = (proportion_ori, sumsq_ori)
|
||||||
|
all_sumsq_cur[name] = (proportion_cur, sumsq_cur)
|
||||||
|
|
||||||
|
for rms_type, all_sumsq in zip(("ori", "cur"), (all_sumsq_ori, all_sumsq_cur)):
|
||||||
|
sorted_by_proportion = {k: v for k, v in sorted(all_sumsq.items(), key=lambda item: item[1][0], reverse=True)}
|
||||||
|
dominant_param_name = next(iter(sorted_by_proportion))
|
||||||
|
dominant_proportion, dominant_sumsq = sorted_by_proportion[dominant_param_name]
|
||||||
|
logging.info(f"Dominant sumsq with {rms_type}_rms: {dominant_param_name} {dominant_proportion} {dominant_sumsq} {tot_sumsq}")
|
||||||
|
|
||||||
def _step_one_batch(
|
def _step_one_batch(
|
||||||
self, group: dict, p: Tensor, state: dict, clipping_scale: float
|
self, group: dict, p: Tensor, state: dict, clipping_scale: float
|
||||||
):
|
):
|
||||||
|
@ -368,6 +368,13 @@ def get_parser():
|
|||||||
help="Whether to use half precision training.",
|
help="Whether to use half precision training.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--show-dominant-parameters",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to show dominant parameters.",
|
||||||
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -988,7 +995,11 @@ def run(rank, world_size, args):
|
|||||||
logging.info("Using DDP")
|
logging.info("Using DDP")
|
||||||
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
||||||
|
|
||||||
optimizer = ScaledAdam(model.parameters(), lr=params.base_lr, clipping_scale=2.0)
|
parameters_names = []
|
||||||
|
parameters_names.append([name_param_pair[0] for name_param_pair in model.named_parameters()])
|
||||||
|
optimizer = ScaledAdam(model.parameters(), lr=params.base_lr,
|
||||||
|
clipping_scale=2.0, parameters_names=parameters_names,
|
||||||
|
show_dominant_parameters=params.show_dominant_parameters)
|
||||||
|
|
||||||
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user