diff --git a/.flake8 b/.flake8
index 19c3a9bd6..c56cd6fba 100644
--- a/.flake8
+++ b/.flake8
@@ -6,6 +6,8 @@ per-file-ignores =
# line too long
egs/librispeech/ASR/*/conformer.py: E501,
egs/aishell/ASR/*/conformer.py: E501,
+ # invalid escape sequence (cause by tex formular), W605
+ icefall/utils.py: E501, W605
exclude =
.git,
diff --git a/.github/workflows/run-librispeech-2022-03-12.yml b/.github/workflows/run-librispeech-2022-03-12.yml
new file mode 100644
index 000000000..221104f8f
--- /dev/null
+++ b/.github/workflows/run-librispeech-2022-03-12.yml
@@ -0,0 +1,180 @@
+# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
+
+# See ../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+name: run-librispeech-2022-03-12
+# stateless transducer + k2 pruned rnnt-loss
+
+on:
+ push:
+ branches:
+ - master
+ pull_request:
+ types: [labeled]
+
+jobs:
+ run_librispeech_2022_03_12:
+ if: github.event.label.name == 'ready' || github.event_name == 'push'
+ runs-on: ${{ matrix.os }}
+ strategy:
+ matrix:
+ os: [ubuntu-18.04]
+ python-version: [3.7, 3.8, 3.9]
+
+ fail-fast: false
+
+ steps:
+ - uses: actions/checkout@v2
+ with:
+ fetch-depth: 0
+
+ - name: Install graphviz
+ shell: bash
+ run: |
+ sudo apt-get -qq install graphviz
+
+ - name: Setup Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+ cache: 'pip'
+ cache-dependency-path: '**/requirements-ci.txt'
+
+ - name: Install Python dependencies
+ run: |
+ grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
+
+ - name: Cache kaldifeat
+ id: my-cache
+ uses: actions/cache@v2
+ with:
+ path: |
+ ~/tmp/kaldifeat
+ key: cache-tmp-${{ matrix.python-version }}
+
+ - name: Install kaldifeat
+ if: steps.my-cache.outputs.cache-hit != 'true'
+ shell: bash
+ run: |
+ mkdir -p ~/tmp
+ cd ~/tmp
+ git clone https://github.com/csukuangfj/kaldifeat
+ cd kaldifeat
+ mkdir build
+ cd build
+ cmake -DCMAKE_BUILD_TYPE=Release ..
+ make -j2 _kaldifeat
+
+ - name: Download pre-trained model
+ shell: bash
+ run: |
+ sudo apt-get -qq install git-lfs
+ mkdir -p ~/tmp
+ cd ~/tmp
+ git lfs install
+ git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12
+
+ - name: Display test files
+ shell: bash
+ run: |
+ sudo apt-get -qq install tree sox
+ tree ~/tmp/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12
+ soxi ~/tmp/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12/test_wavs/*.wav
+ ls -lh ~/tmp/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12/test_wavs/*.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 1)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ dir=~/tmp/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12
+ cd egs/librispeech/ASR
+ ./pruned_transducer_stateless/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 1 \
+ --checkpoint $dir/exp/pretrained.pt \
+ --bpe-model $dir/data/lang_bpe_500/bpe.model \
+ $dir/test_wavs/1089-134686-0001.wav \
+ $dir/test_wavs/1221-135766-0001.wav \
+ $dir/test_wavs/1221-135766-0002.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 2)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ dir=~/tmp/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12
+ cd egs/librispeech/ASR
+ ./pruned_transducer_stateless/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 2 \
+ --checkpoint $dir/exp/pretrained.pt \
+ --bpe-model $dir/data/lang_bpe_500/bpe.model \
+ $dir/test_wavs/1089-134686-0001.wav \
+ $dir/test_wavs/1221-135766-0001.wav \
+ $dir/test_wavs/1221-135766-0002.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 3)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ dir=~/tmp/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12
+ cd egs/librispeech/ASR
+ ./pruned_transducer_stateless/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 3 \
+ --checkpoint $dir/exp/pretrained.pt \
+ --bpe-model $dir/data/lang_bpe_500/bpe.model \
+ $dir/test_wavs/1089-134686-0001.wav \
+ $dir/test_wavs/1221-135766-0001.wav \
+ $dir/test_wavs/1221-135766-0002.wav
+
+ - name: Run beam search decoding
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ dir=~/tmp/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12
+ cd egs/librispeech/ASR
+ ./pruned_transducer_stateless/pretrained.py \
+ --method beam_search \
+ --beam-size 4 \
+ --checkpoint $dir/exp/pretrained.pt \
+ --bpe-model $dir/data/lang_bpe_500/bpe.model \
+ $dir/test_wavs/1089-134686-0001.wav \
+ $dir/test_wavs/1221-135766-0001.wav \
+ $dir/test_wavs/1221-135766-0002.wav
+
+ - name: Run modified beam search decoding
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ dir=~/tmp/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12
+ cd egs/librispeech/ASR
+ ./pruned_transducer_stateless/pretrained.py \
+ --method modified_beam_search \
+ --beam-size 4 \
+ --checkpoint $dir/exp/pretrained.pt \
+ --bpe-model $dir/data/lang_bpe_500/bpe.model \
+ $dir/test_wavs/1089-134686-0001.wav \
+ $dir/test_wavs/1221-135766-0001.wav \
+ $dir/test_wavs/1221-135766-0002.wav
diff --git a/.github/workflows/run-pretrained-conformer-ctc.yml b/.github/workflows/run-pretrained-conformer-ctc.yml
index 1758a3521..cd24c9c44 100644
--- a/.github/workflows/run-pretrained-conformer-ctc.yml
+++ b/.github/workflows/run-pretrained-conformer-ctc.yml
@@ -31,9 +31,6 @@ jobs:
matrix:
os: [ubuntu-18.04]
python-version: [3.7, 3.8, 3.9]
- torch: ["1.10.0"]
- torchaudio: ["0.10.0"]
- k2-version: ["1.9.dev20211101"]
fail-fast: false
@@ -42,30 +39,43 @@ jobs:
with:
fetch-depth: 0
- - name: Setup Python ${{ matrix.python-version }}
- uses: actions/setup-python@v1
- with:
- python-version: ${{ matrix.python-version }}
-
- - name: Install Python dependencies
- run: |
- python3 -m pip install --upgrade pip pytest
- # numpy 1.20.x does not support python 3.6
- pip install numpy==1.19
- pip install torch==${{ matrix.torch }}+cpu torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
- pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
-
- python3 -m pip install git+https://github.com/lhotse-speech/lhotse
- python3 -m pip install kaldifeat
- # We are in ./icefall and there is a file: requirements.txt in it
- pip install -r requirements.txt
-
- name: Install graphviz
shell: bash
run: |
- python3 -m pip install -qq graphviz
sudo apt-get -qq install graphviz
+ - name: Setup Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+ cache: 'pip'
+ cache-dependency-path: '**/requirements-ci.txt'
+
+ - name: Install Python dependencies
+ run: |
+ grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
+
+ - name: Cache kaldifeat
+ id: my-cache
+ uses: actions/cache@v2
+ with:
+ path: |
+ ~/tmp/kaldifeat
+ key: cache-tmp-${{ matrix.python-version }}
+
+ - name: Install kaldifeat
+ if: steps.my-cache.outputs.cache-hit != 'true'
+ shell: bash
+ run: |
+ mkdir -p ~/tmp
+ cd ~/tmp
+ git clone https://github.com/csukuangfj/kaldifeat
+ cd kaldifeat
+ mkdir build
+ cd build
+ cmake -DCMAKE_BUILD_TYPE=Release ..
+ make -j2 _kaldifeat
+
- name: Download pre-trained model
shell: bash
run: |
@@ -83,7 +93,9 @@ jobs:
- name: Run CTC decoding
shell: bash
run: |
- export PYTHONPATH=$PWD:PYTHONPATH
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
cd egs/librispeech/ASR
./conformer_ctc/pretrained.py \
--num-classes 500 \
@@ -98,6 +110,8 @@ jobs:
shell: bash
run: |
export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
cd egs/librispeech/ASR
./conformer_ctc/pretrained.py \
--num-classes 500 \
diff --git a/.github/workflows/run-pretrained-transducer-stateless-librispeech-100h.yml b/.github/workflows/run-pretrained-transducer-stateless-librispeech-100h.yml
new file mode 100644
index 000000000..b827ec82e
--- /dev/null
+++ b/.github/workflows/run-pretrained-transducer-stateless-librispeech-100h.yml
@@ -0,0 +1,172 @@
+# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
+
+# See ../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+name: run-pre-trained-trandsucer-stateless-multi-datasets-librispeech-100h
+
+on:
+ push:
+ branches:
+ - master
+ pull_request:
+ types: [labeled]
+
+jobs:
+ run_pre_trained_transducer_stateless_multi_datasets_librispeech_100h:
+ if: github.event.label.name == 'ready' || github.event_name == 'push'
+ runs-on: ${{ matrix.os }}
+ strategy:
+ matrix:
+ os: [ubuntu-18.04]
+ python-version: [3.7, 3.8, 3.9]
+
+ fail-fast: false
+
+ steps:
+ - uses: actions/checkout@v2
+ with:
+ fetch-depth: 0
+
+ - name: Install graphviz
+ shell: bash
+ run: |
+ sudo apt-get -qq install graphviz
+
+ - name: Setup Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+ cache: 'pip'
+ cache-dependency-path: '**/requirements-ci.txt'
+
+ - name: Install Python dependencies
+ run: |
+ grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
+
+ - name: Cache kaldifeat
+ id: my-cache
+ uses: actions/cache@v2
+ with:
+ path: |
+ ~/tmp/kaldifeat
+ key: cache-tmp-${{ matrix.python-version }}
+
+ - name: Install kaldifeat
+ if: steps.my-cache.outputs.cache-hit != 'true'
+ shell: bash
+ run: |
+ mkdir -p ~/tmp
+ cd ~/tmp
+ git clone https://github.com/csukuangfj/kaldifeat
+ cd kaldifeat
+ mkdir build
+ cd build
+ cmake -DCMAKE_BUILD_TYPE=Release ..
+ make -j2 _kaldifeat
+
+ - name: Download pre-trained model
+ shell: bash
+ run: |
+ sudo apt-get -qq install git-lfs tree sox
+ cd egs/librispeech/ASR
+ mkdir tmp
+ cd tmp
+ git lfs install
+ git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21
+
+ cd ..
+ tree tmp
+ soxi tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/*.wav
+ ls -lh tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/*.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 1)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless_multi_datasets/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 1 \
+ --checkpoint ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0002.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 2)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless_multi_datasets/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 2 \
+ --checkpoint ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0002.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 3)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless_multi_datasets/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 3 \
+ --checkpoint ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0002.wav
+
+ - name: Run beam search decoding
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless_multi_datasets/pretrained.py \
+ --method beam_search \
+ --beam-size 4 \
+ --checkpoint ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0002.wav
+
+ - name: Run modified beam search decoding
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless_multi_datasets/pretrained.py \
+ --method modified_beam_search \
+ --beam-size 4 \
+ --checkpoint ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0002.wav
diff --git a/.github/workflows/run-pretrained-transducer-stateless-librispeech-multi-datasets.yml b/.github/workflows/run-pretrained-transducer-stateless-librispeech-multi-datasets.yml
new file mode 100644
index 000000000..ffd9bdaec
--- /dev/null
+++ b/.github/workflows/run-pretrained-transducer-stateless-librispeech-multi-datasets.yml
@@ -0,0 +1,174 @@
+# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
+
+# See ../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+name: run-pre-trained-trandsucer-stateless-multi-datasets-librispeech-960h
+
+on:
+ push:
+ branches:
+ - master
+ pull_request:
+ types: [labeled]
+
+jobs:
+ run_pre_trained_transducer_stateless_multi_datasets_librispeech_960h:
+ if: github.event.label.name == 'ready' || github.event_name == 'push'
+ runs-on: ${{ matrix.os }}
+ strategy:
+ matrix:
+ os: [ubuntu-18.04]
+ python-version: [3.7, 3.8, 3.9]
+
+ fail-fast: false
+
+ steps:
+ - uses: actions/checkout@v2
+ with:
+ fetch-depth: 0
+
+ - name: Install graphviz
+ shell: bash
+ run: |
+ sudo apt-get -qq install graphviz
+
+ - name: Setup Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+ cache: 'pip'
+ cache-dependency-path: '**/requirements-ci.txt'
+
+ - name: Install Python dependencies
+ run: |
+ grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
+
+ - name: Cache kaldifeat
+ id: my-cache
+ uses: actions/cache@v2
+ with:
+ path: |
+ ~/tmp/kaldifeat
+ key: cache-tmp-${{ matrix.python-version }}
+
+ - name: Install kaldifeat
+ if: steps.my-cache.outputs.cache-hit != 'true'
+ shell: bash
+ run: |
+ mkdir -p ~/tmp
+ cd ~/tmp
+ git clone https://github.com/csukuangfj/kaldifeat
+ cd kaldifeat
+ mkdir build
+ cd build
+ cmake -DCMAKE_BUILD_TYPE=Release ..
+ make -j2 _kaldifeat
+
+ - name: Download pre-trained model
+ shell: bash
+ run: |
+ sudo apt-get -qq install git-lfs tree sox
+ cd egs/librispeech/ASR
+ mkdir tmp
+ cd tmp
+ git lfs install
+ git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01
+
+
+ cd ..
+ tree tmp
+ soxi tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/*.wav
+ ls -lh tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/*.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 1)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless_multi_datasets/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 1 \
+ --checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1221-135766-0002.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 2)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless_multi_datasets/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 2 \
+ --checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1221-135766-0002.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 3)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless_multi_datasets/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 3 \
+ --checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1221-135766-0002.wav
+
+ - name: Run beam search decoding
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless_multi_datasets/pretrained.py \
+ --method beam_search \
+ --beam-size 4 \
+ --checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1221-135766-0002.wav
+
+
+ - name: Run modified beam search decoding
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless_multi_datasets/pretrained.py \
+ --method modified_beam_search \
+ --beam-size 4 \
+ --checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01/test_wavs/1221-135766-0002.wav
diff --git a/.github/workflows/run-pretrained-transducer-stateless-modified-2-aishell.yml b/.github/workflows/run-pretrained-transducer-stateless-modified-2-aishell.yml
new file mode 100644
index 000000000..12652a22d
--- /dev/null
+++ b/.github/workflows/run-pretrained-transducer-stateless-modified-2-aishell.yml
@@ -0,0 +1,173 @@
+# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
+
+# See ../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+name: run-pre-trained-trandsucer-stateless-modified-2-aishell
+
+on:
+ push:
+ branches:
+ - master
+ pull_request:
+ types: [labeled]
+
+jobs:
+ run_pre_trained_transducer_stateless_modified_2_aishell:
+ if: github.event.label.name == 'ready' || github.event_name == 'push'
+ runs-on: ${{ matrix.os }}
+ strategy:
+ matrix:
+ os: [ubuntu-18.04]
+ python-version: [3.7, 3.8, 3.9]
+
+ fail-fast: false
+
+ steps:
+ - uses: actions/checkout@v2
+ with:
+ fetch-depth: 0
+
+ - name: Install graphviz
+ shell: bash
+ run: |
+ sudo apt-get -qq install graphviz
+
+ - name: Setup Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+ cache: 'pip'
+ cache-dependency-path: '**/requirements-ci.txt'
+
+ - name: Install Python dependencies
+ run: |
+ grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
+
+ - name: Cache kaldifeat
+ id: my-cache
+ uses: actions/cache@v2
+ with:
+ path: |
+ ~/tmp/kaldifeat
+ key: cache-tmp-${{ matrix.python-version }}
+
+ - name: Install kaldifeat
+ if: steps.my-cache.outputs.cache-hit != 'true'
+ shell: bash
+ run: |
+ mkdir -p ~/tmp
+ cd ~/tmp
+ git clone https://github.com/csukuangfj/kaldifeat
+ cd kaldifeat
+ mkdir build
+ cd build
+ cmake -DCMAKE_BUILD_TYPE=Release ..
+ make -j2 _kaldifeat
+
+ - name: Download pre-trained model
+ shell: bash
+ run: |
+ sudo apt-get -qq install git-lfs tree sox
+ cd egs/aishell/ASR
+ mkdir tmp
+ cd tmp
+ git lfs install
+ git clone https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01
+
+ cd ..
+ tree tmp
+ soxi tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/*.wav
+ ls -lh tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/*.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 1)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/aishell/ASR
+ ./transducer_stateless_modified-2/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 1 \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/data/lang_char \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0123.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 2)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/aishell/ASR
+ ./transducer_stateless_modified-2/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 2 \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/data/lang_char \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0123.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 3)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/aishell/ASR
+ ./transducer_stateless_modified-2/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 3 \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/data/lang_char \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0123.wav
+
+ - name: Run beam search decoding
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/aishell/ASR
+ ./transducer_stateless_modified-2/pretrained.py \
+ --method beam_search \
+ --beam-size 4 \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/data/lang_char \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0123.wav
+
+
+ - name: Run modified beam search decoding
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/aishell/ASR
+ ./transducer_stateless_modified-2/pretrained.py \
+ --method modified_beam_search \
+ --beam-size 4 \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/data/lang_char \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2-2022-03-01/test_wavs/BAC009S0764W0123.wav
diff --git a/.github/workflows/run-pretrained-transducer-stateless-modified-aishell.yml b/.github/workflows/run-pretrained-transducer-stateless-modified-aishell.yml
new file mode 100644
index 000000000..aa69d1500
--- /dev/null
+++ b/.github/workflows/run-pretrained-transducer-stateless-modified-aishell.yml
@@ -0,0 +1,173 @@
+# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
+
+# See ../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+name: run-pre-trained-trandsucer-stateless-modified-aishell
+
+on:
+ push:
+ branches:
+ - master
+ pull_request:
+ types: [labeled]
+
+jobs:
+ run_pre_trained_transducer_stateless_modified_aishell:
+ if: github.event.label.name == 'ready' || github.event_name == 'push'
+ runs-on: ${{ matrix.os }}
+ strategy:
+ matrix:
+ os: [ubuntu-18.04]
+ python-version: [3.7, 3.8, 3.9]
+
+ fail-fast: false
+
+ steps:
+ - uses: actions/checkout@v2
+ with:
+ fetch-depth: 0
+
+ - name: Install graphviz
+ shell: bash
+ run: |
+ sudo apt-get -qq install graphviz
+
+ - name: Setup Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+ cache: 'pip'
+ cache-dependency-path: '**/requirements-ci.txt'
+
+ - name: Install Python dependencies
+ run: |
+ grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
+
+ - name: Cache kaldifeat
+ id: my-cache
+ uses: actions/cache@v2
+ with:
+ path: |
+ ~/tmp/kaldifeat
+ key: cache-tmp-${{ matrix.python-version }}
+
+ - name: Install kaldifeat
+ if: steps.my-cache.outputs.cache-hit != 'true'
+ shell: bash
+ run: |
+ mkdir -p ~/tmp
+ cd ~/tmp
+ git clone https://github.com/csukuangfj/kaldifeat
+ cd kaldifeat
+ mkdir build
+ cd build
+ cmake -DCMAKE_BUILD_TYPE=Release ..
+ make -j2 _kaldifeat
+
+ - name: Download pre-trained model
+ shell: bash
+ run: |
+ sudo apt-get -qq install git-lfs tree sox
+ cd egs/aishell/ASR
+ mkdir tmp
+ cd tmp
+ git lfs install
+ git clone https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2022-03-01
+
+ cd ..
+ tree tmp
+ soxi tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/*.wav
+ ls -lh tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/*.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 1)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/aishell/ASR
+ ./transducer_stateless_modified/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 1 \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 2)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/aishell/ASR
+ ./transducer_stateless_modified/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 2 \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 3)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/aishell/ASR
+ ./transducer_stateless_modified/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 3 \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav
+
+ - name: Run beam search decoding
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/aishell/ASR
+ ./transducer_stateless_modified/pretrained.py \
+ --method beam_search \
+ --beam-size 4 \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav
+
+
+ - name: Run modified beam search decoding
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/aishell/ASR
+ ./transducer_stateless_modified/pretrained.py \
+ --method modified_beam_search \
+ --beam-size 4 \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav
diff --git a/.github/workflows/run-pretrained-transducer-stateless.yml b/.github/workflows/run-pretrained-transducer-stateless.yml
index 5f4a425d9..535e46261 100644
--- a/.github/workflows/run-pretrained-transducer-stateless.yml
+++ b/.github/workflows/run-pretrained-transducer-stateless.yml
@@ -31,9 +31,6 @@ jobs:
matrix:
os: [ubuntu-18.04]
python-version: [3.7, 3.8, 3.9]
- torch: ["1.10.0"]
- torchaudio: ["0.10.0"]
- k2-version: ["1.9.dev20211101"]
fail-fast: false
@@ -42,30 +39,43 @@ jobs:
with:
fetch-depth: 0
- - name: Setup Python ${{ matrix.python-version }}
- uses: actions/setup-python@v1
- with:
- python-version: ${{ matrix.python-version }}
-
- - name: Install Python dependencies
- run: |
- python3 -m pip install --upgrade pip pytest
- # numpy 1.20.x does not support python 3.6
- pip install numpy==1.19
- pip install torch==${{ matrix.torch }}+cpu torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
- pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
-
- python3 -m pip install git+https://github.com/lhotse-speech/lhotse
- python3 -m pip install kaldifeat
- # We are in ./icefall and there is a file: requirements.txt in it
- pip install -r requirements.txt
-
- name: Install graphviz
shell: bash
run: |
- python3 -m pip install -qq graphviz
sudo apt-get -qq install graphviz
+ - name: Setup Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+ cache: 'pip'
+ cache-dependency-path: '**/requirements-ci.txt'
+
+ - name: Install Python dependencies
+ run: |
+ grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
+
+ - name: Cache kaldifeat
+ id: my-cache
+ uses: actions/cache@v2
+ with:
+ path: |
+ ~/tmp/kaldifeat
+ key: cache-tmp-${{ matrix.python-version }}
+
+ - name: Install kaldifeat
+ if: steps.my-cache.outputs.cache-hit != 'true'
+ shell: bash
+ run: |
+ mkdir -p ~/tmp
+ cd ~/tmp
+ git clone https://github.com/csukuangfj/kaldifeat
+ cd kaldifeat
+ mkdir build
+ cd build
+ cmake -DCMAKE_BUILD_TYPE=Release ..
+ make -j2 _kaldifeat
+
- name: Download pre-trained model
shell: bash
run: |
@@ -74,35 +84,88 @@ jobs:
mkdir tmp
cd tmp
git lfs install
- git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10
+ git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07
cd ..
tree tmp
- soxi tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/test_wavs/*.wav
- ls -lh tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/test_wavs/*.wav
+ soxi tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/*.wav
+ ls -lh tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/*.wav
- - name: Run greedy search decoding
+ - name: Run greedy search decoding (max-sym-per-frame 1)
shell: bash
run: |
- export PYTHONPATH=$PWD:PYTHONPATH
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
cd egs/librispeech/ASR
./transducer_stateless/pretrained.py \
--method greedy_search \
- --checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/exp/pretrained.pt \
- --bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/data/lang_bpe_500/bpe.model \
- ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/test_wavs/1089-134686-0001.wav \
- ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/test_wavs/1221-135766-0001.wav \
- ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/test_wavs/1221-135766-0002.wav
+ --max-sym-per-frame 1 \
+ --checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1221-135766-0002.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 2)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 2 \
+ --checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1221-135766-0002.wav
+
+ - name: Run greedy search decoding (max-sym-per-frame 3)
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless/pretrained.py \
+ --method greedy_search \
+ --max-sym-per-frame 3 \
+ --checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1221-135766-0002.wav
- name: Run beam search decoding
shell: bash
run: |
export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
cd egs/librispeech/ASR
./transducer_stateless/pretrained.py \
--method beam_search \
--beam-size 4 \
- --checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/exp/pretrained.pt \
- --bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/data/lang_bpe_500/bpe.model \
- ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/test_wavs/1089-134686-0001.wav \
- ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/test_wavs/1221-135766-0001.wav \
- ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-01-10/test_wavs/1221-135766-0002.wav
+ --checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1221-135766-0002.wav
+
+ - name: Run modified beam search decoding
+ shell: bash
+ run: |
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
+ cd egs/librispeech/ASR
+ ./transducer_stateless/pretrained.py \
+ --method modified_beam_search \
+ --beam-size 4 \
+ --checkpoint ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/exp/pretrained.pt \
+ --bpe-model ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/data/lang_bpe_500/bpe.model \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1089-134686-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1221-135766-0001.wav \
+ ./tmp/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/test_wavs/1221-135766-0002.wav
diff --git a/.github/workflows/run-pretrained-transducer.yml b/.github/workflows/run-pretrained-transducer.yml
index f0ebddba3..41e4cfe0d 100644
--- a/.github/workflows/run-pretrained-transducer.yml
+++ b/.github/workflows/run-pretrained-transducer.yml
@@ -31,9 +31,6 @@ jobs:
matrix:
os: [ubuntu-18.04]
python-version: [3.7, 3.8, 3.9]
- torch: ["1.10.0"]
- torchaudio: ["0.10.0"]
- k2-version: ["1.9.dev20211101"]
fail-fast: false
@@ -42,30 +39,43 @@ jobs:
with:
fetch-depth: 0
- - name: Setup Python ${{ matrix.python-version }}
- uses: actions/setup-python@v1
- with:
- python-version: ${{ matrix.python-version }}
-
- - name: Install Python dependencies
- run: |
- python3 -m pip install --upgrade pip pytest
- # numpy 1.20.x does not support python 3.6
- pip install numpy==1.19
- pip install torch==${{ matrix.torch }}+cpu torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
- pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
-
- python3 -m pip install git+https://github.com/lhotse-speech/lhotse
- python3 -m pip install kaldifeat
- # We are in ./icefall and there is a file: requirements.txt in it
- pip install -r requirements.txt
-
- name: Install graphviz
shell: bash
run: |
- python3 -m pip install -qq graphviz
sudo apt-get -qq install graphviz
+ - name: Setup Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+ cache: 'pip'
+ cache-dependency-path: '**/requirements-ci.txt'
+
+ - name: Install Python dependencies
+ run: |
+ grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
+
+ - name: Cache kaldifeat
+ id: my-cache
+ uses: actions/cache@v2
+ with:
+ path: |
+ ~/tmp/kaldifeat
+ key: cache-tmp-${{ matrix.python-version }}
+
+ - name: Install kaldifeat
+ if: steps.my-cache.outputs.cache-hit != 'true'
+ shell: bash
+ run: |
+ mkdir -p ~/tmp
+ cd ~/tmp
+ git clone https://github.com/csukuangfj/kaldifeat
+ cd kaldifeat
+ mkdir build
+ cd build
+ cmake -DCMAKE_BUILD_TYPE=Release ..
+ make -j2 _kaldifeat
+
- name: Download pre-trained model
shell: bash
run: |
@@ -84,7 +94,9 @@ jobs:
- name: Run greedy search decoding
shell: bash
run: |
- export PYTHONPATH=$PWD:PYTHONPATH
+ export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
cd egs/librispeech/ASR
./transducer/pretrained.py \
--method greedy_search \
@@ -98,6 +110,8 @@ jobs:
shell: bash
run: |
export PYTHONPATH=$PWD:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
+ export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
cd egs/librispeech/ASR
./transducer/pretrained.py \
--method beam_search \
diff --git a/.github/workflows/run-yesno-recipe.yml b/.github/workflows/run-yesno-recipe.yml
index 98b2e4ebd..38c36a7c6 100644
--- a/.github/workflows/run-yesno-recipe.yml
+++ b/.github/workflows/run-yesno-recipe.yml
@@ -33,9 +33,6 @@ jobs:
# TODO: enable macOS for CPU testing
os: [ubuntu-18.04]
python-version: [3.8]
- torch: ["1.10.0"]
- torchaudio: ["0.10.0"]
- k2-version: ["1.9.dev20211101"]
fail-fast: false
steps:
@@ -43,10 +40,17 @@ jobs:
with:
fetch-depth: 0
+ - name: Install graphviz
+ shell: bash
+ run: |
+ sudo apt-get -qq install graphviz
+
- name: Setup Python ${{ matrix.python-version }}
- uses: actions/setup-python@v1
+ uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
+ cache: 'pip'
+ cache-dependency-path: '**/requirements-ci.txt'
- name: Install libnsdfile and libsox
if: startsWith(matrix.os, 'ubuntu')
@@ -57,13 +61,7 @@ jobs:
- name: Install Python dependencies
run: |
- python3 -m pip install -U pip
- pip install torch==${{ matrix.torch }}+cpu torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
- pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
- python3 -m pip install git+https://github.com/lhotse-speech/lhotse
-
- # We are in ./icefall and there is a file: requirements.txt in it
- python3 -m pip install -r requirements.txt
+ grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
- name: Run yesno recipe
shell: bash
diff --git a/README.md b/README.md
index 38c25900f..79d8039ff 100644
--- a/README.md
+++ b/README.md
@@ -80,16 +80,16 @@ We provide a Colab notebook to run a pre-trained RNN-T conformer model: [](https://colab.research.google.com/drive/1Rc4Is-3Yp9LbcEz_Iy8hfyenyHsyjvqE?usp=sharing)
+We provide a Colab notebook to run a pre-trained transducer conformer + stateless decoder model: [](https://colab.research.google.com/drive/1CO1bXJ-2khDckZIW8zjOPHGSKLHpTDlp?usp=sharing)
### Aishell
@@ -113,7 +113,7 @@ The best CER we currently have is:
| | test |
|-----|------|
-| CER | 5.7 |
+| CER | 4.68 |
We provide a Colab notebook to run a pre-trained TransducerStateless model: [](https://colab.research.google.com/drive/14XaT2MhnBkK-3_RqqWq3K90Xlbin-GZC?usp=sharing)
diff --git a/docs/source/conf.py b/docs/source/conf.py
index 599df8b3e..88522ff27 100644
--- a/docs/source/conf.py
+++ b/docs/source/conf.py
@@ -33,6 +33,7 @@ release = "0.1"
# ones.
extensions = [
"sphinx_rtd_theme",
+ "sphinx.ext.todo",
]
# Add any paths that contain templates here, relative to this directory.
@@ -74,3 +75,5 @@ html_context = {
"github_version": "master",
"conf_py_path": "/icefall/docs/source/",
}
+
+todo_include_todos = True
diff --git a/docs/source/installation/images/README.md b/docs/source/installation/images/README.md
new file mode 100644
index 000000000..97c1e993c
--- /dev/null
+++ b/docs/source/installation/images/README.md
@@ -0,0 +1,4 @@
+
+# Introduction
+
+ is used to generate files in this directory.
diff --git a/docs/source/installation/images/k2-gt-v1.9-blueviolet.svg b/docs/source/installation/images/k2-gt-v1.9-blueviolet.svg
new file mode 100644
index 000000000..534b2e534
--- /dev/null
+++ b/docs/source/installation/images/k2-gt-v1.9-blueviolet.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs/source/installation/images/k2-v1.9-blueviolet.svg b/docs/source/installation/images/k2-v1.9-blueviolet.svg
deleted file mode 100644
index 5a207b370..000000000
--- a/docs/source/installation/images/k2-v1.9-blueviolet.svg
+++ /dev/null
@@ -1 +0,0 @@
-
\ No newline at end of file
diff --git a/docs/source/installation/images/python-3.6_3.7_3.8_3.9-blue.svg b/docs/source/installation/images/python-3.6_3.7_3.8_3.9-blue.svg
deleted file mode 100644
index befc1e19e..000000000
--- a/docs/source/installation/images/python-3.6_3.7_3.8_3.9-blue.svg
+++ /dev/null
@@ -1 +0,0 @@
-
diff --git a/docs/source/installation/images/python-gt-v3.6-blue.svg b/docs/source/installation/images/python-gt-v3.6-blue.svg
new file mode 100644
index 000000000..4254dc58a
--- /dev/null
+++ b/docs/source/installation/images/python-gt-v3.6-blue.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs/source/installation/images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg b/docs/source/installation/images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg
deleted file mode 100644
index 496e5a9ef..000000000
--- a/docs/source/installation/images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg
+++ /dev/null
@@ -1 +0,0 @@
-
diff --git a/docs/source/installation/images/torch-gt-v1.6.0-green.svg b/docs/source/installation/images/torch-gt-v1.6.0-green.svg
new file mode 100644
index 000000000..d3ece9a17
--- /dev/null
+++ b/docs/source/installation/images/torch-gt-v1.6.0-green.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/docs/source/installation/index.rst b/docs/source/installation/index.rst
index 0f846c77c..a8c3b6865 100644
--- a/docs/source/installation/index.rst
+++ b/docs/source/installation/index.rst
@@ -15,13 +15,13 @@ Installation
.. |device| image:: ./images/device-CPU_CUDA-orange.svg
:alt: Supported devices
-.. |python_versions| image:: ./images/python-3.6_3.7_3.8_3.9-blue.svg
+.. |python_versions| image:: ./images/python-gt-v3.6-blue.svg
:alt: Supported python versions
-.. |torch_versions| image:: ./images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg
+.. |torch_versions| image:: ./images/torch-gt-v1.6.0-green.svg
:alt: Supported PyTorch versions
-.. |k2_versions| image:: ./images/k2-v1.9-blueviolet.svg
+.. |k2_versions| image:: ./images/k2-gt-v1.9-blueviolet.svg
:alt: Supported k2 versions
``icefall`` depends on `k2 `_ and
diff --git a/docs/source/recipes/aishell.rst b/docs/source/recipes/aishell.rst
deleted file mode 100644
index 71ccaa1fc..000000000
--- a/docs/source/recipes/aishell.rst
+++ /dev/null
@@ -1,10 +0,0 @@
-Aishell
-=======
-
-We provide the following models for the Aishell dataset:
-
-.. toctree::
- :maxdepth: 2
-
- aishell/conformer_ctc
- aishell/tdnn_lstm_ctc
diff --git a/docs/source/recipes/aishell/conformer_ctc.rst b/docs/source/recipes/aishell/conformer_ctc.rst
index 2dcf0c728..75a2a8eca 100644
--- a/docs/source/recipes/aishell/conformer_ctc.rst
+++ b/docs/source/recipes/aishell/conformer_ctc.rst
@@ -1,4 +1,4 @@
-Confromer CTC
+Conformer CTC
=============
This tutorial shows you how to run a conformer ctc model
diff --git a/docs/source/recipes/aishell/images/aishell-transducer_stateless_modified-tensorboard-log.png b/docs/source/recipes/aishell/images/aishell-transducer_stateless_modified-tensorboard-log.png
new file mode 100644
index 000000000..6c84b28f2
Binary files /dev/null and b/docs/source/recipes/aishell/images/aishell-transducer_stateless_modified-tensorboard-log.png differ
diff --git a/docs/source/recipes/aishell/index.rst b/docs/source/recipes/aishell/index.rst
new file mode 100644
index 000000000..d072d6e9c
--- /dev/null
+++ b/docs/source/recipes/aishell/index.rst
@@ -0,0 +1,22 @@
+aishell
+=======
+
+Aishell is an open-source Chinese Mandarin speech corpus published by Beijing
+Shell Shell Technology Co.,Ltd.
+
+400 people from different accent areas in China are invited to participate in
+the recording, which is conducted in a quiet indoor environment using high
+fidelity microphone and downsampled to 16kHz. The manual transcription accuracy
+is above 95%, through professional speech annotation and strict quality
+inspection. The data is free for academic use. We hope to provide moderate
+amount of data for new researchers in the field of speech recognition.
+
+It can be downloaded from ``_
+
+.. toctree::
+ :maxdepth: 1
+
+ tdnn_lstm_ctc
+ conformer_ctc
+ stateless_transducer
+
diff --git a/docs/source/recipes/aishell/stateless_transducer.rst b/docs/source/recipes/aishell/stateless_transducer.rst
new file mode 100644
index 000000000..e8137b8c1
--- /dev/null
+++ b/docs/source/recipes/aishell/stateless_transducer.rst
@@ -0,0 +1,714 @@
+Stateless Transducer
+====================
+
+This tutorial shows you how to do transducer training in ``icefall``.
+
+.. HINT::
+
+ Instead of using RNN-T or RNN transducer, we only use transducer
+ here. As you will see, there are no RNNs in the model.
+
+.. HINT::
+
+ We assume you have read the page :ref:`install icefall` and have setup
+ the environment for ``icefall``.
+
+.. HINT::
+
+ We recommend you to use a GPU or several GPUs to run this recipe.
+
+In this tutorial, you will learn:
+
+ - (1) What does the transducer model look like
+ - (2) How to prepare data for training and decoding
+ - (3) How to start the training, either with a single GPU or with multiple GPUs
+ - (4) How to do decoding after training, with greedy search, beam search and, **modified beam search**
+ - (5) How to use a pre-trained model provided by us to transcribe sound files
+
+
+The Model
+---------
+
+The transducer model consists of 3 parts:
+
+- **Encoder**: It is a conformer encoder with the following parameters
+
+ - Number of heads: 8
+ - Attention dim: 512
+ - Number of layers: 12
+ - Feedforward dim: 2048
+
+- **Decoder**: We use a stateless model consisting of:
+
+ - An embedding layer with embedding dim 512
+ - A Conv1d layer with a default kernel size 2 (i.e. it sees 2
+ symbols of left-context by default)
+
+- **Joiner**: It consists of a ``nn.tanh()`` and a ``nn.Linear()``.
+
+.. Caution::
+
+ The decoder is stateless and very simple. It is borrowed from
+ ``_
+ (Rnn-Transducer with Stateless Prediction Network)
+
+ We make one modification to it: Place a Conv1d layer right after
+ the embedding layer.
+
+When using Chinese characters as modelling unit, whose vocabulary size
+is 4336 in this specific dataset,
+the number of parameters of the model is ``87939824``, i.e., about ``88 M``.
+
+The Loss
+--------
+
+We are using ``_
+to compute the transducer loss, which removes extra paddings
+in loss computation to save memory.
+
+.. Hint::
+
+ ``optimized_transducer`` implements the technqiues proposed
+ in `Improving RNN Transducer Modeling for End-to-End Speech Recognition `_ to save memory.
+
+ Furthermore, it supports ``modified transducer``, limiting the maximum
+ number of symbols that can be emitted per frame to 1, which simplifies
+ the decoding process significantly. Also, the experiment results
+ show that it does not degrade the performance.
+
+ See ``_
+ for what exactly modified transducer is.
+
+ ``_ shows that
+ in the unpruned case ``optimized_transducer`` has the advantage about minimizing
+ memory usage.
+
+.. todo::
+
+ Add tutorial about ``pruned_transducer_stateless`` that uses k2
+ pruned transducer loss.
+
+.. hint::
+
+ You can use::
+
+ pip install optimized_transducer
+
+ to install ``optimized_transducer``. Refer to
+ ``_ for other
+ alternatives.
+
+Data Preparation
+----------------
+
+To prepare the data for training, please use the following commands:
+
+.. code-block:: bash
+
+ cd egs/aishell/ASR
+ ./prepare.sh --stop-stage 4
+ ./prepare.sh --stage 6 --stop-stage 6
+
+.. note::
+
+ You can use ``./prepare.sh``, though it will generate FSTs that
+ are not used in transducer training.
+
+When you finish running the script, you will get the following two folders:
+
+ - ``data/fbank``: It saves the pre-computed features
+ - ``data/lang_char``: It contains tokens that will be used in the training
+
+Training
+--------
+
+.. code-block:: bash
+
+ cd egs/aishell/ASR
+ ./transducer_stateless_modified/train.py --help
+
+shows you the training options that can be passed from the commandline.
+The following options are used quite often:
+
+ - ``--exp-dir``
+
+ The experiment folder to save logs and model checkpoints,
+ defaults to ``./transducer_stateless_modified/exp``.
+
+ - ``--num-epochs``
+
+ It is the number of epochs to train. For instance,
+ ``./transducer_stateless_modified/train.py --num-epochs 30`` trains for 30
+ epochs and generates ``epoch-0.pt``, ``epoch-1.pt``, ..., ``epoch-29.pt``
+ in the folder set by ``--exp-dir``.
+
+ - ``--start-epoch``
+
+ It's used to resume training.
+ ``./transducer_stateless_modified/train.py --start-epoch 10`` loads the
+ checkpoint from ``exp_dir/epoch-9.pt`` and starts
+ training from epoch 10, based on the state from epoch 9.
+
+ - ``--world-size``
+
+ It is used for single-machine multi-GPU DDP training.
+
+ - (a) If it is 1, then no DDP training is used.
+
+ - (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.
+
+ The following shows some use cases with it.
+
+ **Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and
+ GPU 2 for training. You can do the following:
+
+ .. code-block:: bash
+
+ $ cd egs/aishell/ASR
+ $ export CUDA_VISIBLE_DEVICES="0,2"
+ $ ./transducer_stateless_modified/train.py --world-size 2
+
+ **Use case 2**: You have 4 GPUs and you want to use all of them
+ for training. You can do the following:
+
+ .. code-block:: bash
+
+ $ cd egs/aishell/ASR
+ $ ./transducer_stateless_modified/train.py --world-size 4
+
+ **Use case 3**: You have 4 GPUs but you only want to use GPU 3
+ for training. You can do the following:
+
+ .. code-block:: bash
+
+ $ cd egs/aishell/ASR
+ $ export CUDA_VISIBLE_DEVICES="3"
+ $ ./transducer_stateless_modified/train.py --world-size 1
+
+ .. CAUTION::
+
+ Only single-machine multi-GPU DDP training is implemented at present.
+ There is an on-going PR ``_
+ that adds support for multi-machine multi-GPU DDP training.
+
+ - ``--max-duration``
+
+ It specifies the number of seconds over all utterances in a
+ batch **before padding**.
+ If you encounter CUDA OOM, please reduce it. For instance, if
+ your are using V100 NVIDIA GPU with 32 GB RAM, we recommend you
+ to set it to ``300`` when the vocabulary size is 500.
+
+ .. HINT::
+
+ Due to padding, the number of seconds of all utterances in a
+ batch will usually be larger than ``--max-duration``.
+
+ A larger value for ``--max-duration`` may cause OOM during training,
+ while a smaller value may increase the training time. You have to
+ tune it.
+
+ - ``--lr-factor``
+
+ It controls the learning rate. If you use a single GPU for training, you
+ may want to use a small value for it. If you use multiple GPUs for training,
+ you may increase it.
+
+ - ``--context-size``
+
+ It specifies the kernel size in the decoder. The default value 2 means it
+ functions as a tri-gram LM.
+
+ - ``--modified-transducer-prob``
+
+ It specifies the probability to use modified transducer loss.
+ If it is 0, then no modified transducer is used; if it is 1,
+ then it uses modified transducer loss for all batches. If it is
+ ``p``, it applies modified transducer with probability ``p``.
+
+There are some training options, e.g.,
+number of warmup steps,
+that are not passed from the commandline.
+They are pre-configured by the function ``get_params()`` in
+`transducer_stateless_modified/train.py `_
+
+If you need to change them, please modify ``./transducer_stateless_modified/train.py`` directly.
+
+.. CAUTION::
+
+ The training set is perturbed by speed with two factors: 0.9 and 1.1.
+ Each epoch actually processes ``3x150 == 450`` hours of data.
+
+Training logs
+~~~~~~~~~~~~~
+
+Training logs and checkpoints are saved in the folder set by ``--exp-dir``
+(defaults to ``transducer_stateless_modified/exp``). You will find the following files in that directory:
+
+ - ``epoch-0.pt``, ``epoch-1.pt``, ...
+
+ These are checkpoint files, containing model ``state_dict`` and optimizer ``state_dict``.
+ To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
+
+ .. code-block:: bash
+
+ $ ./transducer_stateless_modified/train.py --start-epoch 11
+
+ - ``tensorboard/``
+
+ This folder contains TensorBoard logs. Training loss, validation loss, learning
+ rate, etc, are recorded in these logs. You can visualize them by:
+
+ .. code-block:: bash
+
+ $ cd transducer_stateless_modified/exp/tensorboard
+ $ tensorboard dev upload --logdir . --name "Aishell transducer training with icefall" --description "Training modified transducer, see https://github.com/k2-fsa/icefall/pull/219"
+
+ It will print something like below:
+
+ .. code-block::
+
+ TensorFlow installation not found - running with reduced feature set.
+ Upload started and will continue reading any new data as it's added to the logdir.
+
+ To stop uploading, press Ctrl-C.
+
+ New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/laGZ6HrcQxOigbFD5E0Y3Q/
+
+ [2022-03-03T14:29:45] Started scanning logdir.
+ [2022-03-03T14:29:48] Total uploaded: 8477 scalars, 0 tensors, 0 binary objects
+ Listening for new data in logdir...
+
+ Note there is a `URL `_ in the
+ above output, click it and you will see the following screenshot:
+
+ .. figure:: images/aishell-transducer_stateless_modified-tensorboard-log.png
+ :width: 600
+ :alt: TensorBoard screenshot
+ :align: center
+ :target: https://tensorboard.dev/experiment/laGZ6HrcQxOigbFD5E0Y3Q
+
+ TensorBoard screenshot.
+
+ - ``log/log-train-xxxx``
+
+ It is the detailed training log in text format, same as the one
+ you saw printed to the console during training.
+
+Usage examples
+~~~~~~~~~~~~~~
+
+The following shows typical use cases:
+
+**Case 1**
+^^^^^^^^^^
+
+.. code-block:: bash
+
+ $ cd egs/aishell/ASR
+ $ ./transducer_stateless_modified/train.py --max-duration 250
+
+It uses ``--max-duration`` of 250 to avoid OOM.
+
+
+**Case 2**
+^^^^^^^^^^
+
+.. code-block:: bash
+
+ $ cd egs/aishell/ASR
+ $ export CUDA_VISIBLE_DEVICES="0,3"
+ $ ./transducer_stateless_modified/train.py --world-size 2
+
+It uses GPU 0 and GPU 3 for DDP training.
+
+**Case 3**
+^^^^^^^^^^
+
+.. code-block:: bash
+
+ $ cd egs/aishell/ASR
+ $ ./transducer_stateless_modified/train.py --num-epochs 10 --start-epoch 3
+
+It loads checkpoint ``./transducer_stateless_modified/exp/epoch-2.pt`` and starts
+training from epoch 3. Also, it trains for 10 epochs.
+
+Decoding
+--------
+
+The decoding part uses checkpoints saved by the training part, so you have
+to run the training part first.
+
+.. code-block:: bash
+
+ $ cd egs/aishell/ASR
+ $ ./transducer_stateless_modified/decode.py --help
+
+shows the options for decoding.
+
+The commonly used options are:
+
+ - ``--method``
+
+ This specifies the decoding method. Currently, it supports:
+
+ - **greedy_search**. You can provide the commandline option ``--max-sym-per-frame``
+ to limit the maximum number of symbols that can be emitted per frame.
+
+ - **beam_search**. You can provide the commandline option ``--beam-size``.
+
+ - **modified_beam_search**. You can also provide the commandline option ``--beam-size``.
+ To use this method, we assume that you have trained your model with modified transducer,
+ i.e., used the option ``--modified-transducer-prob`` in the training.
+
+ The following command uses greedy search for decoding
+
+ .. code-block::
+
+ $ cd egs/aishell/ASR
+ $ ./transducer_stateless_modified/decode.py \
+ --epoch 64 \
+ --avg 33 \
+ --exp-dir ./transducer_stateless_modified/exp \
+ --max-duration 100 \
+ --decoding-method greedy_search \
+ --max-sym-per-frame 1
+
+ The following command uses beam search for decoding
+
+ .. code-block::
+
+ $ cd egs/aishell/ASR
+ $ ./transducer_stateless_modified/decode.py \
+ --epoch 64 \
+ --avg 33 \
+ --exp-dir ./transducer_stateless_modified/exp \
+ --max-duration 100 \
+ --decoding-method beam_search \
+ --beam-size 4
+
+ The following command uses ``modified`` beam search for decoding
+
+ .. code-block::
+
+ $ cd egs/aishell/ASR
+ $ ./transducer_stateless_modified/decode.py \
+ --epoch 64 \
+ --avg 33 \
+ --exp-dir ./transducer_stateless_modified/exp \
+ --max-duration 100 \
+ --decoding-method modified_beam_search \
+ --beam-size 4
+
+ - ``--max-duration``
+
+ It has the same meaning as the one used in training. A larger
+ value may cause OOM.
+
+ - ``--epoch``
+
+ It specifies the checkpoint from which epoch that should be used for decoding.
+
+ - ``--avg``
+
+ It specifies the number of models to average. For instance, if it is 3 and if
+ ``--epoch=10``, then it averages the checkpoints ``epoch-8.pt``, ``epoch-9.pt``,
+ and ``epoch-10.pt`` and the averaged checkpoint is used for decoding.
+
+After decoding, you can find the decoding logs and results in `exp_dir/log/`, e.g.,
+``exp_dir/log/greedy_search``.
+
+Pre-trained Model
+-----------------
+
+We have uploaded a pre-trained model to
+``_
+
+We describe how to use the pre-trained model to transcribe a sound file or
+multiple sound files in the following.
+
+Install kaldifeat
+~~~~~~~~~~~~~~~~~
+
+`kaldifeat `_ is used to
+extract features for a single sound file or multiple sound files
+at the same time.
+
+Please refer to ``_ for installation.
+
+Download the pre-trained model
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following commands describe how to download the pre-trained model:
+
+.. code-block::
+
+ $ cd egs/aishell/ASR
+ $ mkdir tmp
+ $ cd tmp
+ $ git lfs install
+ $ git clone https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2022-03-01
+
+
+.. CAUTION::
+
+ You have to use ``git lfs`` to download the pre-trained model.
+
+After downloading, you will have the following files:
+
+.. code-block:: bash
+
+ $ cd egs/aishell/ASR
+ $ tree tmp/icefall-aishell-transducer-stateless-modified-2022-03-01
+
+
+.. code-block:: bash
+
+ tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/
+ |-- README.md
+ |-- data
+ | `-- lang_char
+ | |-- L.pt
+ | |-- lexicon.txt
+ | |-- tokens.txt
+ | `-- words.txt
+ |-- exp
+ | `-- pretrained.pt
+ |-- log
+ | |-- errs-test-beam_4-epoch-64-avg-33-beam-4.txt
+ | |-- errs-test-greedy_search-epoch-64-avg-33-context-2-max-sym-per-frame-1.txt
+ | |-- log-decode-epoch-64-avg-33-beam-4-2022-03-02-12-05-03
+ | |-- log-decode-epoch-64-avg-33-context-2-max-sym-per-frame-1-2022-02-28-18-13-07
+ | |-- recogs-test-beam_4-epoch-64-avg-33-beam-4.txt
+ | `-- recogs-test-greedy_search-epoch-64-avg-33-context-2-max-sym-per-frame-1.txt
+ `-- test_wavs
+ |-- BAC009S0764W0121.wav
+ |-- BAC009S0764W0122.wav
+ |-- BAC009S0764W0123.wav
+ `-- transcript.txt
+
+ 5 directories, 16 files
+
+
+**File descriptions**:
+
+ - ``data/lang_char``
+
+ It contains language related files. You can find the vocabulary size in ``tokens.txt``.
+
+ - ``exp/pretrained.pt``
+
+ It contains pre-trained model parameters, obtained by averaging
+ checkpoints from ``epoch-32.pt`` to ``epoch-64.pt``.
+ Note: We have removed optimizer ``state_dict`` to reduce file size.
+
+ - ``log``
+
+ It contains decoding logs and decoded results.
+
+ - ``test_wavs``
+
+ It contains some test sound files from Aishell ``test`` dataset.
+
+The information of the test sound files is listed below:
+
+.. code-block:: bash
+
+ $ soxi tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/*.wav
+
+ Input File : 'tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav'
+ Channels : 1
+ Sample Rate : 16000
+ Precision : 16-bit
+ Duration : 00:00:04.20 = 67263 samples ~ 315.295 CDDA sectors
+ File Size : 135k
+ Bit Rate : 256k
+ Sample Encoding: 16-bit Signed Integer PCM
+
+
+ Input File : 'tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav'
+ Channels : 1
+ Sample Rate : 16000
+ Precision : 16-bit
+ Duration : 00:00:04.12 = 65840 samples ~ 308.625 CDDA sectors
+ File Size : 132k
+ Bit Rate : 256k
+ Sample Encoding: 16-bit Signed Integer PCM
+
+
+ Input File : 'tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav'
+ Channels : 1
+ Sample Rate : 16000
+ Precision : 16-bit
+ Duration : 00:00:04.00 = 64000 samples ~ 300 CDDA sectors
+ File Size : 128k
+ Bit Rate : 256k
+ Sample Encoding: 16-bit Signed Integer PCM
+
+ Total Duration of 3 files: 00:00:12.32
+
+Usage
+~~~~~
+
+.. code-block::
+
+ $ cd egs/aishell/ASR
+ $ ./transducer_stateless_modified/pretrained.py --help
+
+displays the help information.
+
+It supports three decoding methods:
+
+ - greedy search
+ - beam search
+ - modified beam search
+
+.. note::
+
+ In modified beam search, it limits the maximum number of symbols that can be
+ emitted per frame to 1. To use this method, you have to ensure that your model
+ has been trained with the option ``--modified-transducer-prob``. Otherwise,
+ it may give you poor results.
+
+Greedy search
+^^^^^^^^^^^^^
+
+The command to run greedy search is given below:
+
+.. code-block:: bash
+
+
+ $ cd egs/aishell/ASR
+ $ ./transducer_stateless_modified/pretrained.py \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char \
+ --method greedy_search \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav
+
+The output is as follows:
+
+.. code-block::
+
+ 2022-03-03 15:35:26,531 INFO [pretrained.py:239] device: cuda:0
+ 2022-03-03 15:35:26,994 INFO [lexicon.py:176] Loading pre-compiled tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char/Linv.pt
+ 2022-03-03 15:35:27,027 INFO [pretrained.py:246] {'feature_dim': 80, 'encoder_out_dim': 512, 'subsampling_factor': 4, 'attention_dim': 512, 'nhead': 8, 'dim_feedforward': 2048, 'num_encoder_layers': 12, 'vgg_frontend': False, 'env_info': {'k2-version': '1.13', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'f4fefe4882bc0ae59af951da3f47335d5495ef71', 'k2-git-date': 'Thu Feb 10 15:16:02 2022', 'lhotse-version': '1.0.0.dev+missing.version.file', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'master', 'icefall-git-sha1': '50d2281-clean', 'icefall-git-date': 'Wed Mar 2 16:02:38 2022', 'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-aishell', 'k2-path': '/ceph-fj/fangjun/open-source-2/k2-multi-datasets/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/fangjun/open-source-2/lhotse-aishell/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-2-0815224919-75d558775b-mmnv8', 'IP address': '10.177.72.138'}, 'sample_rate': 16000, 'checkpoint': './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt', 'lang_dir': PosixPath('tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char'), 'method': 'greedy_search', 'sound_files': ['./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav'], 'beam_size': 4, 'context_size': 2, 'max_sym_per_frame': 3, 'blank_id': 0, 'vocab_size': 4336}
+ 2022-03-03 15:35:27,027 INFO [pretrained.py:248] About to create model
+ 2022-03-03 15:35:36,878 INFO [pretrained.py:257] Constructing Fbank computer
+ 2022-03-03 15:35:36,880 INFO [pretrained.py:267] Reading sound files: ['./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav']
+ 2022-03-03 15:35:36,891 INFO [pretrained.py:273] Decoding started
+ /ceph-fj/fangjun/open-source-2/icefall-aishell/egs/aishell/ASR/transducer_stateless_modified/conformer.py:113: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
+ lengths = ((x_lens - 1) // 2 - 1) // 2
+ 2022-03-03 15:35:37,163 INFO [pretrained.py:320]
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav:
+ 甚 至 出 现 交 易 几 乎 停 滞 的 情 况
+
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav:
+ 一 二 线 城 市 虽 然 也 处 于 调 整 中
+
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav:
+ 但 因 为 聚 集 了 过 多 公 共 资 源
+
+ 2022-03-03 15:35:37,163 INFO [pretrained.py:322] Decoding Done
+
+Beam search
+^^^^^^^^^^^
+
+The command to run beam search is given below:
+
+.. code-block:: bash
+
+
+ $ cd egs/aishell/ASR
+
+ $ ./transducer_stateless_modified/pretrained.py \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char \
+ --method beam_search \
+ --beam-size 4 \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav
+
+The output is as follows:
+
+.. code-block::
+
+ 2022-03-03 15:39:09,285 INFO [pretrained.py:239] device: cuda:0
+ 2022-03-03 15:39:09,708 INFO [lexicon.py:176] Loading pre-compiled tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char/Linv.pt
+ 2022-03-03 15:39:09,759 INFO [pretrained.py:246] {'feature_dim': 80, 'encoder_out_dim': 512, 'subsampling_factor': 4, 'attention_dim': 512, 'nhead': 8, 'dim_feedforward': 2048, 'num_encoder_layers': 12, 'vgg_frontend': False, 'env_info': {'k2-version': '1.13', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'f4fefe4882bc0ae59af951da3f47335d5495ef71', 'k2-git-date': 'Thu Feb 10 15:16:02 2022', 'lhotse-version': '1.0.0.dev+missing.version.file', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'master', 'icefall-git-sha1': '50d2281-clean', 'icefall-git-date': 'Wed Mar 2 16:02:38 2022', 'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-aishell', 'k2-path': '/ceph-fj/fangjun/open-source-2/k2-multi-datasets/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/fangjun/open-source-2/lhotse-aishell/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-2-0815224919-75d558775b-mmnv8', 'IP address': '10.177.72.138'}, 'sample_rate': 16000, 'checkpoint': './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt', 'lang_dir': PosixPath('tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char'), 'method': 'beam_search', 'sound_files': ['./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav'], 'beam_size': 4, 'context_size': 2, 'max_sym_per_frame': 3, 'blank_id': 0, 'vocab_size': 4336}
+ 2022-03-03 15:39:09,760 INFO [pretrained.py:248] About to create model
+ 2022-03-03 15:39:18,919 INFO [pretrained.py:257] Constructing Fbank computer
+ 2022-03-03 15:39:18,922 INFO [pretrained.py:267] Reading sound files: ['./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav']
+ 2022-03-03 15:39:18,929 INFO [pretrained.py:273] Decoding started
+ /ceph-fj/fangjun/open-source-2/icefall-aishell/egs/aishell/ASR/transducer_stateless_modified/conformer.py:113: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
+ lengths = ((x_lens - 1) // 2 - 1) // 2
+ 2022-03-03 15:39:21,046 INFO [pretrained.py:320]
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav:
+ 甚 至 出 现 交 易 几 乎 停 滞 的 情 况
+
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav:
+ 一 二 线 城 市 虽 然 也 处 于 调 整 中
+
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav:
+ 但 因 为 聚 集 了 过 多 公 共 资 源
+
+ 2022-03-03 15:39:21,047 INFO [pretrained.py:322] Decoding Done
+
+Modified Beam search
+^^^^^^^^^^^^^^^^^^^^
+
+The command to run modified beam search is given below:
+
+.. code-block:: bash
+
+
+ $ cd egs/aishell/ASR
+
+ $ ./transducer_stateless_modified/pretrained.py \
+ --checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt \
+ --lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char \
+ --method modified_beam_search \
+ --beam-size 4 \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav \
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav
+
+The output is as follows:
+
+.. code-block::
+
+ 2022-03-03 15:41:23,319 INFO [pretrained.py:239] device: cuda:0
+ 2022-03-03 15:41:23,798 INFO [lexicon.py:176] Loading pre-compiled tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char/Linv.pt
+ 2022-03-03 15:41:23,831 INFO [pretrained.py:246] {'feature_dim': 80, 'encoder_out_dim': 512, 'subsampling_factor': 4, 'attention_dim': 512, 'nhead': 8, 'dim_feedforward': 2048, 'num_encoder_layers': 12, 'vgg_frontend': False, 'env_info': {'k2-version': '1.13', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'f4fefe4882bc0ae59af951da3f47335d5495ef71', 'k2-git-date': 'Thu Feb 10 15:16:02 2022', 'lhotse-version': '1.0.0.dev+missing.version.file', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'master', 'icefall-git-sha1': '50d2281-clean', 'icefall-git-date': 'Wed Mar 2 16:02:38 2022', 'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-aishell', 'k2-path': '/ceph-fj/fangjun/open-source-2/k2-multi-datasets/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/fangjun/open-source-2/lhotse-aishell/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-2-0815224919-75d558775b-mmnv8', 'IP address': '10.177.72.138'}, 'sample_rate': 16000, 'checkpoint': './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt', 'lang_dir': PosixPath('tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_char'), 'method': 'modified_beam_search', 'sound_files': ['./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav'], 'beam_size': 4, 'context_size': 2, 'max_sym_per_frame': 3, 'blank_id': 0, 'vocab_size': 4336}
+ 2022-03-03 15:41:23,831 INFO [pretrained.py:248] About to create model
+ 2022-03-03 15:41:32,214 INFO [pretrained.py:257] Constructing Fbank computer
+ 2022-03-03 15:41:32,215 INFO [pretrained.py:267] Reading sound files: ['./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav']
+ 2022-03-03 15:41:32,220 INFO [pretrained.py:273] Decoding started
+ /ceph-fj/fangjun/open-source-2/icefall-aishell/egs/aishell/ASR/transducer_stateless_modified/conformer.py:113: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
+ lengths = ((x_lens - 1) // 2 - 1) // 2
+ /ceph-fj/fangjun/open-source-2/icefall-aishell/egs/aishell/ASR/transducer_stateless_modified/beam_search.py:402: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
+ topk_hyp_indexes = topk_indexes // logits.size(-1)
+ 2022-03-03 15:41:32,583 INFO [pretrained.py:320]
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav:
+ 甚 至 出 现 交 易 几 乎 停 滞 的 情 况
+
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0122.wav:
+ 一 二 线 城 市 虽 然 也 处 于 调 整 中
+
+ ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0123.wav:
+ 但 因 为 聚 集 了 过 多 公 共 资 源
+
+ 2022-03-03 15:41:32,583 INFO [pretrained.py:322] Decoding Done
+
+Colab notebook
+--------------
+
+We provide a colab notebook for this recipe showing how to use a pre-trained model to
+transcribe sound files.
+
+|aishell asr stateless modified transducer colab notebook|
+
+.. |aishell asr stateless modified transducer colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
+ :target: https://colab.research.google.com/drive/12jpTxJB44vzwtcmJl2DTdznW0OawPb9H?usp=sharing
diff --git a/docs/source/recipes/index.rst b/docs/source/recipes/index.rst
index 78e9ea569..9d1d83d29 100644
--- a/docs/source/recipes/index.rst
+++ b/docs/source/recipes/index.rst
@@ -10,12 +10,10 @@ We may add recipes for other tasks as well in the future.
.. Other recipes are listed in a alphabetical order.
.. toctree::
- :maxdepth: 3
+ :maxdepth: 2
+ :caption: Table of Contents
- yesno
-
- librispeech
-
- aishell
-
- timit
+ aishell/index
+ librispeech/index
+ timit/index
+ yesno/index
diff --git a/docs/source/recipes/librispeech.rst b/docs/source/recipes/librispeech.rst
deleted file mode 100644
index 946b23407..000000000
--- a/docs/source/recipes/librispeech.rst
+++ /dev/null
@@ -1,10 +0,0 @@
-LibriSpeech
-===========
-
-We provide the following models for the LibriSpeech dataset:
-
-.. toctree::
- :maxdepth: 2
-
- librispeech/tdnn_lstm_ctc
- librispeech/conformer_ctc
diff --git a/docs/source/recipes/librispeech/index.rst b/docs/source/recipes/librispeech/index.rst
new file mode 100644
index 000000000..5fa08ab6b
--- /dev/null
+++ b/docs/source/recipes/librispeech/index.rst
@@ -0,0 +1,8 @@
+LibriSpeech
+===========
+
+.. toctree::
+ :maxdepth: 1
+
+ tdnn_lstm_ctc
+ conformer_ctc
diff --git a/docs/source/recipes/timit.rst b/docs/source/recipes/timit.rst
deleted file mode 100644
index b630e2ce4..000000000
--- a/docs/source/recipes/timit.rst
+++ /dev/null
@@ -1,10 +0,0 @@
-TIMIT
-===========
-
-We provide the following models for the TIMIT dataset:
-
-.. toctree::
- :maxdepth: 2
-
- timit/tdnn_lstm_ctc
- timit/tdnn_ligru_ctc
\ No newline at end of file
diff --git a/docs/source/recipes/timit/index.rst b/docs/source/recipes/timit/index.rst
new file mode 100644
index 000000000..17f40cdb7
--- /dev/null
+++ b/docs/source/recipes/timit/index.rst
@@ -0,0 +1,9 @@
+TIMIT
+=====
+
+.. toctree::
+ :maxdepth: 1
+
+ tdnn_ligru_ctc
+ tdnn_lstm_ctc
+
diff --git a/docs/source/recipes/timit/tdnn_ligru_ctc.rst b/docs/source/recipes/timit/tdnn_ligru_ctc.rst
index 30877505f..186420ee7 100644
--- a/docs/source/recipes/timit/tdnn_ligru_ctc.rst
+++ b/docs/source/recipes/timit/tdnn_ligru_ctc.rst
@@ -1,5 +1,5 @@
TDNN-LiGRU-CTC
-=============
+==============
This tutorial shows you how to run a TDNN-LiGRU-CTC model with the `TIMIT `_ dataset.
diff --git a/docs/source/recipes/images/yesno-tdnn-tensorboard-log.png b/docs/source/recipes/yesno/images/tdnn-tensorboard-log.png
similarity index 100%
rename from docs/source/recipes/images/yesno-tdnn-tensorboard-log.png
rename to docs/source/recipes/yesno/images/tdnn-tensorboard-log.png
diff --git a/docs/source/recipes/yesno/index.rst b/docs/source/recipes/yesno/index.rst
new file mode 100644
index 000000000..d68523a97
--- /dev/null
+++ b/docs/source/recipes/yesno/index.rst
@@ -0,0 +1,7 @@
+YesNo
+=====
+
+.. toctree::
+ :maxdepth: 1
+
+ tdnn
diff --git a/docs/source/recipes/yesno.rst b/docs/source/recipes/yesno/tdnn.rst
similarity index 99%
rename from docs/source/recipes/yesno.rst
rename to docs/source/recipes/yesno/tdnn.rst
index cb425ad1d..e8b748e6b 100644
--- a/docs/source/recipes/yesno.rst
+++ b/docs/source/recipes/yesno/tdnn.rst
@@ -1,5 +1,5 @@
-yesno
-=====
+TDNN-CTC
+========
This page shows you how to run the `yesno `_ recipe. It contains:
@@ -145,7 +145,7 @@ In ``tdnn/exp``, you will find the following files:
Note there is a URL in the above output, click it and you will see
the following screenshot:
- .. figure:: images/yesno-tdnn-tensorboard-log.png
+ .. figure:: images/tdnn-tensorboard-log.png
:width: 600
:alt: TensorBoard screenshot
:align: center
diff --git a/egs/aishell/ASR/README.md b/egs/aishell/ASR/README.md
index 3fd177376..d0a0c1829 100644
--- a/egs/aishell/ASR/README.md
+++ b/egs/aishell/ASR/README.md
@@ -1,3 +1,20 @@
-Please refer to
+# Introduction
+
+Please refer to
for how to run models in this recipe.
+
+# Transducers
+
+There are various folders containing the name `transducer` in this folder.
+The following table lists the differences among them.
+
+| | Encoder | Decoder | Comment |
+|------------------------------------|-----------|--------------------|-----------------------------------------------------------------------------------|
+| `transducer_stateless` | Conformer | Embedding + Conv1d | with `k2.rnnt_loss` |
+| `transducer_stateless_modified` | Conformer | Embedding + Conv1d | with modified transducer from `optimized_transducer` |
+| `transducer_stateless_modified-2` | Conformer | Embedding + Conv1d | with modified transducer from `optimized_transducer` + extra data |
+
+The decoder in `transducer_stateless` is modified from the paper
+[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/).
+We place an additional Conv1d layer right after the input embedding layer.
diff --git a/egs/aishell/ASR/RESULTS.md b/egs/aishell/ASR/RESULTS.md
index dd27e1f35..ecc93c21b 100644
--- a/egs/aishell/ASR/RESULTS.md
+++ b/egs/aishell/ASR/RESULTS.md
@@ -1,12 +1,198 @@
## Results
+### Aishell training result(Transducer-stateless)
+
+#### 2022-03-01
+
+[./transducer_stateless_modified-2](./transducer_stateless_modified-2)
+
+Stateless transducer + modified transducer + using [aidatatang_200zh](http://www.openslr.org/62/) as extra training data.
+
+
+| | test |comment |
+|------------------------|------|----------------------------------------------------------------|
+| greedy search | 4.94 |--epoch 89, --avg 38, --max-duration 100, --max-sym-per-frame 1 |
+| modified beam search | 4.68 |--epoch 89, --avg 38, --max-duration 100 --beam-size 4 |
+
+The training commands are:
+
+```bash
+cd egs/aishell/ASR
+./prepare.sh --stop-stage 6
+./prepare_aidatatang_200zh.sh
+
+export CUDA_VISIBLE_DEVICES="0,1,2"
+
+./transducer_stateless_modified-2/train.py \
+ --world-size 3 \
+ --num-epochs 90 \
+ --start-epoch 0 \
+ --exp-dir transducer_stateless_modified-2/exp-2 \
+ --max-duration 250 \
+ --lr-factor 2.0 \
+ --context-size 2 \
+ --modified-transducer-prob 0.25 \
+ --datatang-prob 0.2
+```
+
+The tensorboard log is available at
+
+
+The commands for decoding are
+
+```bash
+# greedy search
+for epoch in 89; do
+ for avg in 38; do
+ ./transducer_stateless_modified-2/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir transducer_stateless_modified-2/exp-2 \
+ --max-duration 100 \
+ --context-size 2 \
+ --decoding-method greedy_search \
+ --max-sym-per-frame 1
+ done
+done
+
+# modified beam search
+for epoch in 89; do
+ for avg in 38; do
+ ./transducer_stateless_modified-2/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir transducer_stateless_modified-2/exp-2 \
+ --max-duration 100 \
+ --context-size 2 \
+ --decoding-method modified_beam_search \
+ --beam-size 4
+ done
+done
+```
+
+You can find a pre-trained model, decoding logs, and decoding results at
+
+
+#### 2022-03-01
+
+[./transducer_stateless_modified](./transducer_stateless_modified)
+
+Stateless transducer + modified transducer.
+
+| | test |comment |
+|------------------------|------|----------------------------------------------------------------|
+| greedy search | 5.22 |--epoch 64, --avg 33, --max-duration 100, --max-sym-per-frame 1 |
+| modified beam search | 5.02 |--epoch 64, --avg 33, --max-duration 100 --beam-size 4 |
+
+The training commands are:
+
+```bash
+cd egs/aishell/ASR
+./prepare.sh --stop-stage 6
+
+export CUDA_VISIBLE_DEVICES="0,1,2"
+
+./transducer_stateless_modified/train.py \
+ --world-size 3 \
+ --num-epochs 90 \
+ --start-epoch 0 \
+ --exp-dir transducer_stateless_modified/exp-4 \
+ --max-duration 250 \
+ --lr-factor 2.0 \
+ --context-size 2 \
+ --modified-transducer-prob 0.25
+```
+
+The tensorboard log is available at
+
+
+The commands for decoding are
+
+```bash
+# greedy search
+for epoch in 64; do
+ for avg in 33; do
+ ./transducer_stateless_modified/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir transducer_stateless_modified/exp-4 \
+ --max-duration 100 \
+ --context-size 2 \
+ --decoding-method greedy_search \
+ --max-sym-per-frame 1
+ done
+done
+
+# modified beam search
+for epoch in 64; do
+ for avg in 33; do
+ ./transducer_stateless_modified/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir transducer_stateless_modified/exp-4 \
+ --max-duration 100 \
+ --context-size 2 \
+ --decoding-method modified_beam_search \
+ --beam-size 4
+ done
+done
+```
+
+You can find a pre-trained model, decoding logs, and decoding results at
+
+
+
+#### 2022-2-19
+(Duo Ma): The tensorboard log for training is available at https://tensorboard.dev/experiment/25PmX3MxSVGTdvIdhOwllw/#scalars
+You can find a pretrained model by visiting https://huggingface.co/shuanguanma/icefall_aishell_transducer_stateless_context_size2_epoch60_2022_2_19
+| | test |comment |
+|---------------------------|------|-----------------------------------------|
+| greedy search | 5.4 |--epoch 59, --avg 10, --max-duration 100 |
+| beam search | 5.05|--epoch 59, --avg 10, --max-duration 100 |
+
+You can use the following commands to reproduce our results:
+
+```bash
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+python3 ./transducer_stateless/train.py \
+ --world-size 4 \
+ --num-epochs 60 \
+ --start-epoch 0 \
+ --exp-dir exp/transducer_stateless_context_size2 \
+ --max-duration 100 \
+ --lr-factor 2.5 \
+ --context-size 2
+
+lang_dir=data/lang_char
+dir=exp/transducer_stateless_context_size2
+python3 ./transducer_stateless/decode.py \
+ --epoch 59 \
+ --avg 10 \
+ --exp-dir $dir \
+ --lang-dir $lang_dir \
+ --decoding-method greedy_search \
+ --context-size 2 \
+ --max-sym-per-frame 3
+
+lang_dir=data/lang_char
+dir=exp/transducer_stateless_context_size2
+python3 ./transducer_stateless/decode.py \
+ --epoch 59 \
+ --avg 10 \
+ --exp-dir $dir \
+ --lang-dir $lang_dir \
+ --decoding-method beam_search \
+ --context-size 2 \
+ --max-sym-per-frame 3
+```
### Aishell training results (Transducer-stateless)
-#### 2021-12-29
-(Pingfeng Luo) : The tensorboard log for training is available at
+#### 2022-02-18
+(Pingfeng Luo) : The tensorboard log for training is available at
+And pretrained model is available at
||test|
|--|--|
-|CER| 5.7% |
+|CER| 5.05% |
You can use the following commands to reproduce our results:
@@ -16,17 +202,17 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7,8"
--bucketing-sampler True \
--world-size 8 \
--lang-dir data/lang_char \
- --num-epochs 40 \
+ --num-epochs 60 \
--start-epoch 0 \
- --exp-dir transducer_stateless/exp_char \
- --max-duration 160 \
+ --exp-dir transducer_stateless/exp_rnnt_k2 \
+ --max-duration 80 \
--lr-factor 3
./transducer_stateless/decode.py \
- --epoch 39 \
+ --epoch 59 \
--avg 10 \
--lang-dir data/lang_char \
- --exp-dir transducer_stateless/exp_char \
+ --exp-dir transducer_stateless/exp_rnnt_k2 \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
diff --git a/egs/aishell/ASR/conformer_ctc/train.py b/egs/aishell/ASR/conformer_ctc/train.py
index a4bc8e3bb..369ad310f 100755
--- a/egs/aishell/ASR/conformer_ctc/train.py
+++ b/egs/aishell/ASR/conformer_ctc/train.py
@@ -121,6 +121,13 @@ def get_parser():
""",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -555,7 +562,7 @@ def run(rank, world_size, args):
params = get_params()
params.update(vars(args))
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -618,6 +625,7 @@ def run(rank, world_size, args):
valid_dl = aishell.valid_dataloaders(aishell.valid_cuts())
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
cur_lr = optimizer._rate
diff --git a/egs/aishell/ASR/conformer_mmi/train.py b/egs/aishell/ASR/conformer_mmi/train.py
index 79c16d1cc..685831d09 100755
--- a/egs/aishell/ASR/conformer_mmi/train.py
+++ b/egs/aishell/ASR/conformer_mmi/train.py
@@ -124,6 +124,13 @@ def get_parser():
""",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -546,7 +553,7 @@ def run(rank, world_size, args):
params = get_params()
params.update(vars(args))
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -613,6 +620,7 @@ def run(rank, world_size, args):
valid_dl = aishell.valid_dataloaders(aishell.valid_cuts())
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
cur_lr = optimizer._rate
diff --git a/egs/aishell/ASR/local/compile_hlg.py b/egs/aishell/ASR/local/compile_hlg.py
deleted file mode 100755
index 098d5d6a3..000000000
--- a/egs/aishell/ASR/local/compile_hlg.py
+++ /dev/null
@@ -1,156 +0,0 @@
-#!/usr/bin/env python3
-# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
-#
-# See ../../../../LICENSE for clarification regarding multiple authors
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-"""
-This script takes as input lang_dir and generates HLG from
-
- - H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
- - L, the lexicon, built from lang_dir/L_disambig.pt
-
- Caution: We use a lexicon that contains disambiguation symbols
-
- - G, the LM, built from data/lm/G_3_gram.fst.txt
-
-The generated HLG is saved in $lang_dir/HLG.pt
-"""
-import argparse
-import logging
-from pathlib import Path
-
-import k2
-import torch
-
-from icefall.lexicon import Lexicon
-
-
-def get_args():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--lang-dir",
- type=str,
- help="""Input and output directory.
- """,
- )
-
- return parser.parse_args()
-
-
-def compile_HLG(lang_dir: str) -> k2.Fsa:
- """
- Args:
- lang_dir:
- The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
-
- Return:
- An FSA representing HLG.
- """
- lexicon = Lexicon(lang_dir)
- max_token_id = max(lexicon.tokens)
- logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
- H = k2.ctc_topo(max_token_id)
- L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
-
- if Path("data/lm/G_3_gram.pt").is_file():
- logging.info("Loading pre-compiled G_3_gram")
- d = torch.load("data/lm/G_3_gram.pt")
- G = k2.Fsa.from_dict(d)
- else:
- logging.info("Loading G_3_gram.fst.txt")
- with open("data/lm/G_3_gram.fst.txt") as f:
- G = k2.Fsa.from_openfst(f.read(), acceptor=False)
- torch.save(G.as_dict(), "data/lm/G_3_gram.pt")
-
- first_token_disambig_id = lexicon.token_table["#0"]
- first_word_disambig_id = lexicon.word_table["#0"]
-
- L = k2.arc_sort(L)
- G = k2.arc_sort(G)
-
- logging.info("Intersecting L and G")
- LG = k2.compose(L, G)
- logging.info(f"LG shape: {LG.shape}")
-
- logging.info("Connecting LG")
- LG = k2.connect(LG)
- logging.info(f"LG shape after k2.connect: {LG.shape}")
-
- logging.info(type(LG.aux_labels))
- logging.info("Determinizing LG")
-
- LG = k2.determinize(LG)
- logging.info(type(LG.aux_labels))
-
- logging.info("Connecting LG after k2.determinize")
- LG = k2.connect(LG)
-
- logging.info("Removing disambiguation symbols on LG")
-
- LG.labels[LG.labels >= first_token_disambig_id] = 0
-
- assert isinstance(LG.aux_labels, k2.RaggedTensor)
- LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
-
- LG = k2.remove_epsilon(LG)
- logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
-
- LG = k2.connect(LG)
- LG.aux_labels = LG.aux_labels.remove_values_eq(0)
-
- logging.info("Arc sorting LG")
- LG = k2.arc_sort(LG)
-
- logging.info("Composing H and LG")
- # CAUTION: The name of the inner_labels is fixed
- # to `tokens`. If you want to change it, please
- # also change other places in icefall that are using
- # it.
- HLG = k2.compose(H, LG, inner_labels="tokens")
-
- logging.info("Connecting LG")
- HLG = k2.connect(HLG)
-
- logging.info("Arc sorting LG")
- HLG = k2.arc_sort(HLG)
- logging.info(f"HLG.shape: {HLG.shape}")
-
- return HLG
-
-
-def main():
- args = get_args()
- lang_dir = Path(args.lang_dir)
-
- if (lang_dir / "HLG.pt").is_file():
- logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
- return
-
- logging.info(f"Processing {lang_dir}")
-
- HLG = compile_HLG(lang_dir)
- logging.info(f"Saving HLG.pt to {lang_dir}")
- torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")
-
-
-if __name__ == "__main__":
- formatter = (
- "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
- )
-
- logging.basicConfig(format=formatter, level=logging.INFO)
-
- main()
diff --git a/egs/aishell/ASR/local/compile_hlg.py b/egs/aishell/ASR/local/compile_hlg.py
new file mode 120000
index 000000000..471aa7fb4
--- /dev/null
+++ b/egs/aishell/ASR/local/compile_hlg.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/compile_hlg.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/local/compute_fbank_musan.py b/egs/aishell/ASR/local/compute_fbank_musan.py
deleted file mode 100755
index e79bdafb1..000000000
--- a/egs/aishell/ASR/local/compute_fbank_musan.py
+++ /dev/null
@@ -1,110 +0,0 @@
-#!/usr/bin/env python3
-# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
-#
-# See ../../../../LICENSE for clarification regarding multiple authors
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-"""
-This file computes fbank features of the musan dataset.
-It looks for manifests in the directory data/manifests.
-
-The generated fbank features are saved in data/fbank.
-"""
-
-import argparse
-import logging
-import os
-from pathlib import Path
-
-import torch
-from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer, combine
-from lhotse.recipes.utils import read_manifests_if_cached
-
-from icefall.utils import get_executor
-
-# Torch's multithreaded behavior needs to be disabled or
-# it wastes a lot of CPU and slow things down.
-# Do this outside of main() in case it needs to take effect
-# even when we are not invoking the main (e.g. when spawning subprocesses).
-torch.set_num_threads(1)
-torch.set_num_interop_threads(1)
-
-
-def compute_fbank_musan(num_mel_bins: int = 80):
- src_dir = Path("data/manifests")
- output_dir = Path("data/fbank")
- num_jobs = min(15, os.cpu_count())
-
- dataset_parts = (
- "music",
- "speech",
- "noise",
- )
- manifests = read_manifests_if_cached(
- dataset_parts=dataset_parts, output_dir=src_dir
- )
- assert manifests is not None
-
- musan_cuts_path = output_dir / "cuts_musan.json.gz"
-
- if musan_cuts_path.is_file():
- logging.info(f"{musan_cuts_path} already exists - skipping")
- return
-
- logging.info("Extracting features for Musan")
-
- extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
-
- with get_executor() as ex: # Initialize the executor only once.
- # create chunks of Musan with duration 5 - 10 seconds
- musan_cuts = (
- CutSet.from_manifests(
- recordings=combine(
- part["recordings"] for part in manifests.values()
- )
- )
- .cut_into_windows(10.0)
- .filter(lambda c: c.duration > 5)
- .compute_and_store_features(
- extractor=extractor,
- storage_path=f"{output_dir}/feats_musan",
- num_jobs=num_jobs if ex is None else 80,
- executor=ex,
- storage_type=LilcomHdf5Writer,
- )
- )
- musan_cuts.to_json(musan_cuts_path)
-
-
-def get_args():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--num-mel-bins",
- type=int,
- default=80,
- help="""The number of mel bins for Fbank""",
- )
-
- return parser.parse_args()
-
-
-if __name__ == "__main__":
- formatter = (
- "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
- )
-
- logging.basicConfig(format=formatter, level=logging.INFO)
- args = get_args()
- compute_fbank_musan(num_mel_bins=args.num_mel_bins)
diff --git a/egs/aishell/ASR/local/compute_fbank_musan.py b/egs/aishell/ASR/local/compute_fbank_musan.py
new file mode 120000
index 000000000..5833f2484
--- /dev/null
+++ b/egs/aishell/ASR/local/compute_fbank_musan.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/compute_fbank_musan.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/local/convert_transcript_words_to_tokens.py b/egs/aishell/ASR/local/convert_transcript_words_to_tokens.py
deleted file mode 100755
index 133499c8b..000000000
--- a/egs/aishell/ASR/local/convert_transcript_words_to_tokens.py
+++ /dev/null
@@ -1,107 +0,0 @@
-#!/usr/bin/env python3
-
-# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
-"""
-Convert a transcript file containing words to a corpus file containing tokens
-for LM training with the help of a lexicon.
-
-If the lexicon contains phones, the resulting LM will be a phone LM; If the
-lexicon contains word pieces, the resulting LM will be a word piece LM.
-
-If a word has multiple pronunciations, the one that appears first in the lexicon
-is kept; others are removed.
-
-If the input transcript is:
-
- hello zoo world hello
- world zoo
- foo zoo world hellO
-
-and if the lexicon is
-
- SPN
- hello h e l l o 2
- hello h e l l o
- world w o r l d
- zoo z o o
-
-Then the output is
-
- h e l l o 2 z o o w o r l d h e l l o 2
- w o r l d z o o
- SPN z o o w o r l d SPN
-"""
-
-import argparse
-from pathlib import Path
-from typing import Dict, List
-
-from generate_unique_lexicon import filter_multiple_pronunications
-
-from icefall.lexicon import read_lexicon
-
-
-def get_args():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--transcript",
- type=str,
- help="The input transcript file."
- "We assume that the transcript file consists of "
- "lines. Each line consists of space separated words.",
- )
- parser.add_argument("--lexicon", type=str, help="The input lexicon file.")
- parser.add_argument(
- "--oov", type=str, default="", help="The OOV word."
- )
-
- return parser.parse_args()
-
-
-def process_line(
- lexicon: Dict[str, List[str]], line: str, oov_token: str
-) -> None:
- """
- Args:
- lexicon:
- A dict containing pronunciations. Its keys are words and values
- are pronunciations (i.e., tokens).
- line:
- A line of transcript consisting of space(s) separated words.
- oov_token:
- The pronunciation of the oov word if a word in `line` is not present
- in the lexicon.
- Returns:
- Return None.
- """
- s = ""
- words = line.strip().split()
- for i, w in enumerate(words):
- tokens = lexicon.get(w, oov_token)
- s += " ".join(tokens)
- s += " "
- print(s.strip())
-
-
-def main():
- args = get_args()
- assert Path(args.lexicon).is_file()
- assert Path(args.transcript).is_file()
- assert len(args.oov) > 0
-
- # Only the first pronunciation of a word is kept
- lexicon = filter_multiple_pronunications(read_lexicon(args.lexicon))
-
- lexicon = dict(lexicon)
-
- assert args.oov in lexicon
-
- oov_token = lexicon[args.oov]
-
- with open(args.transcript) as f:
- for line in f:
- process_line(lexicon=lexicon, line=line, oov_token=oov_token)
-
-
-if __name__ == "__main__":
- main()
diff --git a/egs/aishell/ASR/local/convert_transcript_words_to_tokens.py b/egs/aishell/ASR/local/convert_transcript_words_to_tokens.py
new file mode 120000
index 000000000..2ce13fd69
--- /dev/null
+++ b/egs/aishell/ASR/local/convert_transcript_words_to_tokens.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/convert_transcript_words_to_tokens.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/local/display_manifest_statistics.py b/egs/aishell/ASR/local/display_manifest_statistics.py
new file mode 100755
index 000000000..0ae731a1d
--- /dev/null
+++ b/egs/aishell/ASR/local/display_manifest_statistics.py
@@ -0,0 +1,196 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+This file displays duration statistics of utterances in a manifest.
+You can use the displayed value to choose minimum/maximum duration
+to remove short and long utterances during the training.
+
+See the function `remove_short_and_long_utt()` in transducer_stateless/train.py
+for usage.
+"""
+
+
+from lhotse import load_manifest
+
+
+def main():
+ # path = "./data/fbank/cuts_train.json.gz"
+ # path = "./data/fbank/cuts_test.json.gz"
+ # path = "./data/fbank/cuts_dev.json.gz"
+ # path = "./data/fbank/aidatatang_200zh/cuts_train_raw.jsonl.gz"
+ # path = "./data/fbank/aidatatang_200zh/cuts_test_raw.jsonl.gz"
+ path = "./data/fbank/aidatatang_200zh/cuts_dev_raw.jsonl.gz"
+
+ cuts = load_manifest(path)
+ cuts.describe()
+
+
+if __name__ == "__main__":
+ main()
+
+"""
+## train (after speed perturb)
+Cuts count: 360294
+Total duration (hours): 455.6
+Speech duration (hours): 455.6 (100.0%)
+***
+Duration statistics (seconds):
+mean 4.6
+std 1.4
+min 1.1
+0.1% 1.8
+0.5% 2.2
+1% 2.3
+5% 2.7
+10% 3.0
+10% 3.0
+25% 3.5
+50% 4.3
+75% 5.4
+90% 6.5
+95% 7.2
+99% 8.8
+99.5% 9.4
+99.9% 10.9
+max 16.1
+
+## test
+Cuts count: 7176
+Total duration (hours): 10.0
+Speech duration (hours): 10.0 (100.0%)
+***
+Duration statistics (seconds):
+mean 5.0
+std 1.6
+min 1.9
+0.1% 2.2
+0.5% 2.4
+1% 2.6
+5% 3.0
+10% 3.2
+10% 3.2
+25% 3.8
+50% 4.7
+75% 5.9
+90% 7.3
+95% 8.2
+99% 9.9
+99.5% 10.7
+99.9% 11.9
+max 14.7
+
+## dev
+Cuts count: 14326
+Total duration (hours): 18.1
+Speech duration (hours): 18.1 (100.0%)
+***
+Duration statistics (seconds):
+mean 4.5
+std 1.3
+min 1.6
+0.1% 2.1
+0.5% 2.3
+1% 2.4
+5% 2.9
+10% 3.1
+10% 3.1
+25% 3.5
+50% 4.3
+75% 5.4
+90% 6.4
+95% 7.0
+99% 8.4
+99.5% 8.9
+99.9% 10.3
+max 12.5
+
+## aidatatang_200zh (train)
+Cuts count: 164905
+Total duration (hours): 139.9
+Speech duration (hours): 139.9 (100.0%)
+***
+Duration statistics (seconds):
+mean 3.1
+std 1.1
+min 1.1
+0.1% 1.5
+0.5% 1.7
+1% 1.8
+5% 2.0
+10% 2.1
+10% 2.1
+25% 2.3
+50% 2.7
+75% 3.4
+90% 4.6
+95% 5.4
+99% 7.1
+99.5% 7.8
+99.9% 9.1
+max 16.3
+
+## aidatatang_200zh (test)
+Cuts count: 48144
+Total duration (hours): 40.2
+Speech duration (hours): 40.2 (100.0%)
+***
+Duration statistics (seconds):
+mean 3.0
+std 1.1
+min 0.9
+0.1% 1.5
+0.5% 1.8
+1% 1.8
+5% 2.0
+10% 2.1
+10% 2.1
+25% 2.3
+50% 2.6
+75% 3.4
+90% 4.4
+95% 5.2
+99% 6.9
+99.5% 7.5
+99.9% 9.0
+max 21.8
+
+## aidatatang_200zh (dev)
+Cuts count: 24216
+Total duration (hours): 20.2
+Speech duration (hours): 20.2 (100.0%)
+***
+Duration statistics (seconds):
+mean 3.0
+std 1.0
+min 1.2
+0.1% 1.6
+0.5% 1.7
+1% 1.8
+5% 2.0
+10% 2.1
+10% 2.1
+25% 2.3
+50% 2.7
+75% 3.4
+90% 4.4
+95% 5.1
+99% 6.7
+99.5% 7.3
+99.9% 8.8
+max 11.3
+"""
diff --git a/egs/aishell/ASR/local/generate_unique_lexicon.py b/egs/aishell/ASR/local/generate_unique_lexicon.py
deleted file mode 100755
index 566c0743d..000000000
--- a/egs/aishell/ASR/local/generate_unique_lexicon.py
+++ /dev/null
@@ -1,100 +0,0 @@
-#!/usr/bin/env python3
-# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
-#
-# See ../../../../LICENSE for clarification regarding multiple authors
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-"""
-This file takes as input a lexicon.txt and output a new lexicon,
-in which each word has a unique pronunciation.
-
-The way to do this is to keep only the first pronunciation of a word
-in lexicon.txt.
-"""
-
-
-import argparse
-import logging
-from pathlib import Path
-from typing import List, Tuple
-
-from icefall.lexicon import read_lexicon, write_lexicon
-
-
-def get_args():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--lang-dir",
- type=str,
- help="""Input and output directory.
- It should contain a file lexicon.txt.
- This file will generate a new file uniq_lexicon.txt
- in it.
- """,
- )
-
- return parser.parse_args()
-
-
-def filter_multiple_pronunications(
- lexicon: List[Tuple[str, List[str]]]
-) -> List[Tuple[str, List[str]]]:
- """Remove multiple pronunciations of words from a lexicon.
-
- If a word has more than one pronunciation in the lexicon, only
- the first one is kept, while other pronunciations are removed
- from the lexicon.
-
- Args:
- lexicon:
- The input lexicon, containing a list of (word, [p1, p2, ..., pn]),
- where "p1, p2, ..., pn" are the pronunciations of the "word".
- Returns:
- Return a new lexicon where each word has a unique pronunciation.
- """
- seen = set()
- ans = []
-
- for word, tokens in lexicon:
- if word in seen:
- continue
- seen.add(word)
- ans.append((word, tokens))
- return ans
-
-
-def main():
- args = get_args()
- lang_dir = Path(args.lang_dir)
-
- lexicon_filename = lang_dir / "lexicon.txt"
-
- in_lexicon = read_lexicon(lexicon_filename)
-
- out_lexicon = filter_multiple_pronunications(in_lexicon)
-
- write_lexicon(lang_dir / "uniq_lexicon.txt", out_lexicon)
-
- logging.info(f"Number of entries in lexicon.txt: {len(in_lexicon)}")
- logging.info(f"Number of entries in uniq_lexicon.txt: {len(out_lexicon)}")
-
-
-if __name__ == "__main__":
- formatter = (
- "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
- )
-
- logging.basicConfig(format=formatter, level=logging.INFO)
-
- main()
diff --git a/egs/aishell/ASR/local/generate_unique_lexicon.py b/egs/aishell/ASR/local/generate_unique_lexicon.py
new file mode 120000
index 000000000..c0aea1403
--- /dev/null
+++ b/egs/aishell/ASR/local/generate_unique_lexicon.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/generate_unique_lexicon.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/local/process_aidatatang_200zh.py b/egs/aishell/ASR/local/process_aidatatang_200zh.py
new file mode 100755
index 000000000..2c6951d42
--- /dev/null
+++ b/egs/aishell/ASR/local/process_aidatatang_200zh.py
@@ -0,0 +1,72 @@
+#!/usr/bin/env python3
+# Copyright 2022 Xiaomi Corp. (Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import logging
+from pathlib import Path
+
+from lhotse import CutSet
+from lhotse.recipes.utils import read_manifests_if_cached
+
+
+def preprocess_aidatatang_200zh():
+ src_dir = Path("data/manifests/aidatatang_200zh")
+ output_dir = Path("data/fbank/aidatatang_200zh")
+ output_dir.mkdir(exist_ok=True, parents=True)
+
+ dataset_parts = (
+ "train",
+ "test",
+ "dev",
+ )
+
+ logging.info("Loading manifest")
+ manifests = read_manifests_if_cached(
+ dataset_parts=dataset_parts,
+ output_dir=src_dir,
+ )
+ assert len(manifests) > 0
+
+ for partition, m in manifests.items():
+ logging.info(f"Processing {partition}")
+ raw_cuts_path = output_dir / f"cuts_{partition}_raw.jsonl.gz"
+ if raw_cuts_path.is_file():
+ logging.info(f"{partition} already exists - skipping")
+ continue
+
+ for sup in m["supervisions"]:
+ sup.custom = {"origin": "aidatatang_200zh"}
+
+ cut_set = CutSet.from_manifests(
+ recordings=m["recordings"],
+ supervisions=m["supervisions"],
+ )
+
+ logging.info(f"Saving to {raw_cuts_path}")
+ cut_set.to_file(raw_cuts_path)
+
+
+def main():
+ formatter = (
+ "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+ )
+ logging.basicConfig(format=formatter, level=logging.INFO)
+
+ preprocess_aidatatang_200zh()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/aishell/ASR/prepare.sh b/egs/aishell/ASR/prepare.sh
index a99558395..68f5c54d3 100755
--- a/egs/aishell/ASR/prepare.sh
+++ b/egs/aishell/ASR/prepare.sh
@@ -48,8 +48,9 @@ if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "stage -1: Download LM"
# We assume that you have installed the git-lfs, if not, you could install it
# using: `sudo apt-get install git-lfs && git-lfs install`
- [ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
- git clone https://huggingface.co/pkufool/aishell_lm $dl_dir/lm
+ if [ ! -f $dl_dir/lm/3-gram.unpruned.arpa ]; then
+ git clone https://huggingface.co/pkufool/aishell_lm $dl_dir/lm
+ fi
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
@@ -87,28 +88,41 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare aishell manifest"
# We assume that you have downloaded the aishell corpus
# to $dl_dir/aishell
- mkdir -p data/manifests
- lhotse prepare aishell -j $nj $dl_dir/aishell data/manifests
+ if [ ! -f data/manifests/.aishell_manifests.done ]; then
+ mkdir -p data/manifests
+ lhotse prepare aishell $dl_dir/aishell data/manifests
+ touch data/manifests/.aishell_manifests.done
+ fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
- mkdir -p data/manifests
- lhotse prepare musan $dl_dir/musan data/manifests
+ if [ ! -f data/manifests/.musan_manifests.done ]; then
+ log "It may take 6 minutes"
+ mkdir -p data/manifests
+ lhotse prepare musan $dl_dir/musan data/manifests
+ touch data/manifests/.musan_manifests.done
+ fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for aishell"
- mkdir -p data/fbank
- ./local/compute_fbank_aishell.py
+ if [ ! -f data/fbank/.aishell.done ]; then
+ mkdir -p data/fbank
+ ./local/compute_fbank_aishell.py
+ touch data/fbank/.aishell.done
+ fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
- mkdir -p data/fbank
- ./local/compute_fbank_musan.py
+ if [ ! -f data/fbank/.msuan.done ]; then
+ mkdir -p data/fbank
+ ./local/compute_fbank_musan.py
+ touch data/fbank/.msuan.done
+ fi
fi
lang_phone_dir=data/lang_phone
@@ -134,7 +148,7 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
aishell_train_uid=$dl_dir/aishell/data_aishell/transcript/aishell_train_uid
find $dl_dir/aishell/data_aishell/wav/train -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_train_uid
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_train_uid $aishell_text |
- cut -d " " -f 2- > $lang_phone_dir/transcript_words.txt
+ cut -d " " -f 2- > $lang_phone_dir/transcript_words.txt
fi
if [ ! -f $lang_phone_dir/transcript_tokens.txt ]; then
diff --git a/egs/aishell/ASR/prepare_aidatatang_200zh.sh b/egs/aishell/ASR/prepare_aidatatang_200zh.sh
new file mode 100755
index 000000000..60b2060ec
--- /dev/null
+++ b/egs/aishell/ASR/prepare_aidatatang_200zh.sh
@@ -0,0 +1,59 @@
+#!/usr/bin/env bash
+
+set -eou pipefail
+
+stage=-1
+stop_stage=100
+
+# We assume dl_dir (download dir) contains the following
+# directories and files. If not, they will be downloaded
+# by this script automatically.
+#
+# - $dl_dir/aidatatang_200zh
+# You can find "corpus" and "transcript" inside it.
+# You can download it at
+# https://openslr.org/62/
+
+dl_dir=$PWD/download
+
+. shared/parse_options.sh || exit 1
+
+# All files generated by this script are saved in "data".
+# You can safely remove "data" and rerun this script to regenerate it.
+mkdir -p data
+
+log() {
+ # This function is from espnet
+ local fname=${BASH_SOURCE[1]##*/}
+ echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
+}
+
+log "dl_dir: $dl_dir"
+
+if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
+ log "Stage 0: Download data"
+
+ if [ ! -f $dl_dir/aidatatang_200zh/transcript/aidatatang_200_zh_transcript.txt ]; then
+ lhotse download aidatatang-200zh $dl_dir
+ fi
+fi
+
+if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
+ log "Stage 1: Prepare manifest"
+ # We assume that you have downloaded the aidatatang_200zh corpus
+ # to $dl_dir/aidatatang_200zh
+ if [ ! -f data/manifests/aidatatang_200zh/.manifests.done ]; then
+ mkdir -p data/manifests/aidatatang_200zh
+ lhotse prepare aidatatang-200zh $dl_dir data/manifests/aidatatang_200zh
+ touch data/manifests/aidatatang_200zh/.manifests.done
+ fi
+fi
+
+if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
+ log "Stage 2: Process aidatatang_200zh"
+ if [ ! -f data/fbank/aidatatang_200zh/.fbank.done ]; then
+ mkdir -p data/fbank/aidatatang_200zh
+ lhotse prepare aidatatang-200zh $dl_dir data/manifests/aidatatang_200zh
+ touch data/fbank/aidatatang_200zh/.fbank.done
+ fi
+fi
diff --git a/egs/aishell/ASR/tdnn_lstm_ctc/asr_datamodule.py b/egs/aishell/ASR/tdnn_lstm_ctc/asr_datamodule.py
index 65caa656e..507db2933 100644
--- a/egs/aishell/ASR/tdnn_lstm_ctc/asr_datamodule.py
+++ b/egs/aishell/ASR/tdnn_lstm_ctc/asr_datamodule.py
@@ -1,4 +1,5 @@
# Copyright 2021 Piotr Żelasko
+# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@@ -16,6 +17,7 @@
import argparse
+import inspect
import logging
from functools import lru_cache
from pathlib import Path
@@ -210,10 +212,20 @@ class AishellAsrDataModule:
logging.info(
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
)
+ # Set the value of num_frame_masks according to Lhotse's version.
+ # In different Lhotse's versions, the default of num_frame_masks is
+ # different.
+ num_frame_masks = 10
+ num_frame_masks_parameter = inspect.signature(
+ SpecAugment.__init__
+ ).parameters["num_frame_masks"]
+ if num_frame_masks_parameter.default == 1:
+ num_frame_masks = 2
+ logging.info(f"Num frame mask: {num_frame_masks}")
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
- num_frame_masks=2,
+ num_frame_masks=num_frame_masks,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
diff --git a/egs/aishell/ASR/tdnn_lstm_ctc/train.py b/egs/aishell/ASR/tdnn_lstm_ctc/train.py
index a0045115d..3327cdb79 100755
--- a/egs/aishell/ASR/tdnn_lstm_ctc/train.py
+++ b/egs/aishell/ASR/tdnn_lstm_ctc/train.py
@@ -92,6 +92,13 @@ def get_parser():
""",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -507,7 +514,7 @@ def run(rank, world_size, args):
params = get_params()
params.update(vars(args))
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -557,6 +564,7 @@ def run(rank, world_size, args):
valid_dl = aishell.valid_dataloaders(aishell.valid_cuts())
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
if epoch > params.start_epoch:
diff --git a/egs/aishell/ASR/transducer_stateless/decode.py b/egs/aishell/ASR/transducer_stateless/decode.py
index f27e4cdcf..a7b030fa5 100755
--- a/egs/aishell/ASR/transducer_stateless/decode.py
+++ b/egs/aishell/ASR/transducer_stateless/decode.py
@@ -31,7 +31,6 @@ from decoder import Decoder
from joiner import Joiner
from model import Transducer
-from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.env import get_env_info
from icefall.lexicon import Lexicon
@@ -403,12 +402,9 @@ def main():
logging.info(f"Device: {device}")
lexicon = Lexicon(params.lang_dir)
- graph_compiler = CharCtcTrainingGraphCompiler(
- lexicon=lexicon,
- device=device,
- )
- params.blank_id = graph_compiler.texts_to_ids("")[0][0]
+ # params.blank_id = graph_compiler.texts_to_ids("")[0][0]
+ params.blank_id = 0
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
diff --git a/egs/aishell/ASR/transducer_stateless/model.py b/egs/aishell/ASR/transducer_stateless/model.py
index 2f0f9a183..994305fc1 100644
--- a/egs/aishell/ASR/transducer_stateless/model.py
+++ b/egs/aishell/ASR/transducer_stateless/model.py
@@ -14,15 +14,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
-"""
-Note we use `rnnt_loss` from torchaudio, which exists only in
-torchaudio >= v0.10.0. It also means you have to use torch >= v1.10.0
-"""
import k2
import torch
import torch.nn as nn
-import torchaudio
-import torchaudio.functional
from encoder_interface import EncoderInterface
from icefall.utils import add_sos
@@ -108,18 +102,13 @@ class Transducer(nn.Module):
# Note: y does not start with SOS
y_padded = y.pad(mode="constant", padding_value=0)
- assert hasattr(torchaudio.functional, "rnnt_loss"), (
- f"Current torchaudio version: {torchaudio.__version__}\n"
- "Please install a version >= 0.10.0"
+ y_padded = y_padded.to(torch.int64)
+ boundary = torch.zeros(
+ (x.size(0), 4), dtype=torch.int64, device=x.device
)
+ boundary[:, 2] = y_lens
+ boundary[:, 3] = x_lens
- loss = torchaudio.functional.rnnt_loss(
- logits=logits,
- targets=y_padded,
- logit_lengths=x_lens,
- target_lengths=y_lens,
- blank=blank_id,
- reduction="sum",
- )
+ loss = k2.rnnt_loss(logits, y_padded, blank_id, boundary)
return loss
diff --git a/egs/aishell/ASR/transducer_stateless/train.py b/egs/aishell/ASR/transducer_stateless/train.py
index 0c180b260..f615c78f4 100755
--- a/egs/aishell/ASR/transducer_stateless/train.py
+++ b/egs/aishell/ASR/transducer_stateless/train.py
@@ -129,6 +129,13 @@ def get_parser():
"2 means tri-gram",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -534,7 +541,7 @@ def run(rank, world_size, args):
params = get_params()
params.update(vars(args))
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -558,7 +565,7 @@ def run(rank, world_size, args):
oov="",
)
- params.blank_id = graph_compiler.texts_to_ids("")[0][0]
+ params.blank_id = 0
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
@@ -611,6 +618,7 @@ def run(rank, world_size, args):
valid_dl = aishell.valid_dataloaders(aishell.valid_cuts())
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
cur_lr = optimizer._rate
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/README.md b/egs/aishell/ASR/transducer_stateless_modified-2/README.md
new file mode 100644
index 000000000..b3c539670
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/README.md
@@ -0,0 +1,59 @@
+## Introduction
+
+The decoder, i.e., the prediction network, is from
+https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
+(Rnn-Transducer with Stateless Prediction Network)
+
+Different from `../transducer_stateless_modified`, this folder
+uses extra data, i.e., http://www.openslr.org/62/, during training.
+
+You can use the following command to start the training:
+
+```bash
+cd egs/aishell/ASR
+./prepare.sh --stop-stage 6
+./prepare_aidatatang_200zh.sh
+
+export CUDA_VISIBLE_DEVICES="0,1,2"
+
+./transducer_stateless_modified-2/train.py \
+ --world-size 3 \
+ --num-epochs 90 \
+ --start-epoch 0 \
+ --exp-dir transducer_stateless_modified-2/exp-2 \
+ --max-duration 250 \
+ --lr-factor 2.0 \
+ --context-size 2 \
+ --modified-transducer-prob 0.25 \
+ --datatang-prob 0.2
+```
+
+To decode, you can use
+
+```bash
+for epoch in 89; do
+ for avg in 30 38; do
+ ./transducer_stateless_modified-2/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir transducer_stateless_modified-2/exp-2 \
+ --max-duration 100 \
+ --context-size 2 \
+ --decoding-method greedy_search \
+ --max-sym-per-frame 1
+ done
+done
+
+for epoch in 89; do
+ for avg in 38; do
+ ./transducer_stateless_modified-2/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir transducer_stateless_modified-2/exp-2 \
+ --max-duration 100 \
+ --context-size 2 \
+ --decoding-method modified_beam_search \
+ --beam-size 4
+ done
+done
+```
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/__init__.py b/egs/aishell/ASR/transducer_stateless_modified-2/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/aidatatang_200zh.py b/egs/aishell/ASR/transducer_stateless_modified-2/aidatatang_200zh.py
new file mode 100644
index 000000000..84ca64c89
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/aidatatang_200zh.py
@@ -0,0 +1,53 @@
+# Copyright 2021 Piotr Żelasko
+# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import logging
+from pathlib import Path
+
+from lhotse import CutSet, load_manifest
+
+
+class AIDatatang200zh:
+ def __init__(self, manifest_dir: str):
+ """
+ Args:
+ manifest_dir:
+ It is expected to contain the following files::
+
+ - cuts_dev_raw.jsonl.gz
+ - cuts_train_raw.jsonl.gz
+ - cuts_test_raw.jsonl.gz
+ """
+ self.manifest_dir = Path(manifest_dir)
+
+ def train_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_train_raw.jsonl.gz"
+ logging.info(f"About to get train cuts from {f}")
+ cuts_train = load_manifest(f)
+ return cuts_train
+
+ def valid_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_valid_raw.jsonl.gz"
+ logging.info(f"About to get valid cuts from {f}")
+ cuts_valid = load_manifest(f)
+ return cuts_valid
+
+ def test_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_test_raw.jsonl.gz"
+ logging.info(f"About to get test cuts from {f}")
+ cuts_test = load_manifest(f)
+ return cuts_test
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/aishell.py b/egs/aishell/ASR/transducer_stateless_modified-2/aishell.py
new file mode 100644
index 000000000..94d1da066
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/aishell.py
@@ -0,0 +1,53 @@
+# Copyright 2021 Piotr Żelasko
+# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import logging
+from pathlib import Path
+
+from lhotse import CutSet, load_manifest
+
+
+class AIShell:
+ def __init__(self, manifest_dir: str):
+ """
+ Args:
+ manifest_dir:
+ It is expected to contain the following files::
+
+ - cuts_dev.json.gz
+ - cuts_train.json.gz
+ - cuts_test.json.gz
+ """
+ self.manifest_dir = Path(manifest_dir)
+
+ def train_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_train.json.gz"
+ logging.info(f"About to get train cuts from {f}")
+ cuts_train = load_manifest(f)
+ return cuts_train
+
+ def valid_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_dev.json.gz"
+ logging.info(f"About to get valid cuts from {f}")
+ cuts_valid = load_manifest(f)
+ return cuts_valid
+
+ def test_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_test.json.gz"
+ logging.info(f"About to get test cuts from {f}")
+ cuts_test = load_manifest(f)
+ return cuts_test
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/asr_datamodule.py b/egs/aishell/ASR/transducer_stateless_modified-2/asr_datamodule.py
new file mode 100644
index 000000000..20eb8155c
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/asr_datamodule.py
@@ -0,0 +1,316 @@
+# Copyright 2021 Piotr Żelasko
+# 2022 Xiaomi Corp. (authors: Fangjun Kuang
+# Mingshuang Luo)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+import inspect
+import logging
+from pathlib import Path
+from typing import Optional
+
+from lhotse import CutSet, Fbank, FbankConfig
+from lhotse.dataset import (
+ BucketingSampler,
+ CutMix,
+ DynamicBucketingSampler,
+ K2SpeechRecognitionDataset,
+ SpecAugment,
+)
+from lhotse.dataset.input_strategies import (
+ OnTheFlyFeatures,
+ PrecomputedFeatures,
+)
+from torch.utils.data import DataLoader
+
+from icefall.utils import str2bool
+
+
+class AsrDataModule:
+ def __init__(self, args: argparse.Namespace):
+ self.args = args
+
+ @classmethod
+ def add_arguments(cls, parser: argparse.ArgumentParser):
+ group = parser.add_argument_group(
+ title="ASR data related options",
+ description="These options are used for the preparation of "
+ "PyTorch DataLoaders from Lhotse CutSet's -- they control the "
+ "effective batch sizes, sampling strategies, applied data "
+ "augmentations, etc.",
+ )
+
+ group.add_argument(
+ "--max-duration",
+ type=int,
+ default=200.0,
+ help="Maximum pooled recordings duration (seconds) in a "
+ "single batch. You can reduce it if it causes CUDA OOM.",
+ )
+
+ group.add_argument(
+ "--bucketing-sampler",
+ type=str2bool,
+ default=True,
+ help="When enabled, the batches will come from buckets of "
+ "similar duration (saves padding frames).",
+ )
+
+ group.add_argument(
+ "--num-buckets",
+ type=int,
+ default=30,
+ help="The number of buckets for the BucketingSampler "
+ "and DynamicBucketingSampler."
+ "(you might want to increase it for larger datasets).",
+ )
+
+ group.add_argument(
+ "--shuffle",
+ type=str2bool,
+ default=True,
+ help="When enabled (=default), the examples will be "
+ "shuffled for each epoch.",
+ )
+
+ group.add_argument(
+ "--return-cuts",
+ type=str2bool,
+ default=True,
+ help="When enabled, each batch will have the "
+ "field: batch['supervisions']['cut'] with the cuts that "
+ "were used to construct it.",
+ )
+
+ group.add_argument(
+ "--num-workers",
+ type=int,
+ default=2,
+ help="The number of training dataloader workers that "
+ "collect the batches.",
+ )
+
+ group.add_argument(
+ "--enable-spec-aug",
+ type=str2bool,
+ default=True,
+ help="When enabled, use SpecAugment for training dataset.",
+ )
+
+ group.add_argument(
+ "--spec-aug-time-warp-factor",
+ type=int,
+ default=80,
+ help="Used only when --enable-spec-aug is True. "
+ "It specifies the factor for time warping in SpecAugment. "
+ "Larger values mean more warping. "
+ "A value less than 1 means to disable time warp.",
+ )
+
+ group.add_argument(
+ "--enable-musan",
+ type=str2bool,
+ default=True,
+ help="When enabled, select noise from MUSAN and mix it"
+ "with training dataset. ",
+ )
+
+ group.add_argument(
+ "--manifest-dir",
+ type=Path,
+ default=Path("data/fbank"),
+ help="Path to directory with train/valid/test cuts.",
+ )
+
+ group.add_argument(
+ "--on-the-fly-feats",
+ type=str2bool,
+ default=False,
+ help="When enabled, use on-the-fly cut mixing and feature "
+ "extraction. Will drop existing precomputed feature manifests "
+ "if available. Used only in dev/test CutSet",
+ )
+
+ def train_dataloaders(
+ self,
+ cuts_train: CutSet,
+ dynamic_bucketing: bool,
+ on_the_fly_feats: bool,
+ cuts_musan: Optional[CutSet] = None,
+ ) -> DataLoader:
+ """
+ Args:
+ cuts_train:
+ Cuts for training.
+ cuts_musan:
+ If not None, it is the cuts for mixing.
+ dynamic_bucketing:
+ True to use DynamicBucketingSampler;
+ False to use BucketingSampler.
+ on_the_fly_feats:
+ True to use OnTheFlyFeatures;
+ False to use PrecomputedFeatures.
+ """
+ transforms = []
+ if cuts_musan is not None:
+ logging.info("Enable MUSAN")
+ transforms.append(
+ CutMix(
+ cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
+ )
+ )
+ else:
+ logging.info("Disable MUSAN")
+
+ input_transforms = []
+
+ if self.args.enable_spec_aug:
+ logging.info("Enable SpecAugment")
+ logging.info(
+ f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
+ )
+ # Set the value of num_frame_masks according to Lhotse's version.
+ # In different Lhotse's versions, the default of num_frame_masks is
+ # different.
+ num_frame_masks = 10
+ num_frame_masks_parameter = inspect.signature(
+ SpecAugment.__init__
+ ).parameters["num_frame_masks"]
+ if num_frame_masks_parameter.default == 1:
+ num_frame_masks = 2
+ logging.info(f"Num frame mask: {num_frame_masks}")
+ input_transforms.append(
+ SpecAugment(
+ time_warp_factor=self.args.spec_aug_time_warp_factor,
+ num_frame_masks=num_frame_masks,
+ features_mask_size=27,
+ num_feature_masks=2,
+ frames_mask_size=100,
+ )
+ )
+ else:
+ logging.info("Disable SpecAugment")
+
+ logging.info("About to create train dataset")
+ train = K2SpeechRecognitionDataset(
+ cut_transforms=transforms,
+ input_transforms=input_transforms,
+ return_cuts=self.args.return_cuts,
+ )
+
+ # NOTE: the PerturbSpeed transform should be added only if we
+ # remove it from data prep stage.
+ # Add on-the-fly speed perturbation; since originally it would
+ # have increased epoch size by 3, we will apply prob 2/3 and use
+ # 3x more epochs.
+ # Speed perturbation probably should come first before
+ # concatenation, but in principle the transforms order doesn't have
+ # to be strict (e.g. could be randomized)
+ # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
+ # Drop feats to be on the safe side.
+ train = K2SpeechRecognitionDataset(
+ cut_transforms=transforms,
+ input_strategy=(
+ OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
+ if on_the_fly_feats
+ else PrecomputedFeatures()
+ ),
+ input_transforms=input_transforms,
+ return_cuts=self.args.return_cuts,
+ )
+
+ if dynamic_bucketing:
+ logging.info("Using DynamicBucketingSampler.")
+ train_sampler = DynamicBucketingSampler(
+ cuts_train,
+ max_duration=self.args.max_duration,
+ shuffle=self.args.shuffle,
+ num_buckets=self.args.num_buckets,
+ drop_last=True,
+ )
+ else:
+ logging.info("Using BucketingSampler.")
+ train_sampler = BucketingSampler(
+ cuts_train,
+ max_duration=self.args.max_duration,
+ shuffle=self.args.shuffle,
+ num_buckets=self.args.num_buckets,
+ bucket_method="equal_duration",
+ drop_last=True,
+ )
+
+ logging.info("About to create train dataloader")
+ train_dl = DataLoader(
+ train,
+ sampler=train_sampler,
+ batch_size=None,
+ num_workers=self.args.num_workers,
+ persistent_workers=False,
+ )
+ return train_dl
+
+ def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
+ transforms = []
+
+ logging.info("About to create dev dataset")
+ if self.args.on_the_fly_feats:
+ validate = K2SpeechRecognitionDataset(
+ cut_transforms=transforms,
+ input_strategy=OnTheFlyFeatures(
+ Fbank(FbankConfig(num_mel_bins=80))
+ ),
+ return_cuts=self.args.return_cuts,
+ )
+ else:
+ validate = K2SpeechRecognitionDataset(
+ cut_transforms=transforms,
+ return_cuts=self.args.return_cuts,
+ )
+ valid_sampler = BucketingSampler(
+ cuts_valid,
+ max_duration=self.args.max_duration,
+ shuffle=False,
+ )
+ logging.info("About to create dev dataloader")
+ valid_dl = DataLoader(
+ validate,
+ sampler=valid_sampler,
+ batch_size=None,
+ num_workers=2,
+ persistent_workers=False,
+ )
+
+ return valid_dl
+
+ def test_dataloaders(self, cuts: CutSet) -> DataLoader:
+ logging.debug("About to create test dataset")
+ test = K2SpeechRecognitionDataset(
+ input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
+ if self.args.on_the_fly_feats
+ else PrecomputedFeatures(),
+ return_cuts=self.args.return_cuts,
+ )
+ sampler = BucketingSampler(
+ cuts, max_duration=self.args.max_duration, shuffle=False
+ )
+ logging.debug("About to create test dataloader")
+ test_dl = DataLoader(
+ test,
+ batch_size=None,
+ sampler=sampler,
+ num_workers=self.args.num_workers,
+ )
+ return test_dl
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/beam_search.py b/egs/aishell/ASR/transducer_stateless_modified-2/beam_search.py
new file mode 120000
index 000000000..e188617a8
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/beam_search.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/transducer_stateless/beam_search.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/conformer.py b/egs/aishell/ASR/transducer_stateless_modified-2/conformer.py
new file mode 120000
index 000000000..88975988f
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/conformer.py
@@ -0,0 +1 @@
+../transducer_stateless_modified/conformer.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/decode.py b/egs/aishell/ASR/transducer_stateless_modified-2/decode.py
new file mode 100755
index 000000000..8b851bd17
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/decode.py
@@ -0,0 +1,491 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+(1) greedy search
+./transducer_stateless_modified-2/decode.py \
+ --epoch 89 \
+ --avg 38 \
+ --exp-dir ./transducer_stateless_modified-2/exp \
+ --max-duration 100 \
+ --decoding-method greedy_search
+
+(2) beam search
+./transducer_stateless_modified/decode.py \
+ --epoch 89 \
+ --avg 38 \
+ --exp-dir ./transducer_stateless_modified-2/exp \
+ --max-duration 100 \
+ --decoding-method beam_search \
+ --beam-size 4
+
+(3) modified beam search
+./transducer_stateless_modified-2/decode.py \
+ --epoch 89 \
+ --avg 38 \
+ --exp-dir ./transducer_stateless_modified/exp \
+ --max-duration 100 \
+ --decoding-method modified_beam_search \
+ --beam-size 4
+"""
+
+import argparse
+import logging
+from collections import defaultdict
+from pathlib import Path
+from typing import Dict, List, Tuple
+
+import torch
+import torch.nn as nn
+from aishell import AIShell
+from asr_datamodule import AsrDataModule
+from beam_search import beam_search, greedy_search, modified_beam_search
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from model import Transducer
+
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import (
+ AttributeDict,
+ setup_logger,
+ store_transcripts,
+ write_error_stats,
+)
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--epoch",
+ type=int,
+ default=30,
+ help="It specifies the checkpoint to use for decoding."
+ "Note: Epoch counts from 0.",
+ )
+ parser.add_argument(
+ "--avg",
+ type=int,
+ default=10,
+ help="Number of checkpoints to average. Automatically select "
+ "consecutive checkpoints before the checkpoint specified by "
+ "'--epoch'. ",
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=str,
+ default="transducer_stateless_modified-2/exp",
+ help="The experiment dir",
+ )
+
+ parser.add_argument(
+ "--lang-dir",
+ type=str,
+ default="data/lang_char",
+ help="The lang dir",
+ )
+
+ parser.add_argument(
+ "--decoding-method",
+ type=str,
+ default="greedy_search",
+ help="""Possible values are:
+ - greedy_search
+ - beam_search
+ - modified_beam_search
+ """,
+ )
+
+ parser.add_argument(
+ "--beam-size",
+ type=int,
+ default=4,
+ help="Used only when --decoding-method is beam_search "
+ "and modified_beam_search",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+ parser.add_argument(
+ "--max-sym-per-frame",
+ type=int,
+ default=3,
+ help="Maximum number of symbols per frame",
+ )
+ return parser
+
+
+def get_params() -> AttributeDict:
+ params = AttributeDict(
+ {
+ # parameters for conformer
+ "feature_dim": 80,
+ "encoder_out_dim": 512,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ "env_info": get_env_info(),
+ }
+ )
+ return params
+
+
+def get_encoder_model(params: AttributeDict):
+ # TODO: We can add an option to switch between Conformer and Transformer
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.encoder_out_dim,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict):
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.encoder_out_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict):
+ joiner = Joiner(
+ input_dim=params.encoder_out_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict):
+ encoder = get_encoder_model(params)
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ )
+ return model
+
+
+def decode_one_batch(
+ params: AttributeDict,
+ model: nn.Module,
+ lexicon: Lexicon,
+ batch: dict,
+) -> Dict[str, List[List[str]]]:
+ """Decode one batch and return the result in a dict. The dict has the
+ following format:
+
+ - key: It indicates the setting used for decoding. For example,
+ if greedy_search is used, it would be "greedy_search"
+ If beam search with a beam size of 7 is used, it would be
+ "beam_7"
+ - value: It contains the decoding result. `len(value)` equals to
+ batch size. `value[i]` is the decoding result for the i-th
+ utterance in the given batch.
+ Args:
+ params:
+ It's the return value of :func:`get_params`.
+ model:
+ The neural model.
+ batch:
+ It is the return value from iterating
+ `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
+ for the format of the `batch`.
+ lexicon:
+ It contains the token symbol table and the word symbol table.
+ Returns:
+ Return the decoding result. See above description for the format of
+ the returned dict.
+ """
+ device = model.device
+ feature = batch["inputs"]
+ assert feature.ndim == 3
+
+ feature = feature.to(device)
+ # at entry, feature is (N, T, C)
+
+ supervisions = batch["supervisions"]
+ feature_lens = supervisions["num_frames"].to(device)
+
+ encoder_out, encoder_out_lens = model.encoder(
+ x=feature, x_lens=feature_lens
+ )
+ hyps = []
+ batch_size = encoder_out.size(0)
+
+ for i in range(batch_size):
+ # fmt: off
+ encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+ # fmt: on
+ if params.decoding_method == "greedy_search":
+ hyp = greedy_search(
+ model=model,
+ encoder_out=encoder_out_i,
+ max_sym_per_frame=params.max_sym_per_frame,
+ )
+ elif params.decoding_method == "beam_search":
+ hyp = beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
+ elif params.decoding_method == "modified_beam_search":
+ hyp = modified_beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
+ else:
+ raise ValueError(
+ f"Unsupported decoding method: {params.decoding_method}"
+ )
+ hyps.append([lexicon.token_table[i] for i in hyp])
+
+ if params.decoding_method == "greedy_search":
+ return {"greedy_search": hyps}
+ else:
+ return {f"beam_{params.beam_size}": hyps}
+
+
+def decode_dataset(
+ dl: torch.utils.data.DataLoader,
+ params: AttributeDict,
+ model: nn.Module,
+ lexicon: Lexicon,
+) -> Dict[str, List[Tuple[List[str], List[str]]]]:
+ """Decode dataset.
+
+ Args:
+ dl:
+ PyTorch's dataloader containing the dataset to decode.
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The neural model.
+ Returns:
+ Return a dict, whose key may be "greedy_search" if greedy search
+ is used, or it may be "beam_7" if beam size of 7 is used.
+ Its value is a list of tuples. Each tuple contains two elements:
+ The first is the reference transcript, and the second is the
+ predicted result.
+ """
+ num_cuts = 0
+
+ try:
+ num_batches = len(dl)
+ except TypeError:
+ num_batches = "?"
+
+ if params.decoding_method == "greedy_search":
+ log_interval = 100
+ else:
+ log_interval = 2
+
+ results = defaultdict(list)
+ for batch_idx, batch in enumerate(dl):
+ texts = batch["supervisions"]["text"]
+
+ hyps_dict = decode_one_batch(
+ params=params,
+ model=model,
+ lexicon=lexicon,
+ batch=batch,
+ )
+
+ for name, hyps in hyps_dict.items():
+ this_batch = []
+ assert len(hyps) == len(texts)
+ for hyp_words, ref_text in zip(hyps, texts):
+ ref_words = ref_text.split()
+ this_batch.append((ref_words, hyp_words))
+
+ results[name].extend(this_batch)
+
+ num_cuts += len(texts)
+
+ if batch_idx % log_interval == 0:
+ batch_str = f"{batch_idx}/{num_batches}"
+
+ logging.info(
+ f"batch {batch_str}, cuts processed until now is {num_cuts}"
+ )
+ return results
+
+
+def save_results(
+ params: AttributeDict,
+ test_set_name: str,
+ results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
+):
+ test_set_wers = dict()
+ for key, results in results_dict.items():
+ recog_path = (
+ params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
+ )
+ store_transcripts(filename=recog_path, texts=results)
+
+ # The following prints out WERs, per-word error statistics and aligned
+ # ref/hyp pairs.
+ errs_filename = (
+ params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
+ )
+ # we compute CER for aishell dataset.
+ results_char = []
+ for res in results:
+ results_char.append((list("".join(res[0])), list("".join(res[1]))))
+ with open(errs_filename, "w") as f:
+ wer = write_error_stats(
+ f, f"{test_set_name}-{key}", results_char, enable_log=True
+ )
+ test_set_wers[key] = wer
+
+ logging.info("Wrote detailed error stats to {}".format(errs_filename))
+
+ test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
+ errs_info = (
+ params.res_dir
+ / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+ )
+ with open(errs_info, "w") as f:
+ print("settings\tCER", file=f)
+ for key, val in test_set_wers:
+ print("{}\t{}".format(key, val), file=f)
+
+ s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
+ note = "\tbest for {}".format(test_set_name)
+ for key, val in test_set_wers:
+ s += "{}\t{}{}\n".format(key, val, note)
+ note = ""
+ logging.info(s)
+
+
+@torch.no_grad()
+def main():
+ parser = get_parser()
+ AsrDataModule.add_arguments(parser)
+ args = parser.parse_args()
+ args.exp_dir = Path(args.exp_dir)
+ args.lang_dir = Path(args.lang_dir)
+
+ params = get_params()
+ params.update(vars(args))
+
+ assert params.decoding_method in (
+ "greedy_search",
+ "beam_search",
+ "modified_beam_search",
+ )
+ params.res_dir = params.exp_dir / params.decoding_method
+
+ params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
+ if "beam_search" in params.decoding_method:
+ params.suffix += f"-beam-{params.beam_size}"
+ else:
+ params.suffix += f"-context-{params.context_size}"
+ params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
+
+ setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
+ logging.info("Decoding started")
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"Device: {device}")
+
+ lexicon = Lexicon(params.lang_dir)
+
+ params.blank_id = 0
+ params.vocab_size = max(lexicon.tokens) + 1
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ if params.avg == 1:
+ load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+ else:
+ start = params.epoch - params.avg + 1
+ filenames = []
+ for i in range(start, params.epoch + 1):
+ if start >= 0:
+ filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+ logging.info(f"averaging {filenames}")
+ model.to(device)
+ model.load_state_dict(
+ average_checkpoints(filenames, device=device), strict=False
+ )
+
+ model.to(device)
+ model.eval()
+ model.device = device
+
+ num_param = sum([p.numel() for p in model.parameters()])
+ logging.info(f"Number of model parameters: {num_param}")
+
+ asr_datamodule = AsrDataModule(args)
+ aishell = AIShell(manifest_dir=args.manifest_dir)
+ test_cuts = aishell.test_cuts()
+ test_dl = asr_datamodule.test_dataloaders(test_cuts)
+
+ test_sets = ["test"]
+ test_dls = [test_dl]
+
+ for test_set, test_dl in zip(test_sets, test_dls):
+ results_dict = decode_dataset(
+ dl=test_dl,
+ params=params,
+ model=model,
+ lexicon=lexicon,
+ )
+
+ save_results(
+ params=params,
+ test_set_name=test_set,
+ results_dict=results_dict,
+ )
+
+ logging.info("Done!")
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/decoder.py b/egs/aishell/ASR/transducer_stateless_modified-2/decoder.py
new file mode 120000
index 000000000..bdfcea5c2
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/decoder.py
@@ -0,0 +1 @@
+../transducer_stateless_modified/decoder.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/encoder_interface.py b/egs/aishell/ASR/transducer_stateless_modified-2/encoder_interface.py
new file mode 120000
index 000000000..a2a5f22cf
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/encoder_interface.py
@@ -0,0 +1 @@
+../transducer_stateless_modified/encoder_interface.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/export.py b/egs/aishell/ASR/transducer_stateless_modified-2/export.py
new file mode 100755
index 000000000..d009de603
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/export.py
@@ -0,0 +1,246 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This script converts several saved checkpoints
+# to a single one using model averaging.
+"""
+Usage:
+./transducer_stateless_modified-2/export.py \
+ --exp-dir ./transducer_stateless_modified-2/exp \
+ --epoch 89 \
+ --avg 38
+
+It will generate a file exp_dir/pretrained.pt
+
+To use the generated file with `transducer_stateless_modified-2/decode.py`,
+you can do::
+
+ cd /path/to/exp_dir
+ ln -s pretrained.pt epoch-9999.pt
+
+ cd /path/to/egs/aishell/ASR
+ ./transducer_stateless_modified-2/decode.py \
+ --exp-dir ./transducer_stateless_modified-2/exp \
+ --epoch 9999 \
+ --avg 1 \
+ --max-duration 100 \
+ --lang-dir data/lang_char
+"""
+
+import argparse
+import logging
+from pathlib import Path
+
+import torch
+import torch.nn as nn
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from model import Transducer
+
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import AttributeDict, str2bool
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--epoch",
+ type=int,
+ default=20,
+ help="It specifies the checkpoint to use for decoding."
+ "Note: Epoch counts from 0.",
+ )
+
+ parser.add_argument(
+ "--avg",
+ type=int,
+ default=10,
+ help="Number of checkpoints to average. Automatically select "
+ "consecutive checkpoints before the checkpoint specified by "
+ "'--epoch'. ",
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=Path,
+ default=Path("transducer_stateless_modified-2/exp"),
+ help="""It specifies the directory where all training related
+ files, e.g., checkpoints, log, etc, are saved
+ """,
+ )
+
+ parser.add_argument(
+ "--jit",
+ type=str2bool,
+ default=False,
+ help="""True to save a model after applying torch.jit.script.
+ """,
+ )
+
+ parser.add_argument(
+ "--lang-dir",
+ type=Path,
+ default=Path("data/lang_char"),
+ help="The lang dir",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ params = AttributeDict(
+ {
+ # parameters for conformer
+ "feature_dim": 80,
+ "encoder_out_dim": 512,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ "env_info": get_env_info(),
+ }
+ )
+ return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.encoder_out_dim,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.encoder_out_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+ joiner = Joiner(
+ input_dim=params.encoder_out_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+ encoder = get_encoder_model(params)
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ )
+ return model
+
+
+def main():
+ args = get_parser().parse_args()
+
+ assert args.jit is False, "torchscript support will be added later"
+
+ params = get_params()
+ params.update(vars(args))
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"device: {device}")
+
+ lexicon = Lexicon(params.lang_dir)
+
+ params.blank_id = 0
+ params.vocab_size = max(lexicon.tokens) + 1
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ model.to(device)
+
+ if params.avg == 1:
+ load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+ else:
+ start = params.epoch - params.avg + 1
+ filenames = []
+ for i in range(start, params.epoch + 1):
+ if start >= 0:
+ filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+ logging.info(f"averaging {filenames}")
+ model.to(device)
+ model.load_state_dict(
+ average_checkpoints(filenames, device=device), strict=False
+ )
+
+ model.to("cpu")
+ model.eval()
+
+ if params.jit:
+ logging.info("Using torch.jit.script")
+ model = torch.jit.script(model)
+ filename = params.exp_dir / "cpu_jit.pt"
+ model.save(str(filename))
+ logging.info(f"Saved to {filename}")
+ else:
+ logging.info("Not using torch.jit.script")
+ # Save it using a format so that it can be loaded
+ # by :func:`load_checkpoint`
+ filename = params.exp_dir / "pretrained.pt"
+ torch.save({"model": model.state_dict()}, str(filename))
+ logging.info(f"Saved to {filename}")
+
+
+if __name__ == "__main__":
+ formatter = (
+ "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+ )
+
+ logging.basicConfig(format=formatter, level=logging.INFO)
+ main()
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/joiner.py b/egs/aishell/ASR/transducer_stateless_modified-2/joiner.py
new file mode 120000
index 000000000..e9e435ecd
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/joiner.py
@@ -0,0 +1 @@
+../transducer_stateless_modified/joiner.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/model.py b/egs/aishell/ASR/transducer_stateless_modified-2/model.py
new file mode 100644
index 000000000..086957d0b
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/model.py
@@ -0,0 +1,163 @@
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import random
+from typing import Optional
+
+import k2
+import torch
+import torch.nn as nn
+from encoder_interface import EncoderInterface
+
+from icefall.utils import add_sos
+
+
+class Transducer(nn.Module):
+ """It implements https://arxiv.org/pdf/1211.3711.pdf
+ "Sequence Transduction with Recurrent Neural Networks"
+ """
+
+ def __init__(
+ self,
+ encoder: EncoderInterface,
+ decoder: nn.Module,
+ joiner: nn.Module,
+ decoder_datatang: Optional[nn.Module] = None,
+ joiner_datatang: Optional[nn.Module] = None,
+ ):
+ """
+ Args:
+ encoder:
+ It is the transcription network in the paper. Its accepts
+ two inputs: `x` of (N, T, C) and `x_lens` of shape (N,).
+ It returns two tensors: `logits` of shape (N, T, C) and
+ `logit_lens` of shape (N,).
+ decoder:
+ It is the prediction network in the paper. Its input shape
+ is (N, U) and its output shape is (N, U, C). It should contain
+ one attribute: `blank_id`.
+ joiner:
+ It has two inputs with shapes: (N, T, C) and (N, U, C). Its
+ output shape is (N, T, U, C). Note that its output contains
+ unnormalized probs, i.e., not processed by log-softmax.
+ decoder_datatang:
+ The decoder for the aidatatang_200zh dataset.
+ joiner_datatang:
+ The joiner for the aidatatang_200zh dataset.
+ """
+ super().__init__()
+ assert isinstance(encoder, EncoderInterface), type(encoder)
+ assert hasattr(decoder, "blank_id")
+ if decoder_datatang is not None:
+ assert hasattr(decoder_datatang, "blank_id")
+
+ self.encoder = encoder
+ self.decoder = decoder
+ self.joiner = joiner
+
+ self.decoder_datatang = decoder_datatang
+ self.joiner_datatang = joiner_datatang
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ x_lens: torch.Tensor,
+ y: k2.RaggedTensor,
+ aishell: bool = True,
+ modified_transducer_prob: float = 0.0,
+ ) -> torch.Tensor:
+ """
+ Args:
+ x:
+ A 3-D tensor of shape (N, T, C).
+ x_lens:
+ A 1-D tensor of shape (N,). It contains the number of frames in `x`
+ before padding.
+ y:
+ A ragged tensor with 2 axes [utt][label]. It contains labels of each
+ utterance.
+ modified_transducer_prob:
+ The probability to use modified transducer loss.
+ Returns:
+ Return the transducer loss.
+ """
+ assert x.ndim == 3, x.shape
+ assert x_lens.ndim == 1, x_lens.shape
+ assert y.num_axes == 2, y.num_axes
+
+ assert x.size(0) == x_lens.size(0) == y.dim0
+
+ encoder_out, x_lens = self.encoder(x, x_lens)
+ assert torch.all(x_lens > 0)
+
+ # Now for the decoder, i.e., the prediction network
+ row_splits = y.shape.row_splits(1)
+ y_lens = row_splits[1:] - row_splits[:-1]
+
+ blank_id = self.decoder.blank_id
+ sos_y = add_sos(y, sos_id=blank_id)
+
+ sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
+ sos_y_padded = sos_y_padded.to(torch.int64)
+
+ if aishell:
+ decoder = self.decoder
+ joiner = self.joiner
+ else:
+ decoder = self.decoder_datatang
+ joiner = self.joiner_datatang
+
+ decoder_out = decoder(sos_y_padded)
+
+ # +1 here since a blank is prepended to each utterance.
+ logits = joiner(
+ encoder_out=encoder_out,
+ decoder_out=decoder_out,
+ encoder_out_len=x_lens,
+ decoder_out_len=y_lens + 1,
+ )
+
+ # rnnt_loss requires 0 padded targets
+ # Note: y does not start with SOS
+ y_padded = y.pad(mode="constant", padding_value=0)
+
+ # We don't put this `import` at the beginning of the file
+ # as it is required only in the training, not during the
+ # reference stage
+ import optimized_transducer
+
+ assert 0 <= modified_transducer_prob <= 1
+
+ if modified_transducer_prob == 0:
+ one_sym_per_frame = False
+ elif random.random() < modified_transducer_prob:
+ # random.random() returns a float in the range [0, 1)
+ one_sym_per_frame = True
+ else:
+ one_sym_per_frame = False
+
+ loss = optimized_transducer.transducer_loss(
+ logits=logits,
+ targets=y_padded,
+ logit_lengths=x_lens,
+ target_lengths=y_lens,
+ blank=blank_id,
+ reduction="sum",
+ one_sym_per_frame=one_sym_per_frame,
+ from_log_softmax=False,
+ )
+
+ return loss
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/pretrained.py b/egs/aishell/ASR/transducer_stateless_modified-2/pretrained.py
new file mode 100755
index 000000000..31bab122c
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/pretrained.py
@@ -0,0 +1,331 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
+# Wei Kang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Usage:
+
+# greedy search
+./transducer_stateless_modified-2/pretrained.py \
+ --checkpoint /path/to/pretrained.pt \
+ --lang-dir /path/to/lang_char \
+ --method greedy_search \
+ /path/to/foo.wav \
+ /path/to/bar.wav
+
+# beam search
+./transducer_stateless_modified-2/pretrained.py \
+ --checkpoint /path/to/pretrained.pt \
+ --lang-dir /path/to/lang_char \
+ --method beam_search \
+ --beam-size 4 \
+ /path/to/foo.wav \
+ /path/to/bar.wav
+
+# modified beam search
+./transducer_stateless_modified-2/pretrained.py \
+ --checkpoint /path/to/pretrained.pt \
+ --lang-dir /path/to/lang_char \
+ --method modified_beam_search \
+ --beam-size 4 \
+ /path/to/foo.wav \
+ /path/to/bar.wav
+
+"""
+
+import argparse
+import logging
+import math
+from pathlib import Path
+from typing import List
+
+import kaldifeat
+import torch
+import torch.nn as nn
+import torchaudio
+from beam_search import beam_search, greedy_search, modified_beam_search
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from model import Transducer
+from torch.nn.utils.rnn import pad_sequence
+
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import AttributeDict
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--checkpoint",
+ type=str,
+ required=True,
+ help="Path to the checkpoint. "
+ "The checkpoint is assumed to be saved by "
+ "icefall.checkpoint.save_checkpoint().",
+ )
+
+ parser.add_argument(
+ "--lang-dir",
+ type=Path,
+ default=Path("data/lang_char"),
+ help="The lang dir",
+ )
+
+ parser.add_argument(
+ "--method",
+ type=str,
+ default="greedy_search",
+ help="""Possible values are:
+ - greedy_search
+ - beam_search
+ - modified_beam_search
+ """,
+ )
+
+ parser.add_argument(
+ "sound_files",
+ type=str,
+ nargs="+",
+ help="The input sound file(s) to transcribe. "
+ "Supported formats are those supported by torchaudio.load(). "
+ "For example, wav and flac are supported. "
+ "The sample rate has to be 16kHz.",
+ )
+
+ parser.add_argument(
+ "--beam-size",
+ type=int,
+ default=4,
+ help="Used only when --method is beam_search and modified_beam_search",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+ parser.add_argument(
+ "--max-sym-per-frame",
+ type=int,
+ default=3,
+ help="Maximum number of symbols per frame. "
+ "Use only when --method is greedy_search",
+ )
+ return parser
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ params = AttributeDict(
+ {
+ # parameters for conformer
+ "feature_dim": 80,
+ "encoder_out_dim": 512,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ "env_info": get_env_info(),
+ "sample_rate": 16000,
+ }
+ )
+ return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.encoder_out_dim,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.encoder_out_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+ joiner = Joiner(
+ input_dim=params.encoder_out_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+ encoder = get_encoder_model(params)
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ )
+ return model
+
+
+def read_sound_files(
+ filenames: List[str], expected_sample_rate: float
+) -> List[torch.Tensor]:
+ """Read a list of sound files into a list 1-D float32 torch tensors.
+ Args:
+ filenames:
+ A list of sound filenames.
+ expected_sample_rate:
+ The expected sample rate of the sound files.
+ Returns:
+ Return a list of 1-D float32 torch tensors.
+ """
+ ans = []
+ for f in filenames:
+ wave, sample_rate = torchaudio.load(f)
+ assert sample_rate == expected_sample_rate, (
+ f"expected sample rate: {expected_sample_rate}. "
+ f"Given: {sample_rate}"
+ )
+ # We use only the first channel
+ ans.append(wave[0])
+ return ans
+
+
+def main():
+ parser = get_parser()
+ args = parser.parse_args()
+
+ params = get_params()
+ params.update(vars(args))
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"device: {device}")
+
+ lexicon = Lexicon(params.lang_dir)
+
+ params.blank_id = 0
+ params.vocab_size = max(lexicon.tokens) + 1
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ checkpoint = torch.load(args.checkpoint, map_location="cpu")
+ model.load_state_dict(checkpoint["model"])
+ model.to(device)
+ model.eval()
+ model.device = device
+
+ logging.info("Constructing Fbank computer")
+ opts = kaldifeat.FbankOptions()
+ opts.device = device
+ opts.frame_opts.dither = 0
+ opts.frame_opts.snip_edges = False
+ opts.frame_opts.samp_freq = params.sample_rate
+ opts.mel_opts.num_bins = params.feature_dim
+
+ fbank = kaldifeat.Fbank(opts)
+
+ logging.info(f"Reading sound files: {params.sound_files}")
+ waves = read_sound_files(
+ filenames=params.sound_files, expected_sample_rate=params.sample_rate
+ )
+ waves = [w.to(device) for w in waves]
+
+ logging.info("Decoding started")
+ features = fbank(waves)
+ feature_lens = [f.size(0) for f in features]
+ feature_lens = torch.tensor(feature_lens, device=device)
+
+ features = pad_sequence(
+ features, batch_first=True, padding_value=math.log(1e-10)
+ )
+
+ hyps = []
+ with torch.no_grad():
+ encoder_out, encoder_out_lens = model.encoder(
+ x=features, x_lens=feature_lens
+ )
+
+ for i in range(encoder_out.size(0)):
+ # fmt: off
+ encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+ # fmt: on
+ if params.method == "greedy_search":
+ hyp = greedy_search(
+ model=model,
+ encoder_out=encoder_out_i,
+ max_sym_per_frame=params.max_sym_per_frame,
+ )
+ elif params.method == "beam_search":
+ hyp = beam_search(
+ model=model,
+ encoder_out=encoder_out_i,
+ beam=params.beam_size,
+ )
+ elif params.method == "modified_beam_search":
+ hyp = modified_beam_search(
+ model=model,
+ encoder_out=encoder_out_i,
+ beam=params.beam_size,
+ )
+ else:
+ raise ValueError(
+ f"Unsupported decoding method: {params.method}"
+ )
+ hyps.append([lexicon.token_table[i] for i in hyp])
+
+ s = "\n"
+ for filename, hyp in zip(params.sound_files, hyps):
+ words = " ".join(hyp)
+ s += f"{filename}:\n{words}\n\n"
+ logging.info(s)
+
+ logging.info("Decoding Done")
+
+
+if __name__ == "__main__":
+ formatter = (
+ "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+ )
+
+ logging.basicConfig(format=formatter, level=logging.INFO)
+ main()
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/subsampling.py b/egs/aishell/ASR/transducer_stateless_modified-2/subsampling.py
new file mode 120000
index 000000000..6fee09e58
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/subsampling.py
@@ -0,0 +1 @@
+../conformer_ctc/subsampling.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/test_decoder.py b/egs/aishell/ASR/transducer_stateless_modified-2/test_decoder.py
new file mode 120000
index 000000000..fbe1679ea
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/test_decoder.py
@@ -0,0 +1 @@
+../transducer_stateless_modified/test_decoder.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/train.py b/egs/aishell/ASR/transducer_stateless_modified-2/train.py
new file mode 100755
index 000000000..53d4e455f
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/train.py
@@ -0,0 +1,875 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
+# Wei Kang
+# Mingshuang Luo)
+# Copyright 2021 (Pingfeng Luo)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Usage:
+./prepare.sh
+./prepare_aidatatang_200zh.sh
+
+export CUDA_VISIBLE_DEVICES="0,1,2"
+
+./transducer_stateless_modified-2/train.py \
+ --world-size 3 \
+ --num-epochs 90 \
+ --start-epoch 0 \
+ --exp-dir transducer_stateless_modified-2/exp-2 \
+ --max-duration 250 \
+ --lr-factor 2.0 \
+ --context-size 2 \
+ --modified-transducer-prob 0.25 \
+ --datatang-prob 0.2
+"""
+
+
+import argparse
+import logging
+import random
+from pathlib import Path
+from shutil import copyfile
+from typing import Optional, Tuple
+
+import k2
+import torch
+import torch.multiprocessing as mp
+import torch.nn as nn
+from aidatatang_200zh import AIDatatang200zh
+from aishell import AIShell
+from asr_datamodule import AsrDataModule
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from lhotse import CutSet, load_manifest
+from lhotse.cut import Cut
+from lhotse.utils import fix_random_seed
+from model import Transducer
+from torch import Tensor
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.nn.utils import clip_grad_norm_
+from torch.utils.tensorboard import SummaryWriter
+from transformer import Noam
+
+from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
+from icefall.checkpoint import load_checkpoint
+from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
+from icefall.dist import cleanup_dist, setup_dist
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--world-size",
+ type=int,
+ default=1,
+ help="Number of GPUs for DDP training.",
+ )
+
+ parser.add_argument(
+ "--master-port",
+ type=int,
+ default=12354,
+ help="Master port to use for DDP training.",
+ )
+
+ parser.add_argument(
+ "--tensorboard",
+ type=str2bool,
+ default=True,
+ help="Should various information be logged in tensorboard.",
+ )
+
+ parser.add_argument(
+ "--num-epochs",
+ type=int,
+ default=30,
+ help="Number of epochs to train.",
+ )
+
+ parser.add_argument(
+ "--start-epoch",
+ type=int,
+ default=0,
+ help="""Resume training from from this epoch.
+ If it is positive, it will load checkpoint from
+ transducer_stateless/exp/epoch-{start_epoch-1}.pt
+ """,
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=str,
+ default="transducer_stateless_modified-2/exp",
+ help="""The experiment dir.
+ It specifies the directory where all training related
+ files, e.g., checkpoints, log, etc, are saved
+ """,
+ )
+
+ parser.add_argument(
+ "--lang-dir",
+ type=str,
+ default="data/lang_char",
+ help="""The lang dir
+ It contains language related input files such as
+ "lexicon.txt"
+ """,
+ )
+
+ parser.add_argument(
+ "--lr-factor",
+ type=float,
+ default=5.0,
+ help="The lr_factor for Noam optimizer",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+
+ parser.add_argument(
+ "--modified-transducer-prob",
+ type=float,
+ default=0.25,
+ help="""The probability to use modified transducer loss.
+ In modified transduer, it limits the maximum number of symbols
+ per frame to 1. See also the option --max-sym-per-frame in
+ transducer_stateless/decode.py
+ """,
+ )
+
+ parser.add_argument(
+ "--datatang-prob",
+ type=float,
+ default=0.2,
+ help="The probability to select a batch from the "
+ "aidatatang_200zh dataset",
+ )
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ """Return a dict containing training parameters.
+
+ All training related parameters that are not passed from the commandline
+ are saved in the variable `params`.
+
+ Commandline options are merged into `params` after they are parsed, so
+ you can also access them via `params`.
+
+ Explanation of options saved in `params`:
+
+ - best_train_loss: Best training loss so far. It is used to select
+ the model that has the lowest training loss. It is
+ updated during the training.
+
+ - best_valid_loss: Best validation loss so far. It is used to select
+ the model that has the lowest validation loss. It is
+ updated during the training.
+
+ - best_train_epoch: It is the epoch that has the best training loss.
+
+ - best_valid_epoch: It is the epoch that has the best validation loss.
+
+ - batch_idx_train: Used to writing statistics to tensorboard. It
+ contains number of batches trained so far across
+ epochs.
+
+ - log_interval: Print training loss if batch_idx % log_interval` is 0
+
+ - reset_interval: Reset statistics if batch_idx % reset_interval is 0
+
+ - valid_interval: Run validation if batch_idx % valid_interval is 0
+
+ - feature_dim: The model input dim. It has to match the one used
+ in computing features.
+
+ - subsampling_factor: The subsampling factor for the model.
+
+ - attention_dim: Hidden dim for multi-head attention model.
+
+ - num_decoder_layers: Number of decoder layer of transformer decoder.
+
+ - warm_step: The warm_step for Noam optimizer.
+ """
+ params = AttributeDict(
+ {
+ "best_train_loss": float("inf"),
+ "best_valid_loss": float("inf"),
+ "best_train_epoch": -1,
+ "best_valid_epoch": -1,
+ "batch_idx_train": 0,
+ "log_interval": 50,
+ "reset_interval": 200,
+ "valid_interval": 800, # For the 100h subset, use 800
+ # parameters for conformer
+ "feature_dim": 80,
+ "encoder_out_dim": 512,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ # parameters for Noam
+ "warm_step": 80000, # For the 100h subset, use 8k
+ "env_info": get_env_info(),
+ }
+ )
+
+ return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+ # TODO: We can add an option to switch between Conformer and Transformer
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.encoder_out_dim,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.encoder_out_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+ joiner = Joiner(
+ input_dim=params.encoder_out_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+ encoder = get_encoder_model(params)
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ decoder_datatang = get_decoder_model(params)
+ joiner_datatang = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ decoder_datatang=decoder_datatang,
+ joiner_datatang=joiner_datatang,
+ )
+ return model
+
+
+def load_checkpoint_if_available(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: Optional[torch.optim.Optimizer] = None,
+ scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+) -> None:
+ """Load checkpoint from file.
+
+ If params.start_epoch is positive, it will load the checkpoint from
+ `params.start_epoch - 1`. Otherwise, this function does nothing.
+
+ Apart from loading state dict for `model`, `optimizer` and `scheduler`,
+ it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
+ and `best_valid_loss` in `params`.
+
+ Args:
+ params:
+ The return value of :func:`get_params`.
+ model:
+ The training model.
+ optimizer:
+ The optimizer that we are using.
+ scheduler:
+ The learning rate scheduler we are using.
+ Returns:
+ Return None.
+ """
+ if params.start_epoch <= 0:
+ return
+
+ filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
+ saved_params = load_checkpoint(
+ filename,
+ model=model,
+ optimizer=optimizer,
+ scheduler=scheduler,
+ )
+
+ keys = [
+ "best_train_epoch",
+ "best_valid_epoch",
+ "batch_idx_train",
+ "best_train_loss",
+ "best_valid_loss",
+ ]
+ for k in keys:
+ params[k] = saved_params[k]
+
+ return saved_params
+
+
+def save_checkpoint(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: Optional[torch.optim.Optimizer] = None,
+ scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+ rank: int = 0,
+) -> None:
+ """Save model, optimizer, scheduler and training stats to file.
+
+ Args:
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The training model.
+ """
+ if rank != 0:
+ return
+ filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
+ save_checkpoint_impl(
+ filename=filename,
+ model=model,
+ params=params,
+ optimizer=optimizer,
+ scheduler=scheduler,
+ rank=rank,
+ )
+
+ if params.best_train_epoch == params.cur_epoch:
+ best_train_filename = params.exp_dir / "best-train-loss.pt"
+ copyfile(src=filename, dst=best_train_filename)
+
+ if params.best_valid_epoch == params.cur_epoch:
+ best_valid_filename = params.exp_dir / "best-valid-loss.pt"
+ copyfile(src=filename, dst=best_valid_filename)
+
+
+def is_aishell(c: Cut) -> bool:
+ """Return True if this cut is from the AIShell dataset.
+
+ Note:
+ During data preparation, we set the custom field in
+ the supervision segment of aidatatang_200zh to
+ dict(origin='aidatatang_200zh')
+ See ../local/process_aidatatang_200zh.py.
+ """
+ return c.supervisions[0].custom is None
+
+
+def compute_loss(
+ params: AttributeDict,
+ model: nn.Module,
+ graph_compiler: CharCtcTrainingGraphCompiler,
+ batch: dict,
+ is_training: bool,
+) -> Tuple[Tensor, MetricsTracker]:
+ """
+ Compute CTC loss given the model and its inputs.
+
+ Args:
+ params:
+ Parameters for training. See :func:`get_params`.
+ model:
+ The model for training. It is an instance of Conformer in our case.
+ batch:
+ A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+ for the content in it.
+ is_training:
+ True for training. False for validation. When it is True, this
+ function enables autograd during computation; when it is False, it
+ disables autograd.
+ """
+ device = model.device
+ feature = batch["inputs"]
+ # at entry, feature is (N, T, C)
+ assert feature.ndim == 3
+ feature = feature.to(device)
+
+ supervisions = batch["supervisions"]
+ feature_lens = supervisions["num_frames"].to(device)
+
+ aishell = is_aishell(supervisions["cut"][0])
+
+ texts = batch["supervisions"]["text"]
+ y = graph_compiler.texts_to_ids(texts)
+ y = k2.RaggedTensor(y).to(device)
+
+ with torch.set_grad_enabled(is_training):
+ loss = model(
+ x=feature,
+ x_lens=feature_lens,
+ y=y,
+ aishell=aishell,
+ modified_transducer_prob=params.modified_transducer_prob,
+ )
+
+ assert loss.requires_grad == is_training
+
+ info = MetricsTracker()
+ info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
+
+ # Note: We use reduction=sum while computing the loss.
+ info["loss"] = loss.detach().cpu().item()
+
+ return loss, info
+
+
+def compute_validation_loss(
+ params: AttributeDict,
+ model: nn.Module,
+ graph_compiler: CharCtcTrainingGraphCompiler,
+ valid_dl: torch.utils.data.DataLoader,
+ world_size: int = 1,
+) -> MetricsTracker:
+ """Run the validation process."""
+ model.eval()
+
+ tot_loss = MetricsTracker()
+
+ for batch_idx, batch in enumerate(valid_dl):
+ loss, loss_info = compute_loss(
+ params=params,
+ model=model,
+ graph_compiler=graph_compiler,
+ batch=batch,
+ is_training=False,
+ )
+ assert loss.requires_grad is False
+ tot_loss = tot_loss + loss_info
+
+ if world_size > 1:
+ tot_loss.reduce(loss.device)
+
+ loss_value = tot_loss["loss"] / tot_loss["frames"]
+ if loss_value < params.best_valid_loss:
+ params.best_valid_epoch = params.cur_epoch
+ params.best_valid_loss = loss_value
+
+ return tot_loss
+
+
+def train_one_epoch(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: torch.optim.Optimizer,
+ graph_compiler: CharCtcTrainingGraphCompiler,
+ train_dl: torch.utils.data.DataLoader,
+ datatang_train_dl: torch.utils.data.DataLoader,
+ valid_dl: torch.utils.data.DataLoader,
+ rng: random.Random,
+ tb_writer: Optional[SummaryWriter] = None,
+ world_size: int = 1,
+) -> None:
+ """Train the model for one epoch.
+
+ The training loss from the mean of all frames is saved in
+ `params.train_loss`. It runs the validation process every
+ `params.valid_interval` batches.
+
+ Args:
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The model for training.
+ optimizer:
+ The optimizer we are using.
+ train_dl:
+ Dataloader for the training dataset.
+ datatang_train_dl:
+ Dataloader for the aidatatang_200zh training dataset.
+ valid_dl:
+ Dataloader for the validation dataset.
+ tb_writer:
+ Writer to write log messages to tensorboard.
+ world_size:
+ Number of nodes in DDP training. If it is 1, DDP is disabled.
+ """
+ model.train()
+
+ aishell_tot_loss = MetricsTracker()
+ datatang_tot_loss = MetricsTracker()
+ tot_loss = MetricsTracker()
+
+ # index 0: for LibriSpeech
+ # index 1: for GigaSpeech
+ # This sets the probabilities for choosing which datasets
+ dl_weights = [1 - params.datatang_prob, params.datatang_prob]
+
+ iter_aishell = iter(train_dl)
+ iter_datatang = iter(datatang_train_dl)
+
+ batch_idx = 0
+
+ while True:
+ idx = rng.choices((0, 1), weights=dl_weights, k=1)[0]
+ dl = iter_aishell if idx == 0 else iter_datatang
+
+ try:
+ batch = next(dl)
+ except StopIteration:
+ break
+ batch_idx += 1
+
+ params.batch_idx_train += 1
+ batch_size = len(batch["supervisions"]["text"])
+
+ aishell = is_aishell(batch["supervisions"]["cut"][0])
+
+ loss, loss_info = compute_loss(
+ params=params,
+ model=model,
+ graph_compiler=graph_compiler,
+ batch=batch,
+ is_training=True,
+ )
+ # summary stats
+ tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
+ if aishell:
+ aishell_tot_loss = (
+ aishell_tot_loss * (1 - 1 / params.reset_interval)
+ ) + loss_info
+ prefix = "aishell" # for logging only
+ else:
+ datatang_tot_loss = (
+ datatang_tot_loss * (1 - 1 / params.reset_interval)
+ ) + loss_info
+ prefix = "datatang"
+
+ # NOTE: We use reduction==sum and loss is computed over utterances
+ # in the batch and there is no normalization to it so far.
+
+ optimizer.zero_grad()
+ loss.backward()
+ clip_grad_norm_(model.parameters(), 5.0, 2.0)
+ optimizer.step()
+
+ if batch_idx % params.log_interval == 0:
+ logging.info(
+ f"Epoch {params.cur_epoch}, "
+ f"batch {batch_idx}, {prefix}_loss[{loss_info}], "
+ f"tot_loss[{tot_loss}], batch size: {batch_size}, "
+ f"aishell_tot_loss[{aishell_tot_loss}], "
+ f"datatang_tot_loss[{datatang_tot_loss}], "
+ f"batch size: {batch_size}"
+ )
+
+ if batch_idx % params.log_interval == 0:
+ if tb_writer is not None:
+ loss_info.write_summary(
+ tb_writer,
+ f"train/current_{prefix}_",
+ params.batch_idx_train,
+ )
+ tot_loss.write_summary(
+ tb_writer, "train/tot_", params.batch_idx_train
+ )
+ aishell_tot_loss.write_summary(
+ tb_writer, "train/aishell_tot_", params.batch_idx_train
+ )
+ datatang_tot_loss.write_summary(
+ tb_writer, "train/datatang_tot_", params.batch_idx_train
+ )
+
+ if batch_idx > 0 and batch_idx % params.valid_interval == 0:
+ logging.info("Computing validation loss")
+ valid_info = compute_validation_loss(
+ params=params,
+ model=model,
+ graph_compiler=graph_compiler,
+ valid_dl=valid_dl,
+ world_size=world_size,
+ )
+ model.train()
+ logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
+ if tb_writer is not None:
+ valid_info.write_summary(
+ tb_writer, "train/valid_", params.batch_idx_train
+ )
+
+ loss_value = tot_loss["loss"] / tot_loss["frames"]
+ params.train_loss = loss_value
+ if params.train_loss < params.best_train_loss:
+ params.best_train_epoch = params.cur_epoch
+ params.best_train_loss = params.train_loss
+
+
+def filter_short_and_long_utterances(cuts: CutSet) -> CutSet:
+ def remove_short_and_long_utt(c: Cut):
+ # Keep only utterances with duration between 1 second and 12 seconds
+ return 1.0 <= c.duration <= 12.0
+
+ num_in_total = len(cuts)
+ cuts = cuts.filter(remove_short_and_long_utt)
+
+ num_left = len(cuts)
+ num_removed = num_in_total - num_left
+ removed_percent = num_removed / num_in_total * 100
+
+ logging.info(f"Before removing short and long utterances: {num_in_total}")
+ logging.info(f"After removing short and long utterances: {num_left}")
+ logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
+
+ return cuts
+
+
+def run(rank, world_size, args):
+ """
+ Args:
+ rank:
+ It is a value between 0 and `world_size-1`, which is
+ passed automatically by `mp.spawn()` in :func:`main`.
+ The node with rank 0 is responsible for saving checkpoint.
+ world_size:
+ Number of GPUs for DDP training.
+ args:
+ The return value of get_parser().parse_args()
+ """
+ params = get_params()
+ params.update(vars(args))
+
+ seed = 42
+ fix_random_seed(seed)
+ rng = random.Random(seed)
+ if world_size > 1:
+ setup_dist(rank, world_size, params.master_port)
+
+ setup_logger(f"{params.exp_dir}/log/log-train")
+ logging.info("Training started")
+
+ if args.tensorboard and rank == 0:
+ tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
+ else:
+ tb_writer = None
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", rank)
+ logging.info(f"Device: {device}")
+
+ lexicon = Lexicon(params.lang_dir)
+ graph_compiler = CharCtcTrainingGraphCompiler(
+ lexicon=lexicon,
+ device=device,
+ oov="",
+ )
+
+ params.blank_id = 0
+ params.vocab_size = max(lexicon.tokens) + 1
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ num_param = sum([p.numel() for p in model.parameters()])
+ logging.info(f"Number of model parameters: {num_param}")
+
+ checkpoints = load_checkpoint_if_available(params=params, model=model)
+
+ model.to(device)
+ if world_size > 1:
+ logging.info("Using DDP")
+ model = DDP(model, device_ids=[rank], find_unused_parameters=True)
+ model.device = device
+
+ optimizer = Noam(
+ model.parameters(),
+ model_size=params.attention_dim,
+ factor=params.lr_factor,
+ warm_step=params.warm_step,
+ )
+
+ if checkpoints and "optimizer" in checkpoints:
+ logging.info("Loading optimizer state dict")
+ optimizer.load_state_dict(checkpoints["optimizer"])
+
+ aishell = AIShell(manifest_dir=args.manifest_dir)
+
+ train_cuts = aishell.train_cuts()
+ train_cuts = filter_short_and_long_utterances(train_cuts)
+
+ datatang = AIDatatang200zh(
+ manifest_dir=f"{args.manifest_dir}/aidatatang_200zh"
+ )
+ train_datatang_cuts = datatang.train_cuts()
+ train_datatang_cuts = filter_short_and_long_utterances(train_datatang_cuts)
+
+ if args.enable_musan:
+ cuts_musan = load_manifest(
+ Path(args.manifest_dir) / "cuts_musan.json.gz"
+ )
+ else:
+ cuts_musan = None
+
+ asr_datamodule = AsrDataModule(args)
+
+ train_dl = asr_datamodule.train_dataloaders(
+ train_cuts,
+ dynamic_bucketing=False,
+ on_the_fly_feats=False,
+ cuts_musan=cuts_musan,
+ )
+
+ datatang_train_dl = asr_datamodule.train_dataloaders(
+ train_datatang_cuts,
+ dynamic_bucketing=True,
+ on_the_fly_feats=True,
+ cuts_musan=cuts_musan,
+ )
+
+ valid_cuts = aishell.valid_cuts()
+ valid_dl = asr_datamodule.valid_dataloaders(valid_cuts)
+
+ for dl in [train_dl, datatang_train_dl]:
+ scan_pessimistic_batches_for_oom(
+ model=model,
+ train_dl=dl,
+ optimizer=optimizer,
+ graph_compiler=graph_compiler,
+ params=params,
+ )
+
+ for epoch in range(params.start_epoch, params.num_epochs):
+ train_dl.sampler.set_epoch(epoch)
+ datatang_train_dl.sampler.set_epoch(epoch)
+
+ cur_lr = optimizer._rate
+ if tb_writer is not None:
+ tb_writer.add_scalar(
+ "train/learning_rate", cur_lr, params.batch_idx_train
+ )
+ tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
+
+ if rank == 0:
+ logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
+
+ params.cur_epoch = epoch
+
+ train_one_epoch(
+ params=params,
+ model=model,
+ optimizer=optimizer,
+ graph_compiler=graph_compiler,
+ train_dl=train_dl,
+ datatang_train_dl=datatang_train_dl,
+ valid_dl=valid_dl,
+ rng=rng,
+ tb_writer=tb_writer,
+ world_size=world_size,
+ )
+
+ save_checkpoint(
+ params=params,
+ model=model,
+ optimizer=optimizer,
+ rank=rank,
+ )
+
+ logging.info("Done!")
+
+ if world_size > 1:
+ torch.distributed.barrier()
+ cleanup_dist()
+
+
+def scan_pessimistic_batches_for_oom(
+ model: nn.Module,
+ train_dl: torch.utils.data.DataLoader,
+ optimizer: torch.optim.Optimizer,
+ graph_compiler: CharCtcTrainingGraphCompiler,
+ params: AttributeDict,
+):
+ from lhotse.dataset import find_pessimistic_batches
+
+ logging.info(
+ "Sanity check -- see if any of the batches in epoch 0 would cause OOM."
+ )
+ batches, crit_values = find_pessimistic_batches(train_dl.sampler)
+ for criterion, cuts in batches.items():
+ batch = train_dl.dataset[cuts]
+ try:
+ optimizer.zero_grad()
+ loss, _ = compute_loss(
+ params=params,
+ model=model,
+ graph_compiler=graph_compiler,
+ batch=batch,
+ is_training=True,
+ )
+ loss.backward()
+ clip_grad_norm_(model.parameters(), 5.0, 2.0)
+ optimizer.step()
+ except RuntimeError as e:
+ if "CUDA out of memory" in str(e):
+ logging.error(
+ "Your GPU ran out of memory with the current "
+ "max_duration setting. We recommend decreasing "
+ "max_duration and trying again.\n"
+ f"Failing criterion: {criterion} "
+ f"(={crit_values[criterion]}) ..."
+ )
+ raise
+
+
+def main():
+ parser = get_parser()
+ AsrDataModule.add_arguments(parser)
+ args = parser.parse_args()
+ args.exp_dir = Path(args.exp_dir)
+ args.lang_dir = Path(args.lang_dir)
+
+ assert 0 <= args.datatang_prob < 1, args.datatang_prob
+
+ world_size = args.world_size
+ assert world_size >= 1
+ if world_size > 1:
+ mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
+ else:
+ run(rank=0, world_size=1, args=args)
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/aishell/ASR/transducer_stateless_modified-2/transformer.py b/egs/aishell/ASR/transducer_stateless_modified-2/transformer.py
new file mode 120000
index 000000000..4320d1105
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified-2/transformer.py
@@ -0,0 +1 @@
+../transducer_stateless_modified/transformer.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified/README.md b/egs/aishell/ASR/transducer_stateless_modified/README.md
new file mode 100644
index 000000000..9709eb9a0
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/README.md
@@ -0,0 +1,21 @@
+## Introduction
+
+The decoder, i.e., the prediction network, is from
+https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
+(Rnn-Transducer with Stateless Prediction Network)
+
+You can use the following command to start the training:
+
+```bash
+cd egs/aishell/ASR
+
+export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
+
+./transducer_stateless_modified/train.py \
+ --world-size 8 \
+ --num-epochs 30 \
+ --start-epoch 0 \
+ --exp-dir transducer_stateless_modified/exp \
+ --max-duration 250 \
+ --lr-factor 2.5
+```
diff --git a/egs/aishell/ASR/transducer_stateless_modified/__init__.py b/egs/aishell/ASR/transducer_stateless_modified/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/egs/aishell/ASR/transducer_stateless_modified/asr_datamodule.py b/egs/aishell/ASR/transducer_stateless_modified/asr_datamodule.py
new file mode 120000
index 000000000..a73848de9
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/asr_datamodule.py
@@ -0,0 +1 @@
+../conformer_ctc/asr_datamodule.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified/beam_search.py b/egs/aishell/ASR/transducer_stateless_modified/beam_search.py
new file mode 120000
index 000000000..e188617a8
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/beam_search.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/transducer_stateless/beam_search.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified/conformer.py b/egs/aishell/ASR/transducer_stateless_modified/conformer.py
new file mode 120000
index 000000000..8be0dc864
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/conformer.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/transducer_stateless/conformer.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified/decode.py b/egs/aishell/ASR/transducer_stateless_modified/decode.py
new file mode 100755
index 000000000..5b5fe6ffa
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/decode.py
@@ -0,0 +1,486 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+(1) greedy search
+./transducer_stateless_modified/decode.py \
+ --epoch 64 \
+ --avg 33 \
+ --exp-dir ./transducer_stateless_modified/exp \
+ --max-duration 100 \
+ --decoding-method greedy_search
+
+(2) beam search
+./transducer_stateless_modified/decode.py \
+ --epoch 14 \
+ --avg 7 \
+ --exp-dir ./transducer_stateless_modified/exp \
+ --max-duration 100 \
+ --decoding-method beam_search \
+ --beam-size 4
+
+(3) modified beam search
+./transducer_stateless_modified/decode.py \
+ --epoch 14 \
+ --avg 7 \
+ --exp-dir ./transducer_stateless_modified/exp \
+ --max-duration 100 \
+ --decoding-method modified_beam_search \
+ --beam-size 4
+"""
+
+import argparse
+import logging
+from collections import defaultdict
+from pathlib import Path
+from typing import Dict, List, Tuple
+
+import torch
+import torch.nn as nn
+from asr_datamodule import AishellAsrDataModule
+from beam_search import beam_search, greedy_search, modified_beam_search
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from model import Transducer
+
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import (
+ AttributeDict,
+ setup_logger,
+ store_transcripts,
+ write_error_stats,
+)
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--epoch",
+ type=int,
+ default=30,
+ help="It specifies the checkpoint to use for decoding."
+ "Note: Epoch counts from 0.",
+ )
+ parser.add_argument(
+ "--avg",
+ type=int,
+ default=10,
+ help="Number of checkpoints to average. Automatically select "
+ "consecutive checkpoints before the checkpoint specified by "
+ "'--epoch'. ",
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=str,
+ default="transducer_stateless_modified/exp",
+ help="The experiment dir",
+ )
+
+ parser.add_argument(
+ "--lang-dir",
+ type=str,
+ default="data/lang_char",
+ help="The lang dir",
+ )
+
+ parser.add_argument(
+ "--decoding-method",
+ type=str,
+ default="greedy_search",
+ help="""Possible values are:
+ - greedy_search
+ - beam_search
+ - modified_beam_search
+ """,
+ )
+
+ parser.add_argument(
+ "--beam-size",
+ type=int,
+ default=4,
+ help="Used only when --decoding-method is beam_search",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+ parser.add_argument(
+ "--max-sym-per-frame",
+ type=int,
+ default=3,
+ help="Maximum number of symbols per frame",
+ )
+ return parser
+
+
+def get_params() -> AttributeDict:
+ params = AttributeDict(
+ {
+ # parameters for conformer
+ "feature_dim": 80,
+ "encoder_out_dim": 512,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ "env_info": get_env_info(),
+ }
+ )
+ return params
+
+
+def get_encoder_model(params: AttributeDict):
+ # TODO: We can add an option to switch between Conformer and Transformer
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.encoder_out_dim,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict):
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.encoder_out_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict):
+ joiner = Joiner(
+ input_dim=params.encoder_out_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict):
+ encoder = get_encoder_model(params)
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ )
+ return model
+
+
+def decode_one_batch(
+ params: AttributeDict,
+ model: nn.Module,
+ lexicon: Lexicon,
+ batch: dict,
+) -> Dict[str, List[List[str]]]:
+ """Decode one batch and return the result in a dict. The dict has the
+ following format:
+
+ - key: It indicates the setting used for decoding. For example,
+ if greedy_search is used, it would be "greedy_search"
+ If beam search with a beam size of 7 is used, it would be
+ "beam_7"
+ - value: It contains the decoding result. `len(value)` equals to
+ batch size. `value[i]` is the decoding result for the i-th
+ utterance in the given batch.
+ Args:
+ params:
+ It's the return value of :func:`get_params`.
+ model:
+ The neural model.
+ batch:
+ It is the return value from iterating
+ `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
+ for the format of the `batch`.
+ lexicon:
+ It contains the token symbol table and the word symbol table.
+ Returns:
+ Return the decoding result. See above description for the format of
+ the returned dict.
+ """
+ device = model.device
+ feature = batch["inputs"]
+ assert feature.ndim == 3
+
+ feature = feature.to(device)
+ # at entry, feature is (N, T, C)
+
+ supervisions = batch["supervisions"]
+ feature_lens = supervisions["num_frames"].to(device)
+
+ encoder_out, encoder_out_lens = model.encoder(
+ x=feature, x_lens=feature_lens
+ )
+ hyps = []
+ batch_size = encoder_out.size(0)
+
+ for i in range(batch_size):
+ # fmt: off
+ encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+ # fmt: on
+ if params.decoding_method == "greedy_search":
+ hyp = greedy_search(
+ model=model,
+ encoder_out=encoder_out_i,
+ max_sym_per_frame=params.max_sym_per_frame,
+ )
+ elif params.decoding_method == "beam_search":
+ hyp = beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
+ elif params.decoding_method == "modified_beam_search":
+ hyp = modified_beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
+ else:
+ raise ValueError(
+ f"Unsupported decoding method: {params.decoding_method}"
+ )
+ hyps.append([lexicon.token_table[i] for i in hyp])
+
+ if params.decoding_method == "greedy_search":
+ return {"greedy_search": hyps}
+ else:
+ return {f"beam_{params.beam_size}": hyps}
+
+
+def decode_dataset(
+ dl: torch.utils.data.DataLoader,
+ params: AttributeDict,
+ model: nn.Module,
+ lexicon: Lexicon,
+) -> Dict[str, List[Tuple[List[str], List[str]]]]:
+ """Decode dataset.
+
+ Args:
+ dl:
+ PyTorch's dataloader containing the dataset to decode.
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The neural model.
+ Returns:
+ Return a dict, whose key may be "greedy_search" if greedy search
+ is used, or it may be "beam_7" if beam size of 7 is used.
+ Its value is a list of tuples. Each tuple contains two elements:
+ The first is the reference transcript, and the second is the
+ predicted result.
+ """
+ num_cuts = 0
+
+ try:
+ num_batches = len(dl)
+ except TypeError:
+ num_batches = "?"
+
+ if params.decoding_method == "greedy_search":
+ log_interval = 100
+ else:
+ log_interval = 2
+
+ results = defaultdict(list)
+ for batch_idx, batch in enumerate(dl):
+ texts = batch["supervisions"]["text"]
+
+ hyps_dict = decode_one_batch(
+ params=params,
+ model=model,
+ lexicon=lexicon,
+ batch=batch,
+ )
+
+ for name, hyps in hyps_dict.items():
+ this_batch = []
+ assert len(hyps) == len(texts)
+ for hyp_words, ref_text in zip(hyps, texts):
+ ref_words = ref_text.split()
+ this_batch.append((ref_words, hyp_words))
+
+ results[name].extend(this_batch)
+
+ num_cuts += len(texts)
+
+ if batch_idx % log_interval == 0:
+ batch_str = f"{batch_idx}/{num_batches}"
+
+ logging.info(
+ f"batch {batch_str}, cuts processed until now is {num_cuts}"
+ )
+ return results
+
+
+def save_results(
+ params: AttributeDict,
+ test_set_name: str,
+ results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
+):
+ test_set_wers = dict()
+ for key, results in results_dict.items():
+ recog_path = (
+ params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
+ )
+ store_transcripts(filename=recog_path, texts=results)
+
+ # The following prints out WERs, per-word error statistics and aligned
+ # ref/hyp pairs.
+ errs_filename = (
+ params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
+ )
+ # we compute CER for aishell dataset.
+ results_char = []
+ for res in results:
+ results_char.append((list("".join(res[0])), list("".join(res[1]))))
+ with open(errs_filename, "w") as f:
+ wer = write_error_stats(
+ f, f"{test_set_name}-{key}", results_char, enable_log=True
+ )
+ test_set_wers[key] = wer
+
+ logging.info("Wrote detailed error stats to {}".format(errs_filename))
+
+ test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
+ errs_info = (
+ params.res_dir
+ / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+ )
+ with open(errs_info, "w") as f:
+ print("settings\tCER", file=f)
+ for key, val in test_set_wers:
+ print("{}\t{}".format(key, val), file=f)
+
+ s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
+ note = "\tbest for {}".format(test_set_name)
+ for key, val in test_set_wers:
+ s += "{}\t{}{}\n".format(key, val, note)
+ note = ""
+ logging.info(s)
+
+
+@torch.no_grad()
+def main():
+ parser = get_parser()
+ AishellAsrDataModule.add_arguments(parser)
+ args = parser.parse_args()
+ args.exp_dir = Path(args.exp_dir)
+ args.lang_dir = Path(args.lang_dir)
+
+ params = get_params()
+ params.update(vars(args))
+
+ assert params.decoding_method in (
+ "greedy_search",
+ "beam_search",
+ "modified_beam_search",
+ )
+ params.res_dir = params.exp_dir / params.decoding_method
+
+ params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
+ if "beam_search" in params.decoding_method:
+ params.suffix += f"-beam-{params.beam_size}"
+ else:
+ params.suffix += f"-context-{params.context_size}"
+ params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
+
+ setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
+ logging.info("Decoding started")
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"Device: {device}")
+
+ lexicon = Lexicon(params.lang_dir)
+
+ params.blank_id = 0
+ params.vocab_size = max(lexicon.tokens) + 1
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ if params.avg == 1:
+ load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+ else:
+ start = params.epoch - params.avg + 1
+ filenames = []
+ for i in range(start, params.epoch + 1):
+ if start >= 0:
+ filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+ logging.info(f"averaging {filenames}")
+ model.to(device)
+ model.load_state_dict(average_checkpoints(filenames, device=device))
+
+ model.to(device)
+ model.eval()
+ model.device = device
+
+ num_param = sum([p.numel() for p in model.parameters()])
+ logging.info(f"Number of model parameters: {num_param}")
+
+ aishell = AishellAsrDataModule(args)
+ test_cuts = aishell.test_cuts()
+ test_dl = aishell.test_dataloaders(test_cuts)
+
+ test_sets = ["test"]
+ test_dls = [test_dl]
+
+ for test_set, test_dl in zip(test_sets, test_dls):
+ results_dict = decode_dataset(
+ dl=test_dl,
+ params=params,
+ model=model,
+ lexicon=lexicon,
+ )
+
+ save_results(
+ params=params,
+ test_set_name=test_set,
+ results_dict=results_dict,
+ )
+
+ logging.info("Done!")
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/aishell/ASR/transducer_stateless_modified/decoder.py b/egs/aishell/ASR/transducer_stateless_modified/decoder.py
new file mode 120000
index 000000000..82337f7ef
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/decoder.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/transducer_stateless/decoder.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified/encoder_interface.py b/egs/aishell/ASR/transducer_stateless_modified/encoder_interface.py
new file mode 120000
index 000000000..653c5b09a
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/encoder_interface.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/transducer_stateless/encoder_interface.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified/export.py b/egs/aishell/ASR/transducer_stateless_modified/export.py
new file mode 100755
index 000000000..9a20fab6f
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/export.py
@@ -0,0 +1,246 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This script converts several saved checkpoints
+# to a single one using model averaging.
+"""
+Usage:
+./transducer_stateless_modified/export.py \
+ --exp-dir ./transducer_stateless_modified/exp \
+ --epoch 64 \
+ --avg 33
+
+It will generate a file exp_dir/pretrained.pt
+
+To use the generated file with `transducer_stateless_modified/decode.py`,
+you can do::
+
+ cd /path/to/exp_dir
+ ln -s pretrained.pt epoch-9999.pt
+
+ cd /path/to/egs/aishell/ASR
+ ./transducer_stateless_modified/decode.py \
+ --exp-dir ./transducer_stateless_modified/exp \
+ --epoch 9999 \
+ --avg 1 \
+ --max-duration 100 \
+ --lang-dir data/lang_char
+"""
+
+import argparse
+import logging
+from pathlib import Path
+
+import torch
+import torch.nn as nn
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from model import Transducer
+
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import AttributeDict, str2bool
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--epoch",
+ type=int,
+ default=20,
+ help="It specifies the checkpoint to use for decoding."
+ "Note: Epoch counts from 0.",
+ )
+
+ parser.add_argument(
+ "--avg",
+ type=int,
+ default=10,
+ help="Number of checkpoints to average. Automatically select "
+ "consecutive checkpoints before the checkpoint specified by "
+ "'--epoch'. ",
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=Path,
+ default=Path("transducer_stateless_modified/exp"),
+ help="""It specifies the directory where all training related
+ files, e.g., checkpoints, log, etc, are saved
+ """,
+ )
+
+ parser.add_argument(
+ "--jit",
+ type=str2bool,
+ default=False,
+ help="""True to save a model after applying torch.jit.script.
+ """,
+ )
+
+ parser.add_argument(
+ "--lang-dir",
+ type=Path,
+ default=Path("data/lang_char"),
+ help="The lang dir",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ params = AttributeDict(
+ {
+ # parameters for conformer
+ "feature_dim": 80,
+ "encoder_out_dim": 512,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ "env_info": get_env_info(),
+ }
+ )
+ return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.encoder_out_dim,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.encoder_out_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+ joiner = Joiner(
+ input_dim=params.encoder_out_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+ encoder = get_encoder_model(params)
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ )
+ return model
+
+
+def main():
+ args = get_parser().parse_args()
+
+ assert args.jit is False, "torchscript support will be added later"
+
+ params = get_params()
+ params.update(vars(args))
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"device: {device}")
+
+ lexicon = Lexicon(params.lang_dir)
+
+ params.blank_id = 0
+ params.vocab_size = max(lexicon.tokens) + 1
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ model.to(device)
+
+ if params.avg == 1:
+ load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+ else:
+ start = params.epoch - params.avg + 1
+ filenames = []
+ for i in range(start, params.epoch + 1):
+ if start >= 0:
+ filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+ logging.info(f"averaging {filenames}")
+ model.to(device)
+ model.load_state_dict(
+ average_checkpoints(filenames, device=device), strict=False
+ )
+
+ model.to("cpu")
+ model.eval()
+
+ if params.jit:
+ logging.info("Using torch.jit.script")
+ model = torch.jit.script(model)
+ filename = params.exp_dir / "cpu_jit.pt"
+ model.save(str(filename))
+ logging.info(f"Saved to {filename}")
+ else:
+ logging.info("Not using torch.jit.script")
+ # Save it using a format so that it can be loaded
+ # by :func:`load_checkpoint`
+ filename = params.exp_dir / "pretrained.pt"
+ torch.save({"model": model.state_dict()}, str(filename))
+ logging.info(f"Saved to {filename}")
+
+
+if __name__ == "__main__":
+ formatter = (
+ "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+ )
+
+ logging.basicConfig(format=formatter, level=logging.INFO)
+ main()
diff --git a/egs/aishell/ASR/transducer_stateless_modified/joiner.py b/egs/aishell/ASR/transducer_stateless_modified/joiner.py
new file mode 120000
index 000000000..1aec6bfaf
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/joiner.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/transducer_stateless/joiner.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified/model.py b/egs/aishell/ASR/transducer_stateless_modified/model.py
new file mode 120000
index 000000000..16ddd93f0
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/model.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/transducer_stateless/model.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified/pretrained.py b/egs/aishell/ASR/transducer_stateless_modified/pretrained.py
new file mode 100755
index 000000000..698594e92
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/pretrained.py
@@ -0,0 +1,331 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
+# Wei Kang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Usage:
+
+# greedy search
+./transducer_stateless_modified/pretrained.py \
+ --checkpoint /path/to/pretrained.pt \
+ --lang-dir /path/to/lang_char \
+ --method greedy_search \
+ /path/to/foo.wav \
+ /path/to/bar.wav
+
+# beam search
+./transducer_stateless_modified/pretrained.py \
+ --checkpoint /path/to/pretrained.pt \
+ --lang-dir /path/to/lang_char \
+ --method beam_search \
+ --beam-size 4 \
+ /path/to/foo.wav \
+ /path/to/bar.wav
+
+# modified beam search
+./transducer_stateless_modified/pretrained.py \
+ --checkpoint /path/to/pretrained.pt \
+ --lang-dir /path/to/lang_char \
+ --method modified_beam_search \
+ --beam-size 4 \
+ /path/to/foo.wav \
+ /path/to/bar.wav
+
+"""
+
+import argparse
+import logging
+import math
+from pathlib import Path
+from typing import List
+
+import kaldifeat
+import torch
+import torch.nn as nn
+import torchaudio
+from beam_search import beam_search, greedy_search, modified_beam_search
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from model import Transducer
+from torch.nn.utils.rnn import pad_sequence
+
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import AttributeDict
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--checkpoint",
+ type=str,
+ required=True,
+ help="Path to the checkpoint. "
+ "The checkpoint is assumed to be saved by "
+ "icefall.checkpoint.save_checkpoint().",
+ )
+
+ parser.add_argument(
+ "--lang-dir",
+ type=Path,
+ default=Path("data/lang_char"),
+ help="The lang dir",
+ )
+
+ parser.add_argument(
+ "--method",
+ type=str,
+ default="greedy_search",
+ help="""Possible values are:
+ - greedy_search
+ - beam_search
+ - modified_beam_search
+ """,
+ )
+
+ parser.add_argument(
+ "sound_files",
+ type=str,
+ nargs="+",
+ help="The input sound file(s) to transcribe. "
+ "Supported formats are those supported by torchaudio.load(). "
+ "For example, wav and flac are supported. "
+ "The sample rate has to be 16kHz.",
+ )
+
+ parser.add_argument(
+ "--beam-size",
+ type=int,
+ default=4,
+ help="Used only when --method is beam_search and modified_beam_search",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+ parser.add_argument(
+ "--max-sym-per-frame",
+ type=int,
+ default=3,
+ help="Maximum number of symbols per frame. "
+ "Use only when --method is greedy_search",
+ )
+ return parser
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ params = AttributeDict(
+ {
+ # parameters for conformer
+ "feature_dim": 80,
+ "encoder_out_dim": 512,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ "env_info": get_env_info(),
+ "sample_rate": 16000,
+ }
+ )
+ return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.encoder_out_dim,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.encoder_out_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+ joiner = Joiner(
+ input_dim=params.encoder_out_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+ encoder = get_encoder_model(params)
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ )
+ return model
+
+
+def read_sound_files(
+ filenames: List[str], expected_sample_rate: float
+) -> List[torch.Tensor]:
+ """Read a list of sound files into a list 1-D float32 torch tensors.
+ Args:
+ filenames:
+ A list of sound filenames.
+ expected_sample_rate:
+ The expected sample rate of the sound files.
+ Returns:
+ Return a list of 1-D float32 torch tensors.
+ """
+ ans = []
+ for f in filenames:
+ wave, sample_rate = torchaudio.load(f)
+ assert sample_rate == expected_sample_rate, (
+ f"expected sample rate: {expected_sample_rate}. "
+ f"Given: {sample_rate}"
+ )
+ # We use only the first channel
+ ans.append(wave[0])
+ return ans
+
+
+def main():
+ parser = get_parser()
+ args = parser.parse_args()
+
+ params = get_params()
+ params.update(vars(args))
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"device: {device}")
+
+ lexicon = Lexicon(params.lang_dir)
+
+ params.blank_id = 0
+ params.vocab_size = max(lexicon.tokens) + 1
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ checkpoint = torch.load(args.checkpoint, map_location="cpu")
+ model.load_state_dict(checkpoint["model"])
+ model.to(device)
+ model.eval()
+ model.device = device
+
+ logging.info("Constructing Fbank computer")
+ opts = kaldifeat.FbankOptions()
+ opts.device = device
+ opts.frame_opts.dither = 0
+ opts.frame_opts.snip_edges = False
+ opts.frame_opts.samp_freq = params.sample_rate
+ opts.mel_opts.num_bins = params.feature_dim
+
+ fbank = kaldifeat.Fbank(opts)
+
+ logging.info(f"Reading sound files: {params.sound_files}")
+ waves = read_sound_files(
+ filenames=params.sound_files, expected_sample_rate=params.sample_rate
+ )
+ waves = [w.to(device) for w in waves]
+
+ logging.info("Decoding started")
+ features = fbank(waves)
+ feature_lens = [f.size(0) for f in features]
+ feature_lens = torch.tensor(feature_lens, device=device)
+
+ features = pad_sequence(
+ features, batch_first=True, padding_value=math.log(1e-10)
+ )
+
+ hyps = []
+ with torch.no_grad():
+ encoder_out, encoder_out_lens = model.encoder(
+ x=features, x_lens=feature_lens
+ )
+
+ for i in range(encoder_out.size(0)):
+ # fmt: off
+ encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+ # fmt: on
+ if params.method == "greedy_search":
+ hyp = greedy_search(
+ model=model,
+ encoder_out=encoder_out_i,
+ max_sym_per_frame=params.max_sym_per_frame,
+ )
+ elif params.method == "beam_search":
+ hyp = beam_search(
+ model=model,
+ encoder_out=encoder_out_i,
+ beam=params.beam_size,
+ )
+ elif params.method == "modified_beam_search":
+ hyp = modified_beam_search(
+ model=model,
+ encoder_out=encoder_out_i,
+ beam=params.beam_size,
+ )
+ else:
+ raise ValueError(
+ f"Unsupported decoding method: {params.method}"
+ )
+ hyps.append([lexicon.token_table[i] for i in hyp])
+
+ s = "\n"
+ for filename, hyp in zip(params.sound_files, hyps):
+ words = " ".join(hyp)
+ s += f"{filename}:\n{words}\n\n"
+ logging.info(s)
+
+ logging.info("Decoding Done")
+
+
+if __name__ == "__main__":
+ formatter = (
+ "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+ )
+
+ logging.basicConfig(format=formatter, level=logging.INFO)
+ main()
diff --git a/egs/aishell/ASR/transducer_stateless_modified/subsampling.py b/egs/aishell/ASR/transducer_stateless_modified/subsampling.py
new file mode 120000
index 000000000..6fee09e58
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/subsampling.py
@@ -0,0 +1 @@
+../conformer_ctc/subsampling.py
\ No newline at end of file
diff --git a/egs/aishell/ASR/transducer_stateless_modified/test_decoder.py b/egs/aishell/ASR/transducer_stateless_modified/test_decoder.py
new file mode 100755
index 000000000..fe0bdee70
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/test_decoder.py
@@ -0,0 +1,58 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+To run this file, do:
+
+ cd icefall/egs/aishell/ASR
+ python ./transducer_stateless/test_decoder.py
+"""
+
+import torch
+from decoder import Decoder
+
+
+def test_decoder():
+ vocab_size = 3
+ blank_id = 0
+ embedding_dim = 128
+ context_size = 4
+
+ decoder = Decoder(
+ vocab_size=vocab_size,
+ embedding_dim=embedding_dim,
+ blank_id=blank_id,
+ context_size=context_size,
+ )
+ N = 100
+ U = 20
+ x = torch.randint(low=0, high=vocab_size, size=(N, U))
+ y = decoder(x)
+ assert y.shape == (N, U, embedding_dim)
+
+ # for inference
+ x = torch.randint(low=0, high=vocab_size, size=(N, context_size))
+ y = decoder(x, need_pad=False)
+ assert y.shape == (N, 1, embedding_dim)
+
+
+def main():
+ test_decoder()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/aishell/ASR/transducer_stateless_modified/train.py b/egs/aishell/ASR/transducer_stateless_modified/train.py
new file mode 100755
index 000000000..524854b73
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/train.py
@@ -0,0 +1,751 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
+# Wei Kang
+# Mingshuang Luo)
+# Copyright 2021 (Pingfeng Luo)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Usage:
+
+export CUDA_VISIBLE_DEVICES="0,1,2"
+
+./transducer_stateless_modified/train.py \
+ --world-size 3 \
+ --num-epochs 65 \
+ --start-epoch 0 \
+ --exp-dir transducer_stateless_modified/exp \
+ --max-duration 250 \
+ --lr-factor 2.0 \
+ --context-size 2 \
+ --modified-transducer-prob 0.25
+"""
+
+
+import argparse
+import logging
+from pathlib import Path
+from shutil import copyfile
+from typing import Optional, Tuple
+
+import k2
+import torch
+import torch.multiprocessing as mp
+import torch.nn as nn
+from asr_datamodule import AishellAsrDataModule
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from lhotse.cut import Cut
+from lhotse.utils import fix_random_seed
+from model import Transducer
+from torch import Tensor
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.nn.utils import clip_grad_norm_
+from torch.utils.tensorboard import SummaryWriter
+from transformer import Noam
+
+from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
+from icefall.checkpoint import load_checkpoint
+from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
+from icefall.dist import cleanup_dist, setup_dist
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--world-size",
+ type=int,
+ default=1,
+ help="Number of GPUs for DDP training.",
+ )
+
+ parser.add_argument(
+ "--master-port",
+ type=int,
+ default=12354,
+ help="Master port to use for DDP training.",
+ )
+
+ parser.add_argument(
+ "--tensorboard",
+ type=str2bool,
+ default=True,
+ help="Should various information be logged in tensorboard.",
+ )
+
+ parser.add_argument(
+ "--num-epochs",
+ type=int,
+ default=30,
+ help="Number of epochs to train.",
+ )
+
+ parser.add_argument(
+ "--start-epoch",
+ type=int,
+ default=0,
+ help="""Resume training from from this epoch.
+ If it is positive, it will load checkpoint from
+ transducer_stateless/exp/epoch-{start_epoch-1}.pt
+ """,
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=str,
+ default="transducer_stateless_modified/exp",
+ help="""The experiment dir.
+ It specifies the directory where all training related
+ files, e.g., checkpoints, log, etc, are saved
+ """,
+ )
+
+ parser.add_argument(
+ "--lang-dir",
+ type=str,
+ default="data/lang_char",
+ help="""The lang dir
+ It contains language related input files such as
+ "lexicon.txt"
+ """,
+ )
+
+ parser.add_argument(
+ "--lr-factor",
+ type=float,
+ default=5.0,
+ help="The lr_factor for Noam optimizer",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+
+ parser.add_argument(
+ "--modified-transducer-prob",
+ type=float,
+ default=0.25,
+ help="""The probability to use modified transducer loss.
+ In modified transduer, it limits the maximum number of symbols
+ per frame to 1. See also the option --max-sym-per-frame in
+ transducer_stateless/decode.py
+ """,
+ )
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ """Return a dict containing training parameters.
+
+ All training related parameters that are not passed from the commandline
+ are saved in the variable `params`.
+
+ Commandline options are merged into `params` after they are parsed, so
+ you can also access them via `params`.
+
+ Explanation of options saved in `params`:
+
+ - best_train_loss: Best training loss so far. It is used to select
+ the model that has the lowest training loss. It is
+ updated during the training.
+
+ - best_valid_loss: Best validation loss so far. It is used to select
+ the model that has the lowest validation loss. It is
+ updated during the training.
+
+ - best_train_epoch: It is the epoch that has the best training loss.
+
+ - best_valid_epoch: It is the epoch that has the best validation loss.
+
+ - batch_idx_train: Used to writing statistics to tensorboard. It
+ contains number of batches trained so far across
+ epochs.
+
+ - log_interval: Print training loss if batch_idx % log_interval` is 0
+
+ - reset_interval: Reset statistics if batch_idx % reset_interval is 0
+
+ - valid_interval: Run validation if batch_idx % valid_interval is 0
+
+ - feature_dim: The model input dim. It has to match the one used
+ in computing features.
+
+ - subsampling_factor: The subsampling factor for the model.
+
+ - attention_dim: Hidden dim for multi-head attention model.
+
+ - num_decoder_layers: Number of decoder layer of transformer decoder.
+
+ - warm_step: The warm_step for Noam optimizer.
+ """
+ params = AttributeDict(
+ {
+ "best_train_loss": float("inf"),
+ "best_valid_loss": float("inf"),
+ "best_train_epoch": -1,
+ "best_valid_epoch": -1,
+ "batch_idx_train": 0,
+ "log_interval": 50,
+ "reset_interval": 200,
+ "valid_interval": 800,
+ # parameters for conformer
+ "feature_dim": 80,
+ "encoder_out_dim": 512,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ # parameters for Noam
+ "warm_step": 80000, # For the 100h subset, use 8k
+ "env_info": get_env_info(),
+ }
+ )
+
+ return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+ # TODO: We can add an option to switch between Conformer and Transformer
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.encoder_out_dim,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.encoder_out_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+ joiner = Joiner(
+ input_dim=params.encoder_out_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+ encoder = get_encoder_model(params)
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ )
+ return model
+
+
+def load_checkpoint_if_available(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: Optional[torch.optim.Optimizer] = None,
+ scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+) -> None:
+ """Load checkpoint from file.
+
+ If params.start_epoch is positive, it will load the checkpoint from
+ `params.start_epoch - 1`. Otherwise, this function does nothing.
+
+ Apart from loading state dict for `model`, `optimizer` and `scheduler`,
+ it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
+ and `best_valid_loss` in `params`.
+
+ Args:
+ params:
+ The return value of :func:`get_params`.
+ model:
+ The training model.
+ optimizer:
+ The optimizer that we are using.
+ scheduler:
+ The learning rate scheduler we are using.
+ Returns:
+ Return None.
+ """
+ if params.start_epoch <= 0:
+ return
+
+ filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
+ saved_params = load_checkpoint(
+ filename,
+ model=model,
+ optimizer=optimizer,
+ scheduler=scheduler,
+ )
+
+ keys = [
+ "best_train_epoch",
+ "best_valid_epoch",
+ "batch_idx_train",
+ "best_train_loss",
+ "best_valid_loss",
+ ]
+ for k in keys:
+ params[k] = saved_params[k]
+
+ return saved_params
+
+
+def save_checkpoint(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: Optional[torch.optim.Optimizer] = None,
+ scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+ rank: int = 0,
+) -> None:
+ """Save model, optimizer, scheduler and training stats to file.
+
+ Args:
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The training model.
+ """
+ if rank != 0:
+ return
+ filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
+ save_checkpoint_impl(
+ filename=filename,
+ model=model,
+ params=params,
+ optimizer=optimizer,
+ scheduler=scheduler,
+ rank=rank,
+ )
+
+ if params.best_train_epoch == params.cur_epoch:
+ best_train_filename = params.exp_dir / "best-train-loss.pt"
+ copyfile(src=filename, dst=best_train_filename)
+
+ if params.best_valid_epoch == params.cur_epoch:
+ best_valid_filename = params.exp_dir / "best-valid-loss.pt"
+ copyfile(src=filename, dst=best_valid_filename)
+
+
+def compute_loss(
+ params: AttributeDict,
+ model: nn.Module,
+ graph_compiler: CharCtcTrainingGraphCompiler,
+ batch: dict,
+ is_training: bool,
+) -> Tuple[Tensor, MetricsTracker]:
+ """
+ Compute CTC loss given the model and its inputs.
+
+ Args:
+ params:
+ Parameters for training. See :func:`get_params`.
+ model:
+ The model for training. It is an instance of Conformer in our case.
+ batch:
+ A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+ for the content in it.
+ is_training:
+ True for training. False for validation. When it is True, this
+ function enables autograd during computation; when it is False, it
+ disables autograd.
+ """
+ device = model.device
+ feature = batch["inputs"]
+ # at entry, feature is (N, T, C)
+ assert feature.ndim == 3
+ feature = feature.to(device)
+
+ supervisions = batch["supervisions"]
+ feature_lens = supervisions["num_frames"].to(device)
+
+ texts = batch["supervisions"]["text"]
+ y = graph_compiler.texts_to_ids(texts)
+ y = k2.RaggedTensor(y).to(device)
+
+ with torch.set_grad_enabled(is_training):
+ loss = model(
+ x=feature,
+ x_lens=feature_lens,
+ y=y,
+ modified_transducer_prob=params.modified_transducer_prob,
+ )
+
+ assert loss.requires_grad == is_training
+
+ info = MetricsTracker()
+ info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
+
+ # Note: We use reduction=sum while computing the loss.
+ info["loss"] = loss.detach().cpu().item()
+
+ return loss, info
+
+
+def compute_validation_loss(
+ params: AttributeDict,
+ model: nn.Module,
+ graph_compiler: CharCtcTrainingGraphCompiler,
+ valid_dl: torch.utils.data.DataLoader,
+ world_size: int = 1,
+) -> MetricsTracker:
+ """Run the validation process."""
+ model.eval()
+
+ tot_loss = MetricsTracker()
+
+ for batch_idx, batch in enumerate(valid_dl):
+ loss, loss_info = compute_loss(
+ params=params,
+ model=model,
+ graph_compiler=graph_compiler,
+ batch=batch,
+ is_training=False,
+ )
+ assert loss.requires_grad is False
+ tot_loss = tot_loss + loss_info
+
+ if world_size > 1:
+ tot_loss.reduce(loss.device)
+
+ loss_value = tot_loss["loss"] / tot_loss["frames"]
+ if loss_value < params.best_valid_loss:
+ params.best_valid_epoch = params.cur_epoch
+ params.best_valid_loss = loss_value
+
+ return tot_loss
+
+
+def train_one_epoch(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: torch.optim.Optimizer,
+ graph_compiler: CharCtcTrainingGraphCompiler,
+ train_dl: torch.utils.data.DataLoader,
+ valid_dl: torch.utils.data.DataLoader,
+ tb_writer: Optional[SummaryWriter] = None,
+ world_size: int = 1,
+) -> None:
+ """Train the model for one epoch.
+
+ The training loss from the mean of all frames is saved in
+ `params.train_loss`. It runs the validation process every
+ `params.valid_interval` batches.
+
+ Args:
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The model for training.
+ optimizer:
+ The optimizer we are using.
+ train_dl:
+ Dataloader for the training dataset.
+ valid_dl:
+ Dataloader for the validation dataset.
+ tb_writer:
+ Writer to write log messages to tensorboard.
+ world_size:
+ Number of nodes in DDP training. If it is 1, DDP is disabled.
+ """
+ model.train()
+
+ tot_loss = MetricsTracker()
+
+ for batch_idx, batch in enumerate(train_dl):
+ params.batch_idx_train += 1
+ batch_size = len(batch["supervisions"]["text"])
+
+ loss, loss_info = compute_loss(
+ params=params,
+ model=model,
+ graph_compiler=graph_compiler,
+ batch=batch,
+ is_training=True,
+ )
+ # summary stats
+ tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
+
+ # NOTE: We use reduction==sum and loss is computed over utterances
+ # in the batch and there is no normalization to it so far.
+
+ optimizer.zero_grad()
+ loss.backward()
+ clip_grad_norm_(model.parameters(), 5.0, 2.0)
+ optimizer.step()
+
+ if batch_idx % params.log_interval == 0:
+ logging.info(
+ f"Epoch {params.cur_epoch}, "
+ f"batch {batch_idx}, loss[{loss_info}], "
+ f"tot_loss[{tot_loss}], batch size: {batch_size}"
+ )
+
+ if batch_idx % params.log_interval == 0:
+
+ if tb_writer is not None:
+ loss_info.write_summary(
+ tb_writer, "train/current_", params.batch_idx_train
+ )
+ tot_loss.write_summary(
+ tb_writer, "train/tot_", params.batch_idx_train
+ )
+
+ if batch_idx > 0 and batch_idx % params.valid_interval == 0:
+ logging.info("Computing validation loss")
+ valid_info = compute_validation_loss(
+ params=params,
+ model=model,
+ graph_compiler=graph_compiler,
+ valid_dl=valid_dl,
+ world_size=world_size,
+ )
+ model.train()
+ logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
+ if tb_writer is not None:
+ valid_info.write_summary(
+ tb_writer, "train/valid_", params.batch_idx_train
+ )
+
+ loss_value = tot_loss["loss"] / tot_loss["frames"]
+ params.train_loss = loss_value
+ if params.train_loss < params.best_train_loss:
+ params.best_train_epoch = params.cur_epoch
+ params.best_train_loss = params.train_loss
+
+
+def run(rank, world_size, args):
+ """
+ Args:
+ rank:
+ It is a value between 0 and `world_size-1`, which is
+ passed automatically by `mp.spawn()` in :func:`main`.
+ The node with rank 0 is responsible for saving checkpoint.
+ world_size:
+ Number of GPUs for DDP training.
+ args:
+ The return value of get_parser().parse_args()
+ """
+ params = get_params()
+ params.update(vars(args))
+
+ fix_random_seed(42)
+ if world_size > 1:
+ setup_dist(rank, world_size, params.master_port)
+
+ setup_logger(f"{params.exp_dir}/log/log-train")
+ logging.info("Training started")
+
+ if args.tensorboard and rank == 0:
+ tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
+ else:
+ tb_writer = None
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", rank)
+ logging.info(f"Device: {device}")
+
+ lexicon = Lexicon(params.lang_dir)
+ graph_compiler = CharCtcTrainingGraphCompiler(
+ lexicon=lexicon,
+ device=device,
+ oov="",
+ )
+
+ params.blank_id = 0
+ params.vocab_size = max(lexicon.tokens) + 1
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ num_param = sum([p.numel() for p in model.parameters()])
+ logging.info(f"Number of model parameters: {num_param}")
+
+ checkpoints = load_checkpoint_if_available(params=params, model=model)
+
+ model.to(device)
+ if world_size > 1:
+ logging.info("Using DDP")
+ model = DDP(model, device_ids=[rank])
+ model.device = device
+
+ optimizer = Noam(
+ model.parameters(),
+ model_size=params.attention_dim,
+ factor=params.lr_factor,
+ warm_step=params.warm_step,
+ )
+
+ if checkpoints and "optimizer" in checkpoints:
+ logging.info("Loading optimizer state dict")
+ optimizer.load_state_dict(checkpoints["optimizer"])
+
+ aishell = AishellAsrDataModule(args)
+ train_cuts = aishell.train_cuts()
+
+ def remove_short_and_long_utt(c: Cut):
+ # Keep only utterances with duration between 1 second and 12 seconds
+ return 1.0 <= c.duration <= 12.0
+
+ num_in_total = len(train_cuts)
+
+ train_cuts = train_cuts.filter(remove_short_and_long_utt)
+
+ num_left = len(train_cuts)
+ num_removed = num_in_total - num_left
+ removed_percent = num_removed / num_in_total * 100
+
+ logging.info(f"Before removing short and long utterances: {num_in_total}")
+ logging.info(f"After removing short and long utterances: {num_left}")
+ logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
+
+ train_dl = aishell.train_dataloaders(train_cuts)
+ valid_dl = aishell.valid_dataloaders(aishell.valid_cuts())
+
+ scan_pessimistic_batches_for_oom(
+ model=model,
+ train_dl=train_dl,
+ optimizer=optimizer,
+ graph_compiler=graph_compiler,
+ params=params,
+ )
+
+ for epoch in range(params.start_epoch, params.num_epochs):
+ train_dl.sampler.set_epoch(epoch)
+
+ cur_lr = optimizer._rate
+ if tb_writer is not None:
+ tb_writer.add_scalar(
+ "train/learning_rate", cur_lr, params.batch_idx_train
+ )
+ tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
+
+ if rank == 0:
+ logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
+
+ params.cur_epoch = epoch
+
+ train_one_epoch(
+ params=params,
+ model=model,
+ optimizer=optimizer,
+ graph_compiler=graph_compiler,
+ train_dl=train_dl,
+ valid_dl=valid_dl,
+ tb_writer=tb_writer,
+ world_size=world_size,
+ )
+
+ save_checkpoint(
+ params=params,
+ model=model,
+ optimizer=optimizer,
+ rank=rank,
+ )
+
+ logging.info("Done!")
+
+ if world_size > 1:
+ torch.distributed.barrier()
+ cleanup_dist()
+
+
+def scan_pessimistic_batches_for_oom(
+ model: nn.Module,
+ train_dl: torch.utils.data.DataLoader,
+ optimizer: torch.optim.Optimizer,
+ graph_compiler: CharCtcTrainingGraphCompiler,
+ params: AttributeDict,
+):
+ from lhotse.dataset import find_pessimistic_batches
+
+ logging.info(
+ "Sanity check -- see if any of the batches in epoch 0 would cause OOM."
+ )
+ batches, crit_values = find_pessimistic_batches(train_dl.sampler)
+ for criterion, cuts in batches.items():
+ batch = train_dl.dataset[cuts]
+ try:
+ optimizer.zero_grad()
+ loss, _ = compute_loss(
+ params=params,
+ model=model,
+ graph_compiler=graph_compiler,
+ batch=batch,
+ is_training=True,
+ )
+ loss.backward()
+ clip_grad_norm_(model.parameters(), 5.0, 2.0)
+ optimizer.step()
+ except RuntimeError as e:
+ if "CUDA out of memory" in str(e):
+ logging.error(
+ "Your GPU ran out of memory with the current "
+ "max_duration setting. We recommend decreasing "
+ "max_duration and trying again.\n"
+ f"Failing criterion: {criterion} "
+ f"(={crit_values[criterion]}) ..."
+ )
+ raise
+
+
+def main():
+ parser = get_parser()
+ AishellAsrDataModule.add_arguments(parser)
+ args = parser.parse_args()
+ args.exp_dir = Path(args.exp_dir)
+ args.lang_dir = Path(args.lang_dir)
+
+ world_size = args.world_size
+ assert world_size >= 1
+ if world_size > 1:
+ mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
+ else:
+ run(rank=0, world_size=1, args=args)
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/aishell/ASR/transducer_stateless_modified/transformer.py b/egs/aishell/ASR/transducer_stateless_modified/transformer.py
new file mode 120000
index 000000000..214afed39
--- /dev/null
+++ b/egs/aishell/ASR/transducer_stateless_modified/transformer.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/transducer_stateless/transformer.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/README.md b/egs/librispeech/ASR/README.md
index c8ee98d7d..a7b2e2c3b 100644
--- a/egs/librispeech/ASR/README.md
+++ b/egs/librispeech/ASR/README.md
@@ -1,7 +1,7 @@
# Introduction
-Please refer to
+Please refer to
for how to run models in this recipe.
# Transducers
@@ -9,11 +9,13 @@ for how to run models in this recipe.
There are various folders containing the name `transducer` in this folder.
The following table lists the differences among them.
-| | Encoder | Decoder |
-|------------------------|-----------|--------------------|
-| `transducer` | Conformer | LSTM |
-| `transducer_stateless` | Conformer | Embedding + Conv1d |
-| `transducer_lstm ` | LSTM | LSTM |
+| | Encoder | Decoder | Comment |
+|---------------------------------------|-----------|--------------------|---------------------------------------------------|
+| `transducer` | Conformer | LSTM | |
+| `transducer_stateless` | Conformer | Embedding + Conv1d | |
+| `transducer_lstm` | LSTM | LSTM | |
+| `transducer_stateless_multi_datasets` | Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data |
+| `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |
The decoder in `transducer_stateless` is modified from the paper
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/).
diff --git a/egs/librispeech/ASR/RESULTS-100hours.md b/egs/librispeech/ASR/RESULTS-100hours.md
new file mode 100644
index 000000000..2e1bbd687
--- /dev/null
+++ b/egs/librispeech/ASR/RESULTS-100hours.md
@@ -0,0 +1,77 @@
+# Results for train-clean-100
+
+This page shows the WERs for test-clean/test-other using only
+train-clean-100 subset as training data.
+
+## Conformer encoder + embedding decoder
+
+### 2022-02-21
+
+Using commit `2332ba312d7ce72f08c7bac1e3312f7e3dd722dc`.
+
+| | test-clean | test-other | comment |
+|-------------------------------------|------------|------------|------------------------------------------|
+| greedy search (max sym per frame 1) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 |
+| greedy search (max sym per frame 2) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 |
+| greedy search (max sym per frame 3) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 |
+| modified beam search (beam size 4) | 6.31 | 16.3 | --epoch 57, --avg 17, --max-duration 100 |
+
+
+The training command for reproducing is given below:
+
+```bash
+cd egs/librispeech/ASR/
+./prepare.sh
+./prepare_giga_speech.sh
+
+export CUDA_VISIBLE_DEVICES="0,1"
+
+./transducer_stateless_multi_datasets/train.py \
+ --world-size 2 \
+ --num-epochs 60 \
+ --start-epoch 0 \
+ --exp-dir transducer_stateless_multi_datasets/exp-100-2 \
+ --full-libri 0 \
+ --max-duration 300 \
+ --lr-factor 1 \
+ --bpe-model data/lang_bpe_500/bpe.model \
+ --modified-transducer-prob 0.25
+ --giga-prob 0.2
+```
+
+The decoding command is given below:
+
+```bash
+for epoch in 57; do
+ for avg in 17; do
+ for sym in 1 2 3; do
+ ./transducer_stateless_multi_datasets/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir transducer_stateless_multi_datasets/exp-100-2 \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --max-duration 100 \
+ --context-size 2 \
+ --max-sym-per-frame $sym
+ done
+ done
+done
+
+epoch=57
+avg=17
+./transducer_stateless_multi_datasets/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir transducer_stateless_multi_datasets/exp-100-2 \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --max-duration 100 \
+ --context-size 2 \
+ --decoding-method modified_beam_search \
+ --beam-size 4
+```
+
+The tensorboard log is available at
+
+
+A pre-trained model and decoding logs can be found at
+
diff --git a/egs/librispeech/ASR/RESULTS.md b/egs/librispeech/ASR/RESULTS.md
index ffeaaae68..6dbc659f7 100644
--- a/egs/librispeech/ASR/RESULTS.md
+++ b/egs/librispeech/ASR/RESULTS.md
@@ -1,65 +1,304 @@
## Results
-### LibriSpeech BPE training results (Transducer)
-
-#### Conformer encoder + embedding decoder
-
-Using commit `4c1b3665ee6efb935f4dd93a80ff0e154b13efb6`.
+### LibriSpeech BPE training results (Pruned Transducer)
Conformer encoder + non-current decoder. The decoder
-contains only an embedding layer and a Conv1d (with kernel size 2).
+contains only an embedding layer, a Conv1d (with kernel size 2) and a linear
+layer (to transform tensor dim).
+
+#### 2022-03-12
+
+[pruned_transducer_stateless](./pruned_transducer_stateless)
+
+Using commit `1603744469d167d848e074f2ea98c587153205fa`.
+See
+
+The WERs are:
+
+| | test-clean | test-other | comment |
+|-------------------------------------|------------|------------|------------------------------------------|
+| greedy search (max sym per frame 1) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 |
+| greedy search (max sym per frame 2) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 |
+| greedy search (max sym per frame 3) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 |
+| modified beam search (beam size 4) | 2.56 | 6.27 | --epoch 42, --avg 11, --max-duration 100 |
+| beam search (beam size 4) | 2.57 | 6.27 | --epoch 42, --avg 11, --max-duration 100 |
+
+The decoding time for `test-clean` and `test-other` is given below:
+(A V100 GPU with 32 GB RAM is used for decoding. Note: Not all GPU RAM is used during decoding.)
+
+| decoding method | test-clean (seconds) | test-other (seconds)|
+|---|---:|---:|
+| greedy search (--max-sym-per-frame=1) | 160 | 159 |
+| greedy search (--max-sym-per-frame=2) | 184 | 177 |
+| greedy search (--max-sym-per-frame=3) | 210 | 213 |
+| modified beam search (--beam-size 4)| 273 | 269 |
+|beam search (--beam-size 4) | 2741 | 2221 |
+
+We recommend you to use `modified_beam_search`.
+
+Training command:
+
+```bash
+cd egs/librispeech/ASR/
+./prepare.sh
+
+export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
+
+. path.sh
+
+./pruned_transducer_stateless/train.py \
+ --world-size 8 \
+ --num-epochs 60 \
+ --start-epoch 0 \
+ --exp-dir pruned_transducer_stateless/exp \
+ --full-libri 1 \
+ --max-duration 300 \
+ --prune-range 5 \
+ --lr-factor 5 \
+ --lm-scale 0.25
+```
+
+The tensorboard training log can be found at
+
+
+The command for decoding is:
+
+```bash
+epoch=42
+avg=11
+sym=1
+
+# greedy search
+
+./pruned_transducer_stateless/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir ./pruned_transducer_stateless/exp \
+ --max-duration 100 \
+ --decoding-method greedy_search \
+ --beam-size 4 \
+ --max-sym-per-frame $sym
+
+# modified beam search
+./pruned_transducer_stateless/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir ./pruned_transducer_stateless/exp \
+ --max-duration 100 \
+ --decoding-method modified_beam_search \
+ --beam-size 4
+
+# beam search
+# (not recommended)
+./pruned_transducer_stateless/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir ./pruned_transducer_stateless/exp \
+ --max-duration 100 \
+ --decoding-method beam_search \
+ --beam-size 4
+```
+
+You can find a pre-trained model, decoding logs, and decoding results at
+
+
+#### 2022-02-18
+
+[pruned_transducer_stateless](./pruned_transducer_stateless)
+
The WERs are
| | test-clean | test-other | comment |
|---------------------------|------------|------------|------------------------------------------|
-| greedy search | 2.69 | 6.81 | --epoch 71, --avg 15, --max-duration 100 |
-| beam search (beam size 4) | 2.68 | 6.72 | --epoch 71, --avg 15, --max-duration 100 |
+| greedy search | 2.85 | 6.98 | --epoch 28, --avg 15, --max-duration 100 |
The training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3"
+./pruned_transducer_stateless/train.py \
+ --world-size 4 \
+ --num-epochs 30 \
+ --start-epoch 0 \
+ --exp-dir pruned_transducer_stateless/exp \
+ --full-libri 1 \
+ --max-duration 300 \
+ --prune-range 5 \
+ --lr-factor 5 \
+ --lm-scale 0.25 \
+```
+
+The tensorboard training log can be found at
+
+
+The decoding command is:
+```
+epoch=28
+avg=15
+
+## greedy search
+./pruned_transducer_stateless/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir pruned_transducer_stateless/exp \
+ --max-duration 100
+```
+
+
+### LibriSpeech BPE training results (Transducer)
+
+#### Conformer encoder + embedding decoder
+
+Conformer encoder + non-recurrent decoder. The decoder
+contains only an embedding layer and a Conv1d (with kernel size 2).
+
+See
+
+- [./transducer_stateless](./transducer_stateless)
+- [./transducer_stateless_multi_datasets](./transducer_stateless_multi_datasets)
+
+##### 2022-03-01
+
+Using commit `2332ba312d7ce72f08c7bac1e3312f7e3dd722dc`.
+
+It uses [GigaSpeech](https://github.com/SpeechColab/GigaSpeech)
+as extra training data. 20% of the time it selects a batch from L subset of
+GigaSpeech and 80% of the time it selects a batch from LibriSpeech.
+
+The WERs are
+
+| | test-clean | test-other | comment |
+|-------------------------------------|------------|------------|------------------------------------------|
+| greedy search (max sym per frame 1) | 2.64 | 6.55 | --epoch 39, --avg 15, --max-duration 100 |
+| modified beam search (beam size 4) | 2.61 | 6.46 | --epoch 39, --avg 15, --max-duration 100 |
+
+The training command for reproducing is given below:
+
+```bash
+cd egs/librispeech/ASR/
+./prepare.sh
+./prepare_giga_speech.sh
+
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+
+./transducer_stateless_multi_datasets/train.py \
+ --world-size 4 \
+ --num-epochs 40 \
+ --start-epoch 0 \
+ --exp-dir transducer_stateless_multi_datasets/exp-full-2 \
+ --full-libri 1 \
+ --max-duration 300 \
+ --lr-factor 5 \
+ --bpe-model data/lang_bpe_500/bpe.model \
+ --modified-transducer-prob 0.25 \
+ --giga-prob 0.2
+```
+
+The tensorboard training log can be found at
+
+
+The decoding command is:
+
+```bash
+epoch=39
+avg=15
+sym=1
+
+# greedy search
+./transducer_stateless_multi_datasets/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir transducer_stateless_multi_datasets/exp-full-2 \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --max-duration 100 \
+ --context-size 2 \
+ --max-sym-per-frame $sym
+
+# modified beam search
+./transducer_stateless_multi_datasets/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir transducer_stateless_multi_datasets/exp-full-2 \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --max-duration 100 \
+ --context-size 2 \
+ --decoding-method modified_beam_search \
+ --beam-size 4
+```
+
+You can find a pretrained model by visiting
+
+
+
+##### 2022-02-07
+
+Using commit `a8150021e01d34ecbd6198fe03a57eacf47a16f2`.
+
+
+The WERs are
+
+| | test-clean | test-other | comment |
+|-------------------------------------|------------|------------|------------------------------------------|
+| greedy search (max sym per frame 1) | 2.67 | 6.67 | --epoch 63, --avg 19, --max-duration 100 |
+| greedy search (max sym per frame 2) | 2.67 | 6.67 | --epoch 63, --avg 19, --max-duration 100 |
+| greedy search (max sym per frame 3) | 2.67 | 6.67 | --epoch 63, --avg 19, --max-duration 100 |
+| modified beam search (beam size 4) | 2.67 | 6.57 | --epoch 63, --avg 19, --max-duration 100 |
+
+
+The training command for reproducing is given below:
+
+```
+cd egs/librispeech/ASR/
+./prepare.sh
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
./transducer_stateless/train.py \
--world-size 4 \
--num-epochs 76 \
--start-epoch 0 \
--exp-dir transducer_stateless/exp-full \
--full-libri 1 \
- --max-duration 250 \
- --lr-factor 3
+ --max-duration 300 \
+ --lr-factor 5 \
+ --bpe-model data/lang_bpe_500/bpe.model \
+ --modified-transducer-prob 0.25
```
The tensorboard training log can be found at
-
+
The decoding command is:
```
-epoch=71
-avg=15
+epoch=63
+avg=19
## greedy search
-./transducer_stateless/decode.py \
- --epoch $epoch \
- --avg $avg \
- --exp-dir transducer_stateless/exp-full \
- --bpe-model ./data/lang_bpe_500/bpe.model \
- --max-duration 100
+for sym in 1 2 3; do
+ ./transducer_stateless/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --exp-dir transducer_stateless/exp-full \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --max-duration 100 \
+ --max-sym-per-frame $sym
+done
+
+## modified beam search
-## beam search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp-full \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
- --decoding-method beam_search \
+ --context-size 2 \
+ --decoding-method modified_beam_search \
--beam-size 4
```
You can find a pretrained model by visiting
-
+
#### Conformer encoder + LSTM decoder
diff --git a/egs/librispeech/ASR/conformer_ctc/train.py b/egs/librispeech/ASR/conformer_ctc/train.py
index cb0bd5c2d..b81bd6330 100755
--- a/egs/librispeech/ASR/conformer_ctc/train.py
+++ b/egs/librispeech/ASR/conformer_ctc/train.py
@@ -140,6 +140,13 @@ def get_parser():
help="The lr_factor for Noam optimizer",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -580,7 +587,7 @@ def run(rank, world_size, args):
params = get_params()
params.update(vars(args))
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -601,14 +608,14 @@ def run(rank, world_size, args):
if torch.cuda.is_available():
device = torch.device("cuda", rank)
- if "lang_bpe" in params.lang_dir:
+ if "lang_bpe" in str(params.lang_dir):
graph_compiler = BpeCtcTrainingGraphCompiler(
params.lang_dir,
device=device,
sos_token="",
eos_token="",
)
- elif "lang_phone" in params.lang_dir:
+ elif "lang_phone" in str(params.lang_dir):
assert params.att_rate == 0, (
"Attention decoder training does not support phone lang dirs "
"at this time due to a missing symbol. Set --att-rate=0 "
@@ -650,9 +657,7 @@ def run(rank, world_size, args):
model.to(device)
if world_size > 1:
- # Note: find_unused_parameters=True is needed in case we
- # want to set params.att_rate = 0 (i.e. att decoder is not trained)
- model = DDP(model, device_ids=[rank], find_unused_parameters=True)
+ model = DDP(model, device_ids=[rank])
optimizer = Noam(
model.parameters(),
@@ -686,6 +691,7 @@ def run(rank, world_size, args):
)
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
cur_lr = optimizer._rate
diff --git a/egs/librispeech/ASR/conformer_mmi/asr_datamodule.py b/egs/librispeech/ASR/conformer_mmi/asr_datamodule.py
deleted file mode 100644
index d3eab87a9..000000000
--- a/egs/librispeech/ASR/conformer_mmi/asr_datamodule.py
+++ /dev/null
@@ -1,356 +0,0 @@
-# Copyright 2021 Piotr Żelasko
-#
-# See ../../../../LICENSE for clarification regarding multiple authors
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import argparse
-import logging
-from functools import lru_cache
-from pathlib import Path
-from typing import List, Union
-
-from lhotse import CutSet, Fbank, FbankConfig, load_manifest
-from lhotse.dataset import (
- BucketingSampler,
- CutConcatenate,
- CutMix,
- K2SpeechRecognitionDataset,
- PrecomputedFeatures,
- SingleCutSampler,
- SpecAugment,
-)
-from lhotse.dataset.input_strategies import OnTheFlyFeatures
-from torch.utils.data import DataLoader
-
-from icefall.dataset.datamodule import DataModule
-from icefall.utils import str2bool
-
-
-class LibriSpeechAsrDataModule(DataModule):
- """
- DataModule for k2 ASR experiments.
- It assumes there is always one train and valid dataloader,
- but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
- and test-other).
-
- It contains all the common data pipeline modules used in ASR
- experiments, e.g.:
- - dynamic batch size,
- - bucketing samplers,
- - cut concatenation,
- - augmentation,
- - on-the-fly feature extraction
-
- This class should be derived for specific corpora used in ASR tasks.
- """
-
- @classmethod
- def add_arguments(cls, parser: argparse.ArgumentParser):
- super().add_arguments(parser)
- group = parser.add_argument_group(
- title="ASR data related options",
- description="These options are used for the preparation of "
- "PyTorch DataLoaders from Lhotse CutSet's -- they control the "
- "effective batch sizes, sampling strategies, applied data "
- "augmentations, etc.",
- )
- group.add_argument(
- "--full-libri",
- type=str2bool,
- default=True,
- help="When enabled, use 960h LibriSpeech. "
- "Otherwise, use 100h subset.",
- )
- group.add_argument(
- "--feature-dir",
- type=Path,
- default=Path("data/fbank"),
- help="Path to directory with train/valid/test cuts.",
- )
- group.add_argument(
- "--max-duration",
- type=int,
- default=200.0,
- help="Maximum pooled recordings duration (seconds) in a "
- "single batch. You can reduce it if it causes CUDA OOM.",
- )
- group.add_argument(
- "--bucketing-sampler",
- type=str2bool,
- default=True,
- help="When enabled, the batches will come from buckets of "
- "similar duration (saves padding frames).",
- )
- group.add_argument(
- "--num-buckets",
- type=int,
- default=30,
- help="The number of buckets for the BucketingSampler"
- "(you might want to increase it for larger datasets).",
- )
- group.add_argument(
- "--concatenate-cuts",
- type=str2bool,
- default=False,
- help="When enabled, utterances (cuts) will be concatenated "
- "to minimize the amount of padding.",
- )
- group.add_argument(
- "--duration-factor",
- type=float,
- default=1.0,
- help="Determines the maximum duration of a concatenated cut "
- "relative to the duration of the longest cut in a batch.",
- )
- group.add_argument(
- "--gap",
- type=float,
- default=1.0,
- help="The amount of padding (in seconds) inserted between "
- "concatenated cuts. This padding is filled with noise when "
- "noise augmentation is used.",
- )
- group.add_argument(
- "--on-the-fly-feats",
- type=str2bool,
- default=False,
- help="When enabled, use on-the-fly cut mixing and feature "
- "extraction. Will drop existing precomputed feature manifests "
- "if available.",
- )
- group.add_argument(
- "--shuffle",
- type=str2bool,
- default=True,
- help="When enabled (=default), the examples will be "
- "shuffled for each epoch.",
- )
- group.add_argument(
- "--return-cuts",
- type=str2bool,
- default=True,
- help="When enabled, each batch will have the "
- "field: batch['supervisions']['cut'] with the cuts that "
- "were used to construct it.",
- )
-
- group.add_argument(
- "--num-workers",
- type=int,
- default=2,
- help="The number of training dataloader workers that "
- "collect the batches.",
- )
-
- def train_dataloaders(self) -> DataLoader:
- logging.info("About to get train cuts")
- cuts_train = self.train_cuts()
-
- logging.info("About to get Musan cuts")
- cuts_musan = load_manifest(self.args.feature_dir / "cuts_musan.json.gz")
-
- logging.info("About to create train dataset")
- transforms = [
- CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
- ]
- if self.args.concatenate_cuts:
- logging.info(
- f"Using cut concatenation with duration factor "
- f"{self.args.duration_factor} and gap {self.args.gap}."
- )
- # Cut concatenation should be the first transform in the list,
- # so that if we e.g. mix noise in, it will fill the gaps between
- # different utterances.
- transforms = [
- CutConcatenate(
- duration_factor=self.args.duration_factor, gap=self.args.gap
- )
- ] + transforms
-
- input_transforms = [
- SpecAugment(
- num_frame_masks=2,
- features_mask_size=27,
- num_feature_masks=2,
- frames_mask_size=100,
- )
- ]
-
- train = K2SpeechRecognitionDataset(
- cut_transforms=transforms,
- input_transforms=input_transforms,
- return_cuts=self.args.return_cuts,
- )
-
- if self.args.on_the_fly_feats:
- # NOTE: the PerturbSpeed transform should be added only if we
- # remove it from data prep stage.
- # Add on-the-fly speed perturbation; since originally it would
- # have increased epoch size by 3, we will apply prob 2/3 and use
- # 3x more epochs.
- # Speed perturbation probably should come first before
- # concatenation, but in principle the transforms order doesn't have
- # to be strict (e.g. could be randomized)
- # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
- # Drop feats to be on the safe side.
- train = K2SpeechRecognitionDataset(
- cut_transforms=transforms,
- input_strategy=OnTheFlyFeatures(
- Fbank(FbankConfig(num_mel_bins=80))
- ),
- input_transforms=input_transforms,
- return_cuts=self.args.return_cuts,
- )
-
- if self.args.bucketing_sampler:
- logging.info("Using BucketingSampler.")
- train_sampler = BucketingSampler(
- cuts_train,
- max_duration=self.args.max_duration,
- shuffle=self.args.shuffle,
- num_buckets=self.args.num_buckets,
- bucket_method="equal_duration",
- drop_last=True,
- )
- else:
- logging.info("Using SingleCutSampler.")
- train_sampler = SingleCutSampler(
- cuts_train,
- max_duration=self.args.max_duration,
- shuffle=self.args.shuffle,
- )
- logging.info("About to create train dataloader")
-
- train_dl = DataLoader(
- train,
- sampler=train_sampler,
- batch_size=None,
- num_workers=self.args.num_workers,
- persistent_workers=False,
- )
-
- return train_dl
-
- def valid_dataloaders(self) -> DataLoader:
- logging.info("About to get dev cuts")
- cuts_valid = self.valid_cuts()
-
- transforms = []
- if self.args.concatenate_cuts:
- transforms = [
- CutConcatenate(
- duration_factor=self.args.duration_factor, gap=self.args.gap
- )
- ] + transforms
-
- logging.info("About to create dev dataset")
- if self.args.on_the_fly_feats:
- validate = K2SpeechRecognitionDataset(
- cut_transforms=transforms,
- input_strategy=OnTheFlyFeatures(
- Fbank(FbankConfig(num_mel_bins=80))
- ),
- return_cuts=self.args.return_cuts,
- )
- else:
- validate = K2SpeechRecognitionDataset(
- cut_transforms=transforms,
- return_cuts=self.args.return_cuts,
- )
- valid_sampler = SingleCutSampler(
- cuts_valid,
- max_duration=self.args.max_duration,
- shuffle=False,
- )
- logging.info("About to create dev dataloader")
- valid_dl = DataLoader(
- validate,
- sampler=valid_sampler,
- batch_size=None,
- num_workers=2,
- persistent_workers=False,
- )
-
- return valid_dl
-
- def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
- cuts = self.test_cuts()
- is_list = isinstance(cuts, list)
- test_loaders = []
- if not is_list:
- cuts = [cuts]
-
- for cuts_test in cuts:
- logging.debug("About to create test dataset")
- test = K2SpeechRecognitionDataset(
- input_strategy=OnTheFlyFeatures(
- Fbank(FbankConfig(num_mel_bins=80))
- )
- if self.args.on_the_fly_feats
- else PrecomputedFeatures(),
- return_cuts=self.args.return_cuts,
- )
- sampler = SingleCutSampler(
- cuts_test, max_duration=self.args.max_duration
- )
- logging.debug("About to create test dataloader")
- test_dl = DataLoader(
- test, batch_size=None, sampler=sampler, num_workers=1
- )
- test_loaders.append(test_dl)
-
- if is_list:
- return test_loaders
- else:
- return test_loaders[0]
-
- @lru_cache()
- def train_cuts(self) -> CutSet:
- logging.info("About to get train cuts")
- cuts_train = load_manifest(
- self.args.feature_dir / "cuts_train-clean-100.json.gz"
- )
- if self.args.full_libri:
- cuts_train = (
- cuts_train
- + load_manifest(
- self.args.feature_dir / "cuts_train-clean-360.json.gz"
- )
- + load_manifest(
- self.args.feature_dir / "cuts_train-other-500.json.gz"
- )
- )
- return cuts_train
-
- @lru_cache()
- def valid_cuts(self) -> CutSet:
- logging.info("About to get dev cuts")
- cuts_valid = load_manifest(
- self.args.feature_dir / "cuts_dev-clean.json.gz"
- ) + load_manifest(self.args.feature_dir / "cuts_dev-other.json.gz")
- return cuts_valid
-
- @lru_cache()
- def test_cuts(self) -> List[CutSet]:
- test_sets = ["test-clean", "test-other"]
- cuts = []
- for test_set in test_sets:
- logging.debug("About to get test cuts")
- cuts.append(
- load_manifest(
- self.args.feature_dir / f"cuts_{test_set}.json.gz"
- )
- )
- return cuts
diff --git a/egs/librispeech/ASR/conformer_mmi/asr_datamodule.py b/egs/librispeech/ASR/conformer_mmi/asr_datamodule.py
new file mode 120000
index 000000000..a73848de9
--- /dev/null
+++ b/egs/librispeech/ASR/conformer_mmi/asr_datamodule.py
@@ -0,0 +1 @@
+../conformer_ctc/asr_datamodule.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/conformer_mmi/train.py b/egs/librispeech/ASR/conformer_mmi/train.py
index c36677762..9a5bdcce2 100755
--- a/egs/librispeech/ASR/conformer_mmi/train.py
+++ b/egs/librispeech/ASR/conformer_mmi/train.py
@@ -109,6 +109,13 @@ def get_parser():
""",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -673,7 +680,7 @@ def run(rank, world_size, args):
params = get_params()
params.update(vars(args))
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -761,6 +768,7 @@ def run(rank, world_size, args):
valid_dl = librispeech.valid_dataloaders()
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
if (
params.batch_idx_train >= params.use_ali_until
diff --git a/egs/librispeech/ASR/local/preprocess_gigaspeech.py b/egs/librispeech/ASR/local/preprocess_gigaspeech.py
new file mode 100644
index 000000000..4168a7185
--- /dev/null
+++ b/egs/librispeech/ASR/local/preprocess_gigaspeech.py
@@ -0,0 +1,123 @@
+#!/usr/bin/env python3
+# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
+# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import logging
+import re
+from pathlib import Path
+
+from lhotse import CutSet, SupervisionSegment
+from lhotse.recipes.utils import read_manifests_if_cached
+
+# Similar text filtering and normalization procedure as in:
+# https://github.com/SpeechColab/GigaSpeech/blob/main/toolkits/kaldi/gigaspeech_data_prep.sh
+
+
+def normalize_text(
+ utt: str,
+ punct_pattern=re.compile(r"<(COMMA|PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
+ whitespace_pattern=re.compile(r"\s\s+"),
+) -> str:
+ return whitespace_pattern.sub(" ", punct_pattern.sub("", utt))
+
+
+def has_no_oov(
+ sup: SupervisionSegment,
+ oov_pattern=re.compile(r"<(SIL|MUSIC|NOISE|OTHER)>"),
+) -> bool:
+ return oov_pattern.search(sup.text) is None
+
+
+def preprocess_giga_speech():
+ src_dir = Path("data/manifests")
+ output_dir = Path("data/fbank")
+ output_dir.mkdir(exist_ok=True)
+
+ dataset_parts = (
+ "DEV",
+ "TEST",
+ "XS",
+ "S",
+ "M",
+ "L",
+ "XL",
+ )
+
+ logging.info("Loading manifest (may take 4 minutes)")
+ manifests = read_manifests_if_cached(
+ dataset_parts=dataset_parts,
+ output_dir=src_dir,
+ prefix="gigaspeech",
+ suffix="jsonl.gz",
+ )
+ assert manifests is not None
+
+ for partition, m in manifests.items():
+ logging.info(f"Processing {partition}")
+ raw_cuts_path = output_dir / f"cuts_{partition}_raw.jsonl.gz"
+ if raw_cuts_path.is_file():
+ logging.info(f"{partition} already exists - skipping")
+ continue
+
+ # Note this step makes the recipe different than LibriSpeech:
+ # We must filter out some utterances and remove punctuation
+ # to be consistent with Kaldi.
+ logging.info("Filtering OOV utterances from supervisions")
+ m["supervisions"] = m["supervisions"].filter(has_no_oov)
+ logging.info(f"Normalizing text in {partition}")
+ for sup in m["supervisions"]:
+ sup.text = normalize_text(sup.text)
+ sup.custom = {"origin": "giga"}
+
+ # Create long-recording cut manifests.
+ logging.info(f"Processing {partition}")
+ cut_set = CutSet.from_manifests(
+ recordings=m["recordings"],
+ supervisions=m["supervisions"],
+ )
+ # Run data augmentation that needs to be done in the
+ # time domain.
+ if partition not in ["DEV", "TEST"]:
+ logging.info(
+ f"Speed perturb for {partition} with factors 0.9 and 1.1 "
+ "(Perturbing may take 8 minutes and saving may take 20 minutes)"
+ )
+ cut_set = (
+ cut_set
+ + cut_set.perturb_speed(0.9)
+ + cut_set.perturb_speed(1.1)
+ )
+
+ logging.info("About to split cuts into smaller chunks.")
+ cut_set = cut_set.trim_to_supervisions(
+ keep_overlapping=False, min_duration=None
+ )
+ logging.info(f"Saving to {raw_cuts_path}")
+ cut_set.to_file(raw_cuts_path)
+
+
+def main():
+ formatter = (
+ "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+ )
+ logging.basicConfig(format=formatter, level=logging.INFO)
+
+ preprocess_giga_speech()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/prepare.sh b/egs/librispeech/ASR/prepare.sh
index 3b2678ec4..1bbf7bbcf 100755
--- a/egs/librispeech/ASR/prepare.sh
+++ b/egs/librispeech/ASR/prepare.sh
@@ -60,8 +60,11 @@ log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download LM"
- [ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
- ./local/download_lm.py --out-dir=$dl_dir/lm
+ mkdir -p $dl_dir/lm
+ if [ ! -e $dl_dir/lm/.done ]; then
+ ./local/download_lm.py --out-dir=$dl_dir/lm
+ touch $dl_dir/lm/.done
+ fi
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
@@ -91,7 +94,10 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
# We assume that you have downloaded the LibriSpeech corpus
# to $dl_dir/LibriSpeech
mkdir -p data/manifests
- lhotse prepare librispeech -j $nj $dl_dir/LibriSpeech data/manifests
+ if [ ! -e data/manifests/.librispeech.done ]; then
+ lhotse prepare librispeech -j $nj $dl_dir/LibriSpeech data/manifests
+ touch data/manifests/.librispeech.done
+ fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
@@ -99,19 +105,28 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
- lhotse prepare musan $dl_dir/musan data/manifests
+ if [ ! -e data/manifests/.musan.done ]; then
+ lhotse prepare musan $dl_dir/musan data/manifests
+ touch data/manifests/.musan.done
+ fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for librispeech"
mkdir -p data/fbank
- ./local/compute_fbank_librispeech.py
+ if [ ! -e data/fbank/.librispeech.done ]; then
+ ./local/compute_fbank_librispeech.py
+ touch data/fbank/.librispeech.done
+ fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
- ./local/compute_fbank_musan.py
+ if [ ! -e data/fbank/.musan.done ]; then
+ ./local/compute_fbank_musan.py
+ touch data/fbank/.musan.done
+ fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
diff --git a/egs/librispeech/ASR/prepare_giga_speech.sh b/egs/librispeech/ASR/prepare_giga_speech.sh
new file mode 100755
index 000000000..49124c4d7
--- /dev/null
+++ b/egs/librispeech/ASR/prepare_giga_speech.sh
@@ -0,0 +1,109 @@
+#!/usr/bin/env bash
+
+set -eou pipefail
+
+nj=15
+stage=-1
+stop_stage=100
+
+# We assume dl_dir (download dir) contains the following
+# directories and files. If not, they will be downloaded
+# by this script automatically.
+#
+# - $dl_dir/GigaSpeech
+# You can find audio, dict, GigaSpeech.json inside it.
+# You can apply for the download credentials by following
+# https://github.com/SpeechColab/GigaSpeech#download
+
+# Number of hours for GigaSpeech subsets
+# XL 10k hours
+# L 2.5k hours
+# M 1k hours
+# S 250 hours
+# XS 10 hours
+# DEV 12 hours
+# Test 40 hours
+
+dl_dir=$PWD/download
+
+. shared/parse_options.sh || exit 1
+
+# All files generated by this script are saved in "data".
+# You can safely remove "data" and rerun this script to regenerate it.
+mkdir -p data
+
+log() {
+ # This function is from espnet
+ local fname=${BASH_SOURCE[1]##*/}
+ echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
+}
+
+log "dl_dir: $dl_dir"
+
+if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
+ log "Stage 0: Download data"
+
+ [ ! -e $dl_dir/GigaSpeech ] && mkdir -p $dl_dir/GigaSpeech
+
+ # If you have pre-downloaded it to /path/to/GigaSpeech,
+ # you can create a symlink
+ #
+ # ln -sfv /path/to/GigaSpeech $dl_dir/GigaSpeech
+ #
+ if [ ! -d $dl_dir/GigaSpeech/audio ] && [ ! -f $dl_dir/GigaSpeech.json ]; then
+ # Check credentials.
+ if [ ! -f $dl_dir/password ]; then
+ echo -n "$0: Please apply for the download credentials by following"
+ echo -n "https://github.com/SpeechColab/GigaSpeech#dataset-download"
+ echo " and save it to $dl_dir/password."
+ exit 1;
+ fi
+ PASSWORD=`cat $dl_dir/password 2>/dev/null`
+ if [ -z "$PASSWORD" ]; then
+ echo "$0: Error, $dl_dir/password is empty."
+ exit 1;
+ fi
+ PASSWORD_MD5=`echo $PASSWORD | md5sum | cut -d ' ' -f 1`
+ if [[ $PASSWORD_MD5 != "dfbf0cde1a3ce23749d8d81e492741b8" ]]; then
+ echo "$0: Error, invalid $dl_dir/password."
+ exit 1;
+ fi
+ # Download XL, DEV and TEST sets by default.
+ lhotse download gigaspeech \
+ --subset XL \
+ --subset L \
+ --subset M \
+ --subset S \
+ --subset XS \
+ --subset DEV \
+ --subset TEST \
+ --host tsinghua \
+ $dl_dir/password $dl_dir/GigaSpeech
+ fi
+fi
+
+if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
+ log "Stage 1: Prepare GigaSpeech manifest (may take 30 minutes)"
+ # We assume that you have downloaded the GigaSpeech corpus
+ # to $dl_dir/GigaSpeech
+ mkdir -p data/manifests
+ lhotse prepare gigaspeech \
+ --subset XL \
+ --subset L \
+ --subset M \
+ --subset S \
+ --subset XS \
+ --subset DEV \
+ --subset TEST \
+ -j $nj \
+ $dl_dir/GigaSpeech data/manifests
+fi
+
+if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
+ log "Stage 2: Preprocess GigaSpeech manifest"
+ if [ ! -f data/fbank/.preprocess_complete ]; then
+ log "It may take 2 hours for this stage"
+ python3 ./local/preprocess_gigaspeech.py
+ touch data/fbank/.preprocess_complete
+ fi
+fi
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/__init__.py b/egs/librispeech/ASR/pruned_transducer_stateless/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/asr_datamodule.py b/egs/librispeech/ASR/pruned_transducer_stateless/asr_datamodule.py
new file mode 120000
index 000000000..07f39b451
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/asr_datamodule.py
@@ -0,0 +1 @@
+../transducer/asr_datamodule.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/beam_search.py b/egs/librispeech/ASR/pruned_transducer_stateless/beam_search.py
new file mode 100644
index 000000000..38ab16507
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/beam_search.py
@@ -0,0 +1,450 @@
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from dataclasses import dataclass
+from typing import Dict, List, Optional
+
+import torch
+from model import Transducer
+
+
+def greedy_search(
+ model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
+) -> List[int]:
+ """
+ Args:
+ model:
+ An instance of `Transducer`.
+ encoder_out:
+ A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
+ max_sym_per_frame:
+ Maximum number of symbols per frame. If it is set to 0, the WER
+ would be 100%.
+ Returns:
+ Return the decoded result.
+ """
+ assert encoder_out.ndim == 3
+
+ # support only batch_size == 1 for now
+ assert encoder_out.size(0) == 1, encoder_out.size(0)
+
+ blank_id = model.decoder.blank_id
+ context_size = model.decoder.context_size
+
+ device = model.device
+
+ decoder_input = torch.tensor(
+ [blank_id] * context_size, device=device, dtype=torch.int64
+ ).reshape(1, context_size)
+
+ decoder_out = model.decoder(decoder_input, need_pad=False)
+
+ T = encoder_out.size(1)
+ t = 0
+ hyp = [blank_id] * context_size
+
+ # Maximum symbols per utterance.
+ max_sym_per_utt = 1000
+
+ # symbols per frame
+ sym_per_frame = 0
+
+ # symbols per utterance decoded so far
+ sym_per_utt = 0
+
+ while t < T and sym_per_utt < max_sym_per_utt:
+ if sym_per_frame >= max_sym_per_frame:
+ sym_per_frame = 0
+ t += 1
+ continue
+
+ # fmt: off
+ current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
+ # fmt: on
+ logits = model.joiner(current_encoder_out, decoder_out.unsqueeze(1))
+ # logits is (1, 1, 1, vocab_size)
+
+ y = logits.argmax().item()
+ if y != blank_id:
+ hyp.append(y)
+ decoder_input = torch.tensor(
+ [hyp[-context_size:]], device=device
+ ).reshape(1, context_size)
+
+ decoder_out = model.decoder(decoder_input, need_pad=False)
+
+ sym_per_utt += 1
+ sym_per_frame += 1
+ else:
+ sym_per_frame = 0
+ t += 1
+ hyp = hyp[context_size:] # remove blanks
+
+ return hyp
+
+
+@dataclass
+class Hypothesis:
+ # The predicted tokens so far.
+ # Newly predicted tokens are appended to `ys`.
+ ys: List[int]
+
+ # The log prob of ys.
+ # It contains only one entry.
+ log_prob: torch.Tensor
+
+ @property
+ def key(self) -> str:
+ """Return a string representation of self.ys"""
+ return "_".join(map(str, self.ys))
+
+
+class HypothesisList(object):
+ def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
+ """
+ Args:
+ data:
+ A dict of Hypotheses. Its key is its `value.key`.
+ """
+ if data is None:
+ self._data = {}
+ else:
+ self._data = data
+
+ @property
+ def data(self) -> Dict[str, Hypothesis]:
+ return self._data
+
+ def add(self, hyp: Hypothesis) -> None:
+ """Add a Hypothesis to `self`.
+
+ If `hyp` already exists in `self`, its probability is updated using
+ `log-sum-exp` with the existed one.
+
+ Args:
+ hyp:
+ The hypothesis to be added.
+ """
+ key = hyp.key
+ if key in self:
+ old_hyp = self._data[key] # shallow copy
+ torch.logaddexp(
+ old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
+ )
+ else:
+ self._data[key] = hyp
+
+ def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
+ """Get the most probable hypothesis, i.e., the one with
+ the largest `log_prob`.
+
+ Args:
+ length_norm:
+ If True, the `log_prob` of a hypothesis is normalized by the
+ number of tokens in it.
+ Returns:
+ Return the hypothesis that has the largest `log_prob`.
+ """
+ if length_norm:
+ return max(
+ self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)
+ )
+ else:
+ return max(self._data.values(), key=lambda hyp: hyp.log_prob)
+
+ def remove(self, hyp: Hypothesis) -> None:
+ """Remove a given hypothesis.
+
+ Caution:
+ `self` is modified **in-place**.
+
+ Args:
+ hyp:
+ The hypothesis to be removed from `self`.
+ Note: It must be contained in `self`. Otherwise,
+ an exception is raised.
+ """
+ key = hyp.key
+ assert key in self, f"{key} does not exist"
+ del self._data[key]
+
+ def filter(self, threshold: torch.Tensor) -> "HypothesisList":
+ """Remove all Hypotheses whose log_prob is less than threshold.
+
+ Caution:
+ `self` is not modified. Instead, a new HypothesisList is returned.
+
+ Returns:
+ Return a new HypothesisList containing all hypotheses from `self`
+ with `log_prob` being greater than the given `threshold`.
+ """
+ ans = HypothesisList()
+ for _, hyp in self._data.items():
+ if hyp.log_prob > threshold:
+ ans.add(hyp) # shallow copy
+ return ans
+
+ def topk(self, k: int) -> "HypothesisList":
+ """Return the top-k hypothesis."""
+ hyps = list(self._data.items())
+
+ hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
+
+ ans = HypothesisList(dict(hyps))
+ return ans
+
+ def __contains__(self, key: str):
+ return key in self._data
+
+ def __iter__(self):
+ return iter(self._data.values())
+
+ def __len__(self) -> int:
+ return len(self._data)
+
+ def __str__(self) -> str:
+ s = []
+ for key in self:
+ s.append(key)
+ return ", ".join(s)
+
+
+def modified_beam_search(
+ model: Transducer,
+ encoder_out: torch.Tensor,
+ beam: int = 4,
+) -> List[int]:
+ """It limits the maximum number of symbols per frame to 1.
+
+ Args:
+ model:
+ An instance of `Transducer`.
+ encoder_out:
+ A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
+ beam:
+ Beam size.
+ Returns:
+ Return the decoded result.
+ """
+
+ assert encoder_out.ndim == 3
+
+ # support only batch_size == 1 for now
+ assert encoder_out.size(0) == 1, encoder_out.size(0)
+ blank_id = model.decoder.blank_id
+ context_size = model.decoder.context_size
+
+ device = model.device
+
+ T = encoder_out.size(1)
+
+ B = HypothesisList()
+ B.add(
+ Hypothesis(
+ ys=[blank_id] * context_size,
+ log_prob=torch.zeros(1, dtype=torch.float32, device=device),
+ )
+ )
+
+ for t in range(T):
+ # fmt: off
+ current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
+ # current_encoder_out is of shape (1, 1, 1, encoder_out_dim)
+ # fmt: on
+ A = list(B)
+ B = HypothesisList()
+
+ ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
+ # ys_log_probs is of shape (num_hyps, 1)
+
+ decoder_input = torch.tensor(
+ [hyp.ys[-context_size:] for hyp in A],
+ device=device,
+ dtype=torch.int64,
+ )
+ # decoder_input is of shape (num_hyps, context_size)
+
+ decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
+ # decoder_output is of shape (num_hyps, 1, 1, decoder_output_dim)
+
+ current_encoder_out = current_encoder_out.expand(
+ decoder_out.size(0), 1, 1, -1
+ ) # (num_hyps, 1, 1, encoder_out_dim)
+
+ logits = model.joiner(
+ current_encoder_out,
+ decoder_out,
+ )
+ # logits is of shape (num_hyps, 1, 1, vocab_size)
+ logits = logits.squeeze(1).squeeze(1)
+
+ # now logits is of shape (num_hyps, vocab_size)
+ log_probs = logits.log_softmax(dim=-1)
+
+ log_probs.add_(ys_log_probs)
+
+ log_probs = log_probs.reshape(-1)
+ topk_log_probs, topk_indexes = log_probs.topk(beam)
+
+ # topk_hyp_indexes are indexes into `A`
+ topk_hyp_indexes = topk_indexes // logits.size(-1)
+ topk_token_indexes = topk_indexes % logits.size(-1)
+
+ topk_hyp_indexes = topk_hyp_indexes.tolist()
+ topk_token_indexes = topk_token_indexes.tolist()
+
+ for i in range(len(topk_hyp_indexes)):
+ hyp = A[topk_hyp_indexes[i]]
+ new_ys = hyp.ys[:]
+ new_token = topk_token_indexes[i]
+ if new_token != blank_id:
+ new_ys.append(new_token)
+ new_log_prob = topk_log_probs[i]
+ new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
+ B.add(new_hyp)
+
+ best_hyp = B.get_most_probable(length_norm=True)
+ ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
+
+ return ys
+
+
+def beam_search(
+ model: Transducer,
+ encoder_out: torch.Tensor,
+ beam: int = 4,
+) -> List[int]:
+ """
+ It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
+
+ espnet/nets/beam_search_transducer.py#L247 is used as a reference.
+
+ Args:
+ model:
+ An instance of `Transducer`.
+ encoder_out:
+ A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
+ beam:
+ Beam size.
+ Returns:
+ Return the decoded result.
+ """
+ assert encoder_out.ndim == 3
+
+ # support only batch_size == 1 for now
+ assert encoder_out.size(0) == 1, encoder_out.size(0)
+ blank_id = model.decoder.blank_id
+ context_size = model.decoder.context_size
+
+ device = model.device
+
+ decoder_input = torch.tensor(
+ [blank_id] * context_size,
+ device=device,
+ dtype=torch.int64,
+ ).reshape(1, context_size)
+
+ decoder_out = model.decoder(decoder_input, need_pad=False)
+
+ T = encoder_out.size(1)
+ t = 0
+
+ B = HypothesisList()
+ B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0))
+
+ max_sym_per_utt = 20000
+
+ sym_per_utt = 0
+
+ decoder_cache: Dict[str, torch.Tensor] = {}
+
+ while t < T and sym_per_utt < max_sym_per_utt:
+ # fmt: off
+ current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
+ # fmt: on
+ A = B
+ B = HypothesisList()
+
+ joint_cache: Dict[str, torch.Tensor] = {}
+
+ # TODO(fangjun): Implement prefix search to update the `log_prob`
+ # of hypotheses in A
+
+ while True:
+ y_star = A.get_most_probable()
+ A.remove(y_star)
+
+ cached_key = y_star.key
+
+ if cached_key not in decoder_cache:
+ decoder_input = torch.tensor(
+ [y_star.ys[-context_size:]],
+ device=device,
+ dtype=torch.int64,
+ ).reshape(1, context_size)
+
+ decoder_out = model.decoder(decoder_input, need_pad=False)
+ decoder_cache[cached_key] = decoder_out
+ else:
+ decoder_out = decoder_cache[cached_key]
+
+ cached_key += f"-t-{t}"
+ if cached_key not in joint_cache:
+ logits = model.joiner(
+ current_encoder_out, decoder_out.unsqueeze(1)
+ )
+
+ # TODO(fangjun): Scale the blank posterior
+
+ log_prob = logits.log_softmax(dim=-1)
+ # log_prob is (1, 1, 1, vocab_size)
+ log_prob = log_prob.squeeze()
+ # Now log_prob is (vocab_size,)
+ joint_cache[cached_key] = log_prob
+ else:
+ log_prob = joint_cache[cached_key]
+
+ # First, process the blank symbol
+ skip_log_prob = log_prob[blank_id]
+ new_y_star_log_prob = y_star.log_prob + skip_log_prob
+
+ # ys[:] returns a copy of ys
+ B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
+
+ # Second, process other non-blank labels
+ values, indices = log_prob.topk(beam + 1)
+ for i, v in zip(indices.tolist(), values.tolist()):
+ if i == blank_id:
+ continue
+ new_ys = y_star.ys + [i]
+ new_log_prob = y_star.log_prob + v
+ A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
+
+ # Check whether B contains more than "beam" elements more probable
+ # than the most probable in A
+ A_most_probable = A.get_most_probable()
+
+ kept_B = B.filter(A_most_probable.log_prob)
+
+ if len(kept_B) >= beam:
+ B = kept_B.topk(beam)
+ break
+
+ t += 1
+
+ best_hyp = B.get_most_probable(length_norm=True)
+ ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
+ return ys
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/conformer.py b/egs/librispeech/ASR/pruned_transducer_stateless/conformer.py
new file mode 120000
index 000000000..70a7ddf11
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/conformer.py
@@ -0,0 +1 @@
+../transducer_stateless/conformer.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/decode.py b/egs/librispeech/ASR/pruned_transducer_stateless/decode.py
new file mode 100755
index 000000000..86ec6172f
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/decode.py
@@ -0,0 +1,423 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+(1) greedy search
+./pruned_transducer_stateless/decode.py \
+ --epoch 28 \
+ --avg 15 \
+ --exp-dir ./pruned_transducer_stateless/exp \
+ --max-duration 100 \
+ --decoding-method greedy_search
+
+(2) beam search
+./pruned_transducer_stateless/decode.py \
+ --epoch 28 \
+ --avg 15 \
+ --exp-dir ./pruned_transducer_stateless/exp \
+ --max-duration 100 \
+ --decoding-method beam_search \
+ --beam-size 4
+
+(3) modified beam search
+./pruned_transducer_stateless/decode.py \
+ --epoch 28 \
+ --avg 15 \
+ --exp-dir ./pruned_transducer_stateless/exp \
+ --max-duration 100 \
+ --decoding-method modified_beam_search \
+ --beam-size 4
+"""
+
+
+import argparse
+import logging
+from collections import defaultdict
+from pathlib import Path
+from typing import Dict, List, Tuple
+
+import sentencepiece as spm
+import torch
+import torch.nn as nn
+from asr_datamodule import LibriSpeechAsrDataModule
+from beam_search import beam_search, greedy_search, modified_beam_search
+from train import get_params, get_transducer_model
+
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.utils import (
+ AttributeDict,
+ setup_logger,
+ store_transcripts,
+ write_error_stats,
+)
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--epoch",
+ type=int,
+ default=28,
+ help="It specifies the checkpoint to use for decoding."
+ "Note: Epoch counts from 0.",
+ )
+ parser.add_argument(
+ "--avg",
+ type=int,
+ default=15,
+ help="Number of checkpoints to average. Automatically select "
+ "consecutive checkpoints before the checkpoint specified by "
+ "'--epoch'. ",
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=str,
+ default="pruned_transducer_stateless/exp",
+ help="The experiment dir",
+ )
+
+ parser.add_argument(
+ "--bpe-model",
+ type=str,
+ default="data/lang_bpe_500/bpe.model",
+ help="Path to the BPE model",
+ )
+
+ parser.add_argument(
+ "--decoding-method",
+ type=str,
+ default="greedy_search",
+ help="""Possible values are:
+ - greedy_search
+ - beam_search
+ - modified_beam_search
+ """,
+ )
+
+ parser.add_argument(
+ "--beam-size",
+ type=int,
+ default=4,
+ help="""Used only when --decoding-method is
+ beam_search or modified_beam_search""",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+ parser.add_argument(
+ "--max-sym-per-frame",
+ type=int,
+ default=3,
+ help="""Maximum number of symbols per frame.
+ Used only when --decoding_method is greedy_search""",
+ )
+
+ return parser
+
+
+def decode_one_batch(
+ params: AttributeDict,
+ model: nn.Module,
+ sp: spm.SentencePieceProcessor,
+ batch: dict,
+) -> Dict[str, List[List[str]]]:
+ """Decode one batch and return the result in a dict. The dict has the
+ following format:
+
+ - key: It indicates the setting used for decoding. For example,
+ if greedy_search is used, it would be "greedy_search"
+ If beam search with a beam size of 7 is used, it would be
+ "beam_7"
+ - value: It contains the decoding result. `len(value)` equals to
+ batch size. `value[i]` is the decoding result for the i-th
+ utterance in the given batch.
+ Args:
+ params:
+ It's the return value of :func:`get_params`.
+ model:
+ The neural model.
+ sp:
+ The BPE model.
+ batch:
+ It is the return value from iterating
+ `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
+ for the format of the `batch`.
+ Returns:
+ Return the decoding result. See above description for the format of
+ the returned dict.
+ """
+ device = model.device
+ feature = batch["inputs"]
+ assert feature.ndim == 3
+
+ feature = feature.to(device)
+ # at entry, feature is (N, T, C)
+
+ supervisions = batch["supervisions"]
+ feature_lens = supervisions["num_frames"].to(device)
+
+ encoder_out, encoder_out_lens = model.encoder(
+ x=feature, x_lens=feature_lens
+ )
+ hyps = []
+ batch_size = encoder_out.size(0)
+
+ for i in range(batch_size):
+ # fmt: off
+ encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+ # fmt: on
+ if params.decoding_method == "greedy_search":
+ hyp = greedy_search(
+ model=model,
+ encoder_out=encoder_out_i,
+ max_sym_per_frame=params.max_sym_per_frame,
+ )
+ elif params.decoding_method == "beam_search":
+ hyp = beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
+ elif params.decoding_method == "modified_beam_search":
+ hyp = modified_beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
+ else:
+ raise ValueError(
+ f"Unsupported decoding method: {params.decoding_method}"
+ )
+ hyps.append(sp.decode(hyp).split())
+
+ if params.decoding_method == "greedy_search":
+ return {"greedy_search": hyps}
+ else:
+ return {f"beam_{params.beam_size}": hyps}
+
+
+def decode_dataset(
+ dl: torch.utils.data.DataLoader,
+ params: AttributeDict,
+ model: nn.Module,
+ sp: spm.SentencePieceProcessor,
+) -> Dict[str, List[Tuple[List[str], List[str]]]]:
+ """Decode dataset.
+
+ Args:
+ dl:
+ PyTorch's dataloader containing the dataset to decode.
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The neural model.
+ sp:
+ The BPE model.
+ Returns:
+ Return a dict, whose key may be "greedy_search" if greedy search
+ is used, or it may be "beam_7" if beam size of 7 is used.
+ Its value is a list of tuples. Each tuple contains two elements:
+ The first is the reference transcript, and the second is the
+ predicted result.
+ """
+ num_cuts = 0
+
+ try:
+ num_batches = len(dl)
+ except TypeError:
+ num_batches = "?"
+
+ if params.decoding_method == "greedy_search":
+ log_interval = 100
+ else:
+ log_interval = 2
+
+ results = defaultdict(list)
+ for batch_idx, batch in enumerate(dl):
+ texts = batch["supervisions"]["text"]
+
+ hyps_dict = decode_one_batch(
+ params=params,
+ model=model,
+ sp=sp,
+ batch=batch,
+ )
+
+ for name, hyps in hyps_dict.items():
+ this_batch = []
+ assert len(hyps) == len(texts)
+ for hyp_words, ref_text in zip(hyps, texts):
+ ref_words = ref_text.split()
+ this_batch.append((ref_words, hyp_words))
+
+ results[name].extend(this_batch)
+
+ num_cuts += len(texts)
+
+ if batch_idx % log_interval == 0:
+ batch_str = f"{batch_idx}/{num_batches}"
+
+ logging.info(
+ f"batch {batch_str}, cuts processed until now is {num_cuts}"
+ )
+ return results
+
+
+def save_results(
+ params: AttributeDict,
+ test_set_name: str,
+ results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
+):
+ test_set_wers = dict()
+ for key, results in results_dict.items():
+ recog_path = (
+ params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
+ )
+ store_transcripts(filename=recog_path, texts=results)
+ logging.info(f"The transcripts are stored in {recog_path}")
+
+ # The following prints out WERs, per-word error statistics and aligned
+ # ref/hyp pairs.
+ errs_filename = (
+ params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
+ )
+ with open(errs_filename, "w") as f:
+ wer = write_error_stats(
+ f, f"{test_set_name}-{key}", results, enable_log=True
+ )
+ test_set_wers[key] = wer
+
+ logging.info("Wrote detailed error stats to {}".format(errs_filename))
+
+ test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
+ errs_info = (
+ params.res_dir
+ / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+ )
+ with open(errs_info, "w") as f:
+ print("settings\tWER", file=f)
+ for key, val in test_set_wers:
+ print("{}\t{}".format(key, val), file=f)
+
+ s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
+ note = "\tbest for {}".format(test_set_name)
+ for key, val in test_set_wers:
+ s += "{}\t{}{}\n".format(key, val, note)
+ note = ""
+ logging.info(s)
+
+
+@torch.no_grad()
+def main():
+ parser = get_parser()
+ LibriSpeechAsrDataModule.add_arguments(parser)
+ args = parser.parse_args()
+ args.exp_dir = Path(args.exp_dir)
+
+ params = get_params()
+ params.update(vars(args))
+
+ assert params.decoding_method in (
+ "greedy_search",
+ "beam_search",
+ "modified_beam_search",
+ )
+ params.res_dir = params.exp_dir / params.decoding_method
+
+ params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
+ if "beam_search" in params.decoding_method:
+ params.suffix += f"-beam-{params.beam_size}"
+ else:
+ params.suffix += f"-context-{params.context_size}"
+ params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
+
+ setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
+ logging.info("Decoding started")
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"Device: {device}")
+
+ sp = spm.SentencePieceProcessor()
+ sp.load(params.bpe_model)
+
+ # is defined in local/train_bpe_model.py
+ params.blank_id = sp.piece_to_id("")
+ params.vocab_size = sp.get_piece_size()
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ if params.avg == 1:
+ load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+ else:
+ start = params.epoch - params.avg + 1
+ filenames = []
+ for i in range(start, params.epoch + 1):
+ if start >= 0:
+ filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+ logging.info(f"averaging {filenames}")
+ model.to(device)
+ model.load_state_dict(average_checkpoints(filenames, device=device))
+
+ model.to(device)
+ model.eval()
+ model.device = device
+
+ num_param = sum([p.numel() for p in model.parameters()])
+ logging.info(f"Number of model parameters: {num_param}")
+
+ librispeech = LibriSpeechAsrDataModule(args)
+
+ test_clean_cuts = librispeech.test_clean_cuts()
+ test_other_cuts = librispeech.test_other_cuts()
+
+ test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
+ test_other_dl = librispeech.test_dataloaders(test_other_cuts)
+
+ test_sets = ["test-clean", "test-other"]
+ test_dl = [test_clean_dl, test_other_dl]
+
+ for test_set, test_dl in zip(test_sets, test_dl):
+ results_dict = decode_dataset(
+ dl=test_dl,
+ params=params,
+ model=model,
+ sp=sp,
+ )
+
+ save_results(
+ params=params,
+ test_set_name=test_set,
+ results_dict=results_dict,
+ )
+
+ logging.info("Done!")
+
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/decoder.py b/egs/librispeech/ASR/pruned_transducer_stateless/decoder.py
new file mode 100644
index 000000000..3d4e69a4b
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/decoder.py
@@ -0,0 +1,100 @@
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class Decoder(nn.Module):
+ """This class modifies the stateless decoder from the following paper:
+
+ RNN-transducer with stateless prediction network
+ https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
+
+ It removes the recurrent connection from the decoder, i.e., the prediction
+ network. Different from the above paper, it adds an extra Conv1d
+ right after the embedding layer.
+
+ TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
+ """
+
+ def __init__(
+ self,
+ vocab_size: int,
+ embedding_dim: int,
+ blank_id: int,
+ context_size: int,
+ ):
+ """
+ Args:
+ vocab_size:
+ Number of tokens of the modeling unit including blank.
+ embedding_dim:
+ Dimension of the input embedding.
+ blank_id:
+ The ID of the blank symbol.
+ context_size:
+ Number of previous words to use to predict the next word.
+ 1 means bigram; 2 means trigram. n means (n+1)-gram.
+ """
+ super().__init__()
+ self.embedding = nn.Embedding(
+ num_embeddings=vocab_size,
+ embedding_dim=embedding_dim,
+ padding_idx=blank_id,
+ )
+ self.blank_id = blank_id
+
+ assert context_size >= 1, context_size
+ self.context_size = context_size
+ if context_size > 1:
+ self.conv = nn.Conv1d(
+ in_channels=embedding_dim,
+ out_channels=embedding_dim,
+ kernel_size=context_size,
+ padding=0,
+ groups=embedding_dim,
+ bias=False,
+ )
+ self.output_linear = nn.Linear(embedding_dim, vocab_size)
+
+ def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
+ """
+ Args:
+ y:
+ A 2-D tensor of shape (N, U) with blank prepended.
+ need_pad:
+ True to left pad the input. Should be True during training.
+ False to not pad the input. Should be False during inference.
+ Returns:
+ Return a tensor of shape (N, U, embedding_dim).
+ """
+ embedding_out = self.embedding(y)
+ if self.context_size > 1:
+ embedding_out = embedding_out.permute(0, 2, 1)
+ if need_pad is True:
+ embedding_out = F.pad(
+ embedding_out, pad=(self.context_size - 1, 0)
+ )
+ else:
+ # During inference time, there is no need to do extra padding
+ # as we only need one output
+ assert embedding_out.size(-1) == self.context_size
+ embedding_out = self.conv(embedding_out)
+ embedding_out = embedding_out.permute(0, 2, 1)
+ embedding_out = self.output_linear(F.relu(embedding_out))
+ return embedding_out
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/encoder_interface.py b/egs/librispeech/ASR/pruned_transducer_stateless/encoder_interface.py
new file mode 120000
index 000000000..aa5d0217a
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/encoder_interface.py
@@ -0,0 +1 @@
+../transducer_stateless/encoder_interface.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/export.py b/egs/librispeech/ASR/pruned_transducer_stateless/export.py
new file mode 100755
index 000000000..7d2a07817
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/export.py
@@ -0,0 +1,182 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This script converts several saved checkpoints
+# to a single one using model averaging.
+"""
+Usage:
+./pruned_transducer_stateless/export.py \
+ --exp-dir ./pruned_transducer_stateless/exp \
+ --bpe-model data/lang_bpe_500/bpe.model \
+ --epoch 20 \
+ --avg 10
+
+It will generate a file exp_dir/pretrained.pt
+
+To use the generated file with `pruned_transducer_stateless/decode.py`,
+you can do:
+
+ cd /path/to/exp_dir
+ ln -s pretrained.pt epoch-9999.pt
+
+ cd /path/to/egs/librispeech/ASR
+ ./pruned_transducer_stateless/decode.py \
+ --exp-dir ./pruned_transducer_stateless/exp \
+ --epoch 9999 \
+ --avg 1 \
+ --max-duration 100 \
+ --bpe-model data/lang_bpe_500/bpe.model
+"""
+
+import argparse
+import logging
+from pathlib import Path
+
+import sentencepiece as spm
+import torch
+from train import get_params, get_transducer_model
+
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.utils import str2bool
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--epoch",
+ type=int,
+ default=28,
+ help="It specifies the checkpoint to use for decoding."
+ "Note: Epoch counts from 0.",
+ )
+
+ parser.add_argument(
+ "--avg",
+ type=int,
+ default=15,
+ help="Number of checkpoints to average. Automatically select "
+ "consecutive checkpoints before the checkpoint specified by "
+ "'--epoch'. ",
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=str,
+ default="pruned_transducer_stateless/exp",
+ help="""It specifies the directory where all training related
+ files, e.g., checkpoints, log, etc, are saved
+ """,
+ )
+
+ parser.add_argument(
+ "--bpe-model",
+ type=str,
+ default="data/lang_bpe_500/bpe.model",
+ help="Path to the BPE model",
+ )
+
+ parser.add_argument(
+ "--jit",
+ type=str2bool,
+ default=False,
+ help="""True to save a model after applying torch.jit.script.
+ """,
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+
+ return parser
+
+
+def main():
+ args = get_parser().parse_args()
+ args.exp_dir = Path(args.exp_dir)
+
+ assert args.jit is False, "Support torchscript will be added later"
+
+ params = get_params()
+ params.update(vars(args))
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"device: {device}")
+
+ sp = spm.SentencePieceProcessor()
+ sp.load(params.bpe_model)
+
+ # is defined in local/train_bpe_model.py
+ params.blank_id = sp.piece_to_id("")
+ params.vocab_size = sp.get_piece_size()
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ model.to(device)
+
+ if params.avg == 1:
+ load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+ else:
+ start = params.epoch - params.avg + 1
+ filenames = []
+ for i in range(start, params.epoch + 1):
+ if start >= 0:
+ filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+ logging.info(f"averaging {filenames}")
+ model.to(device)
+ model.load_state_dict(average_checkpoints(filenames, device=device))
+
+ model.eval()
+
+ model.to("cpu")
+ model.eval()
+
+ if params.jit:
+ logging.info("Using torch.jit.script")
+ model = torch.jit.script(model)
+ filename = params.exp_dir / "cpu_jit.pt"
+ model.save(str(filename))
+ logging.info(f"Saved to {filename}")
+ else:
+ logging.info("Not using torch.jit.script")
+ # Save it using a format so that it can be loaded
+ # by :func:`load_checkpoint`
+ filename = params.exp_dir / "pretrained.pt"
+ torch.save({"model": model.state_dict()}, str(filename))
+ logging.info(f"Saved to {filename}")
+
+
+if __name__ == "__main__":
+ formatter = (
+ "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+ )
+
+ logging.basicConfig(format=formatter, level=logging.INFO)
+ main()
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/joiner.py b/egs/librispeech/ASR/pruned_transducer_stateless/joiner.py
new file mode 100644
index 000000000..7c5a93a86
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/joiner.py
@@ -0,0 +1,50 @@
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class Joiner(nn.Module):
+ def __init__(self, input_dim: int, inner_dim: int, output_dim: int):
+ super().__init__()
+
+ self.inner_linear = nn.Linear(input_dim, inner_dim)
+ self.output_linear = nn.Linear(inner_dim, output_dim)
+
+ def forward(
+ self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
+ ) -> torch.Tensor:
+ """
+ Args:
+ encoder_out:
+ Output from the encoder. Its shape is (N, T, s_range, C).
+ decoder_out:
+ Output from the decoder. Its shape is (N, T, s_range, C).
+ Returns:
+ Return a tensor of shape (N, T, s_range, C).
+ """
+ assert encoder_out.ndim == decoder_out.ndim == 4
+ assert encoder_out.shape == decoder_out.shape
+
+ logit = encoder_out + decoder_out
+
+ logit = self.inner_linear(torch.tanh(logit))
+
+ output = self.output_linear(F.relu(logit))
+
+ return output
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/model.py b/egs/librispeech/ASR/pruned_transducer_stateless/model.py
new file mode 100644
index 000000000..2f019bcdb
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/model.py
@@ -0,0 +1,169 @@
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import k2
+import torch
+import torch.nn as nn
+from encoder_interface import EncoderInterface
+
+from icefall.utils import add_sos
+
+
+class Transducer(nn.Module):
+ """It implements https://arxiv.org/pdf/1211.3711.pdf
+ "Sequence Transduction with Recurrent Neural Networks"
+ """
+
+ def __init__(
+ self,
+ encoder: EncoderInterface,
+ decoder: nn.Module,
+ joiner: nn.Module,
+ ):
+ """
+ Args:
+ encoder:
+ It is the transcription network in the paper. Its accepts
+ two inputs: `x` of (N, T, C) and `x_lens` of shape (N,).
+ It returns two tensors: `logits` of shape (N, T, C) and
+ `logit_lens` of shape (N,).
+ decoder:
+ It is the prediction network in the paper. Its input shape
+ is (N, U) and its output shape is (N, U, C). It should contain
+ one attribute: `blank_id`.
+ joiner:
+ It has two inputs with shapes: (N, T, C) and (N, U, C). Its
+ output shape is (N, T, U, C). Note that its output contains
+ unnormalized probs, i.e., not processed by log-softmax.
+ """
+ super().__init__()
+ assert isinstance(encoder, EncoderInterface), type(encoder)
+ assert hasattr(decoder, "blank_id")
+
+ self.encoder = encoder
+ self.decoder = decoder
+ self.joiner = joiner
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ x_lens: torch.Tensor,
+ y: k2.RaggedTensor,
+ prune_range: int = 5,
+ am_scale: float = 0.0,
+ lm_scale: float = 0.0,
+ ) -> torch.Tensor:
+ """
+ Args:
+ x:
+ A 3-D tensor of shape (N, T, C).
+ x_lens:
+ A 1-D tensor of shape (N,). It contains the number of frames in `x`
+ before padding.
+ y:
+ A ragged tensor with 2 axes [utt][label]. It contains labels of each
+ utterance.
+ prune_range:
+ The prune range for rnnt loss, it means how many symbols(context)
+ we are considering for each frame to compute the loss.
+ am_scale:
+ The scale to smooth the loss with am (output of encoder network)
+ part
+ lm_scale:
+ The scale to smooth the loss with lm (output of predictor network)
+ part
+ Returns:
+ Return the transducer loss.
+
+ Note:
+ Regarding am_scale & lm_scale, it will make the loss-function one of
+ the form:
+ lm_scale * lm_probs + am_scale * am_probs +
+ (1-lm_scale-am_scale) * combined_probs
+ """
+ assert x.ndim == 3, x.shape
+ assert x_lens.ndim == 1, x_lens.shape
+ assert y.num_axes == 2, y.num_axes
+
+ assert x.size(0) == x_lens.size(0) == y.dim0
+
+ encoder_out, x_lens = self.encoder(x, x_lens)
+ assert torch.all(x_lens > 0)
+
+ # Now for the decoder, i.e., the prediction network
+ row_splits = y.shape.row_splits(1)
+ y_lens = row_splits[1:] - row_splits[:-1]
+
+ blank_id = self.decoder.blank_id
+ sos_y = add_sos(y, sos_id=blank_id)
+
+ # sos_y_padded: [B, S + 1], start with SOS.
+ sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
+
+ # decoder_out: [B, S + 1, C]
+ decoder_out = self.decoder(sos_y_padded)
+
+ # Note: y does not start with SOS
+ # y_padded : [B, S]
+ y_padded = y.pad(mode="constant", padding_value=0)
+
+ y_padded = y_padded.to(torch.int64)
+ boundary = torch.zeros(
+ (x.size(0), 4), dtype=torch.int64, device=x.device
+ )
+ boundary[:, 2] = y_lens
+ boundary[:, 3] = x_lens
+
+ simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
+ lm=decoder_out,
+ am=encoder_out,
+ symbols=y_padded,
+ termination_symbol=blank_id,
+ lm_only_scale=lm_scale,
+ am_only_scale=am_scale,
+ boundary=boundary,
+ reduction="sum",
+ return_grad=True,
+ )
+
+ # ranges : [B, T, prune_range]
+ ranges = k2.get_rnnt_prune_ranges(
+ px_grad=px_grad,
+ py_grad=py_grad,
+ boundary=boundary,
+ s_range=prune_range,
+ )
+
+ # am_pruned : [B, T, prune_range, C]
+ # lm_pruned : [B, T, prune_range, C]
+ am_pruned, lm_pruned = k2.do_rnnt_pruning(
+ am=encoder_out, lm=decoder_out, ranges=ranges
+ )
+
+ # logits : [B, T, prune_range, C]
+ logits = self.joiner(am_pruned, lm_pruned)
+
+ pruned_loss = k2.rnnt_loss_pruned(
+ logits=logits,
+ symbols=y_padded,
+ ranges=ranges,
+ termination_symbol=blank_id,
+ boundary=boundary,
+ reduction="sum",
+ )
+
+ return (simple_loss, pruned_loss)
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/pretrained.py b/egs/librispeech/ASR/pruned_transducer_stateless/pretrained.py
new file mode 100755
index 000000000..e6528b8d7
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/pretrained.py
@@ -0,0 +1,265 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+
+(1) greedy search
+./pruned_transducer_stateless/pretrained.py \
+ --checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --method greedy_search \
+ /path/to/foo.wav \
+ /path/to/bar.wav \
+
+(1) beam search
+./pruned_transducer_stateless/pretrained.py \
+ --checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --method beam_search \
+ --beam-size 4 \
+ /path/to/foo.wav \
+ /path/to/bar.wav \
+
+You can also use `./pruned_transducer_stateless/exp/epoch-xx.pt`.
+
+Note: ./pruned_transducer_stateless/exp/pretrained.pt is generated by
+./pruned_transducer_stateless/export.py
+"""
+
+
+import argparse
+import logging
+import math
+from typing import List
+
+import kaldifeat
+import sentencepiece as spm
+import torch
+import torchaudio
+from beam_search import beam_search, greedy_search, modified_beam_search
+from torch.nn.utils.rnn import pad_sequence
+from train import get_params, get_transducer_model
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--checkpoint",
+ type=str,
+ required=True,
+ help="Path to the checkpoint. "
+ "The checkpoint is assumed to be saved by "
+ "icefall.checkpoint.save_checkpoint().",
+ )
+
+ parser.add_argument(
+ "--bpe-model",
+ type=str,
+ help="""Path to bpe.model.
+ Used only when method is ctc-decoding.
+ """,
+ )
+
+ parser.add_argument(
+ "--method",
+ type=str,
+ default="greedy_search",
+ help="""Possible values are:
+ - greedy_search
+ - beam_search
+ - modified_beam_search
+ """,
+ )
+
+ parser.add_argument(
+ "sound_files",
+ type=str,
+ nargs="+",
+ help="The input sound file(s) to transcribe. "
+ "Supported formats are those supported by torchaudio.load(). "
+ "For example, wav and flac are supported. "
+ "The sample rate has to be 16kHz.",
+ )
+
+ parser.add_argument(
+ "--sample-rate",
+ type=int,
+ default=16000,
+ help="The sample rate of the input sound file",
+ )
+
+ parser.add_argument(
+ "--beam-size",
+ type=int,
+ default=4,
+ help="Used only when --method is beam_search and modified_beam_search",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+ parser.add_argument(
+ "--max-sym-per-frame",
+ type=int,
+ default=3,
+ help="""Maximum number of symbols per frame. Used only when
+ --method is greedy_search.
+ """,
+ )
+
+ return parser
+
+
+def read_sound_files(
+ filenames: List[str], expected_sample_rate: float
+) -> List[torch.Tensor]:
+ """Read a list of sound files into a list 1-D float32 torch tensors.
+ Args:
+ filenames:
+ A list of sound filenames.
+ expected_sample_rate:
+ The expected sample rate of the sound files.
+ Returns:
+ Return a list of 1-D float32 torch tensors.
+ """
+ ans = []
+ for f in filenames:
+ wave, sample_rate = torchaudio.load(f)
+ assert sample_rate == expected_sample_rate, (
+ f"expected sample rate: {expected_sample_rate}. "
+ f"Given: {sample_rate}"
+ )
+ # We use only the first channel
+ ans.append(wave[0])
+ return ans
+
+
+@torch.no_grad()
+def main():
+ parser = get_parser()
+ args = parser.parse_args()
+
+ params = get_params()
+
+ params.update(vars(args))
+
+ sp = spm.SentencePieceProcessor()
+ sp.load(params.bpe_model)
+
+ # is defined in local/train_bpe_model.py
+ params.blank_id = sp.piece_to_id("")
+ params.vocab_size = sp.get_piece_size()
+
+ logging.info(f"{params}")
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"device: {device}")
+
+ logging.info("Creating model")
+ model = get_transducer_model(params)
+
+ checkpoint = torch.load(args.checkpoint, map_location="cpu")
+ model.load_state_dict(checkpoint["model"], strict=False)
+ model.to(device)
+ model.eval()
+ model.device = device
+
+ logging.info("Constructing Fbank computer")
+ opts = kaldifeat.FbankOptions()
+ opts.device = device
+ opts.frame_opts.dither = 0
+ opts.frame_opts.snip_edges = False
+ opts.frame_opts.samp_freq = params.sample_rate
+ opts.mel_opts.num_bins = params.feature_dim
+
+ fbank = kaldifeat.Fbank(opts)
+
+ logging.info(f"Reading sound files: {params.sound_files}")
+ waves = read_sound_files(
+ filenames=params.sound_files, expected_sample_rate=params.sample_rate
+ )
+ waves = [w.to(device) for w in waves]
+
+ logging.info("Decoding started")
+ features = fbank(waves)
+ feature_lengths = [f.size(0) for f in features]
+
+ features = pad_sequence(
+ features, batch_first=True, padding_value=math.log(1e-10)
+ )
+
+ feature_lengths = torch.tensor(feature_lengths, device=device)
+
+ encoder_out, encoder_out_lens = model.encoder(
+ x=features, x_lens=feature_lengths
+ )
+
+ num_waves = encoder_out.size(0)
+ hyps = []
+ msg = f"Using {params.method}"
+ if params.method == "beam_search":
+ msg += f" with beam size {params.beam_size}"
+ logging.info(msg)
+ for i in range(num_waves):
+ # fmt: off
+ encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+ # fmt: on
+ if params.method == "greedy_search":
+ hyp = greedy_search(
+ model=model,
+ encoder_out=encoder_out_i,
+ max_sym_per_frame=params.max_sym_per_frame,
+ )
+ elif params.method == "beam_search":
+ hyp = beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
+ elif params.method == "modified_beam_search":
+ hyp = modified_beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
+ else:
+ raise ValueError(f"Unsupported method: {params.method}")
+
+ hyps.append(sp.decode(hyp).split())
+
+ s = "\n"
+ for filename, hyp in zip(params.sound_files, hyps):
+ words = " ".join(hyp)
+ s += f"{filename}:\n{words}\n\n"
+ logging.info(s)
+
+ logging.info("Decoding Done")
+
+
+if __name__ == "__main__":
+ formatter = (
+ "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+ )
+
+ logging.basicConfig(format=formatter, level=logging.INFO)
+ main()
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/subsampling.py b/egs/librispeech/ASR/pruned_transducer_stateless/subsampling.py
new file mode 120000
index 000000000..73068da26
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/subsampling.py
@@ -0,0 +1 @@
+../transducer/subsampling.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/test_decoder.py b/egs/librispeech/ASR/pruned_transducer_stateless/test_decoder.py
new file mode 100755
index 000000000..937d55c2a
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/test_decoder.py
@@ -0,0 +1,58 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+To run this file, do:
+
+ cd icefall/egs/librispeech/ASR
+ python ./pruned_transducer_stateless/test_decoder.py
+"""
+
+import torch
+from decoder import Decoder
+
+
+def test_decoder():
+ vocab_size = 3
+ blank_id = 0
+ embedding_dim = 128
+ context_size = 4
+
+ decoder = Decoder(
+ vocab_size=vocab_size,
+ embedding_dim=embedding_dim,
+ blank_id=blank_id,
+ context_size=context_size,
+ )
+ N = 100
+ U = 20
+ x = torch.randint(low=0, high=vocab_size, size=(N, U))
+ y = decoder(x)
+ assert y.shape == (N, U, vocab_size)
+
+ # for inference
+ x = torch.randint(low=0, high=vocab_size, size=(N, context_size))
+ y = decoder(x, need_pad=False)
+ assert y.shape == (N, 1, vocab_size)
+
+
+def main():
+ test_decoder()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/train.py b/egs/librispeech/ASR/pruned_transducer_stateless/train.py
new file mode 100755
index 000000000..f0ea2ccaa
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/train.py
@@ -0,0 +1,838 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
+# Wei Kang
+# Mingshuang Luo)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+
+./pruned_transducer_stateless/train.py \
+ --world-size 4 \
+ --num-epochs 30 \
+ --start-epoch 0 \
+ --exp-dir pruned_transducer_stateless/exp \
+ --full-libri 1 \
+ --max-duration 300
+"""
+
+
+import argparse
+import logging
+from pathlib import Path
+from shutil import copyfile
+from typing import Optional, Tuple
+
+import k2
+import sentencepiece as spm
+import torch
+import torch.multiprocessing as mp
+import torch.nn as nn
+from asr_datamodule import LibriSpeechAsrDataModule
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from lhotse.cut import Cut
+from lhotse.utils import fix_random_seed
+from model import Transducer
+from torch import Tensor
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.nn.utils import clip_grad_norm_
+from torch.utils.tensorboard import SummaryWriter
+from transformer import Noam
+
+from icefall.checkpoint import load_checkpoint
+from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
+from icefall.dist import cleanup_dist, setup_dist
+from icefall.env import get_env_info
+from icefall.utils import (
+ AttributeDict,
+ MetricsTracker,
+ measure_gradient_norms,
+ measure_weight_norms,
+ optim_step_and_measure_param_change,
+ setup_logger,
+ str2bool,
+)
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--world-size",
+ type=int,
+ default=1,
+ help="Number of GPUs for DDP training.",
+ )
+
+ parser.add_argument(
+ "--master-port",
+ type=int,
+ default=12354,
+ help="Master port to use for DDP training.",
+ )
+
+ parser.add_argument(
+ "--tensorboard",
+ type=str2bool,
+ default=True,
+ help="Should various information be logged in tensorboard.",
+ )
+
+ parser.add_argument(
+ "--num-epochs",
+ type=int,
+ default=30,
+ help="Number of epochs to train.",
+ )
+
+ parser.add_argument(
+ "--start-epoch",
+ type=int,
+ default=0,
+ help="""Resume training from from this epoch.
+ If it is positive, it will load checkpoint from
+ transducer_stateless/exp/epoch-{start_epoch-1}.pt
+ """,
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=str,
+ default="pruned_transducer_stateless/exp",
+ help="""The experiment dir.
+ It specifies the directory where all training related
+ files, e.g., checkpoints, log, etc, are saved
+ """,
+ )
+
+ parser.add_argument(
+ "--bpe-model",
+ type=str,
+ default="data/lang_bpe_500/bpe.model",
+ help="Path to the BPE model",
+ )
+
+ parser.add_argument(
+ "--lr-factor",
+ type=float,
+ default=5.0,
+ help="The lr_factor for Noam optimizer",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+
+ parser.add_argument(
+ "--prune-range",
+ type=int,
+ default=5,
+ help="The prune range for rnnt loss, it means how many symbols(context)"
+ "we are using to compute the loss",
+ )
+
+ parser.add_argument(
+ "--lm-scale",
+ type=float,
+ default=0.25,
+ help="The scale to smooth the loss with lm "
+ "(output of prediction network) part.",
+ )
+
+ parser.add_argument(
+ "--am-scale",
+ type=float,
+ default=0.0,
+ help="The scale to smooth the loss with am (output of encoder network)"
+ "part.",
+ )
+
+ parser.add_argument(
+ "--simple-loss-scale",
+ type=float,
+ default=0.5,
+ help="To get pruning ranges, we will calculate a simple version"
+ "loss(joiner is just addition), this simple loss also uses for"
+ "training (as a regularization item). We will scale the simple loss"
+ "with this parameter before adding to the final loss.",
+ )
+
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ """Return a dict containing training parameters.
+
+ All training related parameters that are not passed from the commandline
+ are saved in the variable `params`.
+
+ Commandline options are merged into `params` after they are parsed, so
+ you can also access them via `params`.
+
+ Explanation of options saved in `params`:
+
+ - best_train_loss: Best training loss so far. It is used to select
+ the model that has the lowest training loss. It is
+ updated during the training.
+
+ - best_valid_loss: Best validation loss so far. It is used to select
+ the model that has the lowest validation loss. It is
+ updated during the training.
+
+ - best_train_epoch: It is the epoch that has the best training loss.
+
+ - best_valid_epoch: It is the epoch that has the best validation loss.
+
+ - batch_idx_train: Used to writing statistics to tensorboard. It
+ contains number of batches trained so far across
+ epochs.
+
+ - log_interval: Print training loss if batch_idx % log_interval` is 0
+
+ - reset_interval: Reset statistics if batch_idx % reset_interval is 0
+
+ - valid_interval: Run validation if batch_idx % valid_interval is 0
+
+ - feature_dim: The model input dim. It has to match the one used
+ in computing features.
+
+ - subsampling_factor: The subsampling factor for the model.
+
+ - attention_dim: Hidden dim for multi-head attention model.
+
+ - num_decoder_layers: Number of decoder layer of transformer decoder.
+
+ - warm_step: The warm_step for Noam optimizer.
+ """
+ params = AttributeDict(
+ {
+ "best_train_loss": float("inf"),
+ "best_valid_loss": float("inf"),
+ "best_train_epoch": -1,
+ "best_valid_epoch": -1,
+ "batch_idx_train": 0,
+ "log_interval": 50,
+ "reset_interval": 200,
+ "valid_interval": 3000, # For the 100h subset, use 800
+ "log_diagnostics": False,
+ # parameters for conformer
+ "feature_dim": 80,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ # parameters for decoder
+ "embedding_dim": 512,
+ # parameters for Noam
+ "warm_step": 80000, # For the 100h subset, use 30000
+ "env_info": get_env_info(),
+ }
+ )
+
+ return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+ # TODO: We can add an option to switch between Conformer and Transformer
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.vocab_size,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.embedding_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+ joiner = Joiner(
+ input_dim=params.vocab_size,
+ inner_dim=params.embedding_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+ encoder = get_encoder_model(params)
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ )
+ return model
+
+
+def load_checkpoint_if_available(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: Optional[torch.optim.Optimizer] = None,
+ scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+) -> None:
+ """Load checkpoint from file.
+
+ If params.start_epoch is positive, it will load the checkpoint from
+ `params.start_epoch - 1`. Otherwise, this function does nothing.
+
+ Apart from loading state dict for `model`, `optimizer` and `scheduler`,
+ it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
+ and `best_valid_loss` in `params`.
+
+ Args:
+ params:
+ The return value of :func:`get_params`.
+ model:
+ The training model.
+ optimizer:
+ The optimizer that we are using.
+ scheduler:
+ The learning rate scheduler we are using.
+ Returns:
+ Return None.
+ """
+ if params.start_epoch <= 0:
+ return
+
+ filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
+ saved_params = load_checkpoint(
+ filename,
+ model=model,
+ optimizer=optimizer,
+ scheduler=scheduler,
+ )
+
+ keys = [
+ "best_train_epoch",
+ "best_valid_epoch",
+ "batch_idx_train",
+ "best_train_loss",
+ "best_valid_loss",
+ ]
+ for k in keys:
+ params[k] = saved_params[k]
+
+ return saved_params
+
+
+def save_checkpoint(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: Optional[torch.optim.Optimizer] = None,
+ scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+ rank: int = 0,
+) -> None:
+ """Save model, optimizer, scheduler and training stats to file.
+
+ Args:
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The training model.
+ """
+ if rank != 0:
+ return
+ filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
+ save_checkpoint_impl(
+ filename=filename,
+ model=model,
+ params=params,
+ optimizer=optimizer,
+ scheduler=scheduler,
+ rank=rank,
+ )
+
+ if params.best_train_epoch == params.cur_epoch:
+ best_train_filename = params.exp_dir / "best-train-loss.pt"
+ copyfile(src=filename, dst=best_train_filename)
+
+ if params.best_valid_epoch == params.cur_epoch:
+ best_valid_filename = params.exp_dir / "best-valid-loss.pt"
+ copyfile(src=filename, dst=best_valid_filename)
+
+
+def compute_loss(
+ params: AttributeDict,
+ model: nn.Module,
+ sp: spm.SentencePieceProcessor,
+ batch: dict,
+ is_training: bool,
+) -> Tuple[Tensor, MetricsTracker]:
+ """
+ Compute CTC loss given the model and its inputs.
+
+ Args:
+ params:
+ Parameters for training. See :func:`get_params`.
+ model:
+ The model for training. It is an instance of Conformer in our case.
+ batch:
+ A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+ for the content in it.
+ is_training:
+ True for training. False for validation. When it is True, this
+ function enables autograd during computation; when it is False, it
+ disables autograd.
+ """
+ device = model.device
+ feature = batch["inputs"]
+ # at entry, feature is (N, T, C)
+ assert feature.ndim == 3
+ feature = feature.to(device)
+
+ supervisions = batch["supervisions"]
+ feature_lens = supervisions["num_frames"].to(device)
+
+ texts = batch["supervisions"]["text"]
+ y = sp.encode(texts, out_type=int)
+ y = k2.RaggedTensor(y).to(device)
+
+ with torch.set_grad_enabled(is_training):
+ simple_loss, pruned_loss = model(
+ x=feature,
+ x_lens=feature_lens,
+ y=y,
+ prune_range=params.prune_range,
+ am_scale=params.am_scale,
+ lm_scale=params.lm_scale,
+ )
+ loss = params.simple_loss_scale * simple_loss + pruned_loss
+
+ assert loss.requires_grad == is_training
+
+ info = MetricsTracker()
+ info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
+
+ # Note: We use reduction=sum while computing the loss.
+ info["loss"] = loss.detach().cpu().item()
+ info["simple_loss"] = simple_loss.detach().cpu().item()
+ info["pruned_loss"] = pruned_loss.detach().cpu().item()
+
+ return loss, info
+
+
+def compute_validation_loss(
+ params: AttributeDict,
+ model: nn.Module,
+ sp: spm.SentencePieceProcessor,
+ valid_dl: torch.utils.data.DataLoader,
+ world_size: int = 1,
+) -> MetricsTracker:
+ """Run the validation process."""
+ model.eval()
+
+ tot_loss = MetricsTracker()
+
+ for batch_idx, batch in enumerate(valid_dl):
+ loss, loss_info = compute_loss(
+ params=params,
+ model=model,
+ sp=sp,
+ batch=batch,
+ is_training=False,
+ )
+ assert loss.requires_grad is False
+ tot_loss = tot_loss + loss_info
+
+ if world_size > 1:
+ tot_loss.reduce(loss.device)
+
+ loss_value = tot_loss["loss"] / tot_loss["frames"]
+ if loss_value < params.best_valid_loss:
+ params.best_valid_epoch = params.cur_epoch
+ params.best_valid_loss = loss_value
+
+ return tot_loss
+
+
+def train_one_epoch(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: torch.optim.Optimizer,
+ sp: spm.SentencePieceProcessor,
+ train_dl: torch.utils.data.DataLoader,
+ valid_dl: torch.utils.data.DataLoader,
+ tb_writer: Optional[SummaryWriter] = None,
+ world_size: int = 1,
+) -> None:
+ """Train the model for one epoch.
+
+ The training loss from the mean of all frames is saved in
+ `params.train_loss`. It runs the validation process every
+ `params.valid_interval` batches.
+
+ Args:
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The model for training.
+ optimizer:
+ The optimizer we are using.
+ train_dl:
+ Dataloader for the training dataset.
+ valid_dl:
+ Dataloader for the validation dataset.
+ tb_writer:
+ Writer to write log messages to tensorboard.
+ world_size:
+ Number of nodes in DDP training. If it is 1, DDP is disabled.
+ """
+ model.train()
+
+ tot_loss = MetricsTracker()
+
+ def maybe_log_gradients(tag: str):
+ if (
+ params.log_diagnostics
+ and tb_writer is not None
+ and params.batch_idx_train % (params.log_interval * 5) == 0
+ ):
+ tb_writer.add_scalars(
+ tag,
+ measure_gradient_norms(model, norm="l2"),
+ global_step=params.batch_idx_train,
+ )
+
+ def maybe_log_weights(tag: str):
+ if (
+ params.log_diagnostics
+ and tb_writer is not None
+ and params.batch_idx_train % (params.log_interval * 5) == 0
+ ):
+ tb_writer.add_scalars(
+ tag,
+ measure_weight_norms(model, norm="l2"),
+ global_step=params.batch_idx_train,
+ )
+
+ def maybe_log_param_relative_changes():
+ if (
+ params.log_diagnostics
+ and tb_writer is not None
+ and params.batch_idx_train % (params.log_interval * 5) == 0
+ ):
+ deltas = optim_step_and_measure_param_change(model, optimizer)
+ tb_writer.add_scalars(
+ "train/relative_param_change_per_minibatch",
+ deltas,
+ global_step=params.batch_idx_train,
+ )
+ else:
+ optimizer.step()
+
+ for batch_idx, batch in enumerate(train_dl):
+ params.batch_idx_train += 1
+ batch_size = len(batch["supervisions"]["text"])
+
+ loss, loss_info = compute_loss(
+ params=params,
+ model=model,
+ sp=sp,
+ batch=batch,
+ is_training=True,
+ )
+ # summary stats
+ tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
+
+ # NOTE: We use reduction==sum and loss is computed over utterances
+ # in the batch and there is no normalization to it so far.
+
+ loss.backward()
+
+ maybe_log_weights("train/param_norms")
+ maybe_log_gradients("train/grad_norms")
+ maybe_log_param_relative_changes()
+
+ optimizer.zero_grad()
+
+ if batch_idx % params.log_interval == 0:
+ logging.info(
+ f"Epoch {params.cur_epoch}, "
+ f"batch {batch_idx}, loss[{loss_info}], "
+ f"tot_loss[{tot_loss}], batch size: {batch_size}"
+ )
+
+ if batch_idx % params.log_interval == 0:
+
+ if tb_writer is not None:
+ loss_info.write_summary(
+ tb_writer, "train/current_", params.batch_idx_train
+ )
+ tot_loss.write_summary(
+ tb_writer, "train/tot_", params.batch_idx_train
+ )
+
+ if batch_idx > 0 and batch_idx % params.valid_interval == 0:
+ logging.info("Computing validation loss")
+ valid_info = compute_validation_loss(
+ params=params,
+ model=model,
+ sp=sp,
+ valid_dl=valid_dl,
+ world_size=world_size,
+ )
+ model.train()
+ logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
+ if tb_writer is not None:
+ valid_info.write_summary(
+ tb_writer, "train/valid_", params.batch_idx_train
+ )
+
+ loss_value = tot_loss["loss"] / tot_loss["frames"]
+ params.train_loss = loss_value
+ if params.train_loss < params.best_train_loss:
+ params.best_train_epoch = params.cur_epoch
+ params.best_train_loss = params.train_loss
+
+
+def run(rank, world_size, args):
+ """
+ Args:
+ rank:
+ It is a value between 0 and `world_size-1`, which is
+ passed automatically by `mp.spawn()` in :func:`main`.
+ The node with rank 0 is responsible for saving checkpoint.
+ world_size:
+ Number of GPUs for DDP training.
+ args:
+ The return value of get_parser().parse_args()
+ """
+ params = get_params()
+ params.update(vars(args))
+ if params.full_libri is False:
+ params.valid_interval = 800
+ params.warm_step = 30000
+
+ fix_random_seed(params.seed)
+ if world_size > 1:
+ setup_dist(rank, world_size, params.master_port)
+
+ setup_logger(f"{params.exp_dir}/log/log-train")
+ logging.info("Training started")
+
+ if args.tensorboard and rank == 0:
+ tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
+ else:
+ tb_writer = None
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", rank)
+ logging.info(f"Device: {device}")
+
+ sp = spm.SentencePieceProcessor()
+ sp.load(params.bpe_model)
+
+ # is defined in local/train_bpe_model.py
+ params.blank_id = sp.piece_to_id("")
+ params.vocab_size = sp.get_piece_size()
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ num_param = sum([p.numel() for p in model.parameters()])
+ logging.info(f"Number of model parameters: {num_param}")
+
+ checkpoints = load_checkpoint_if_available(params=params, model=model)
+
+ model.to(device)
+ if world_size > 1:
+ logging.info("Using DDP")
+ model = DDP(model, device_ids=[rank])
+ model.device = device
+
+ optimizer = Noam(
+ model.parameters(),
+ model_size=params.attention_dim,
+ factor=params.lr_factor,
+ warm_step=params.warm_step,
+ )
+
+ if checkpoints and "optimizer" in checkpoints:
+ logging.info("Loading optimizer state dict")
+ optimizer.load_state_dict(checkpoints["optimizer"])
+
+ librispeech = LibriSpeechAsrDataModule(args)
+
+ train_cuts = librispeech.train_clean_100_cuts()
+ if params.full_libri:
+ train_cuts += librispeech.train_clean_360_cuts()
+ train_cuts += librispeech.train_other_500_cuts()
+
+ def remove_short_and_long_utt(c: Cut):
+ # Keep only utterances with duration between 1 second and 20 seconds
+ return 1.0 <= c.duration <= 20.0
+
+ num_in_total = len(train_cuts)
+
+ train_cuts = train_cuts.filter(remove_short_and_long_utt)
+
+ num_left = len(train_cuts)
+ num_removed = num_in_total - num_left
+ removed_percent = num_removed / num_in_total * 100
+
+ logging.info(f"Before removing short and long utterances: {num_in_total}")
+ logging.info(f"After removing short and long utterances: {num_left}")
+ logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
+
+ train_dl = librispeech.train_dataloaders(train_cuts)
+
+ valid_cuts = librispeech.dev_clean_cuts()
+ valid_cuts += librispeech.dev_other_cuts()
+ valid_dl = librispeech.valid_dataloaders(valid_cuts)
+
+ scan_pessimistic_batches_for_oom(
+ model=model,
+ train_dl=train_dl,
+ optimizer=optimizer,
+ sp=sp,
+ params=params,
+ )
+
+ for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
+ train_dl.sampler.set_epoch(epoch)
+
+ cur_lr = optimizer._rate
+ if tb_writer is not None:
+ tb_writer.add_scalar(
+ "train/learning_rate", cur_lr, params.batch_idx_train
+ )
+ tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
+
+ if rank == 0:
+ logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
+
+ params.cur_epoch = epoch
+
+ train_one_epoch(
+ params=params,
+ model=model,
+ optimizer=optimizer,
+ sp=sp,
+ train_dl=train_dl,
+ valid_dl=valid_dl,
+ tb_writer=tb_writer,
+ world_size=world_size,
+ )
+
+ save_checkpoint(
+ params=params,
+ model=model,
+ optimizer=optimizer,
+ rank=rank,
+ )
+
+ logging.info("Done!")
+
+ if world_size > 1:
+ torch.distributed.barrier()
+ cleanup_dist()
+
+
+def scan_pessimistic_batches_for_oom(
+ model: nn.Module,
+ train_dl: torch.utils.data.DataLoader,
+ optimizer: torch.optim.Optimizer,
+ sp: spm.SentencePieceProcessor,
+ params: AttributeDict,
+):
+ from lhotse.dataset import find_pessimistic_batches
+
+ logging.info(
+ "Sanity check -- see if any of the batches in epoch 0 would cause OOM."
+ )
+ batches, crit_values = find_pessimistic_batches(train_dl.sampler)
+ for criterion, cuts in batches.items():
+ batch = train_dl.dataset[cuts]
+ try:
+ optimizer.zero_grad()
+ loss, _ = compute_loss(
+ params=params,
+ model=model,
+ sp=sp,
+ batch=batch,
+ is_training=True,
+ )
+ loss.backward()
+ clip_grad_norm_(model.parameters(), 5.0, 2.0)
+ optimizer.step()
+ except RuntimeError as e:
+ if "CUDA out of memory" in str(e):
+ logging.error(
+ "Your GPU ran out of memory with the current "
+ "max_duration setting. We recommend decreasing "
+ "max_duration and trying again.\n"
+ f"Failing criterion: {criterion} "
+ f"(={crit_values[criterion]}) ..."
+ )
+ raise
+
+
+def main():
+ parser = get_parser()
+ LibriSpeechAsrDataModule.add_arguments(parser)
+ args = parser.parse_args()
+ args.exp_dir = Path(args.exp_dir)
+
+ world_size = args.world_size
+ assert world_size >= 1
+ if world_size > 1:
+ mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
+ else:
+ run(rank=0, world_size=1, args=args)
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless/transformer.py b/egs/librispeech/ASR/pruned_transducer_stateless/transformer.py
new file mode 120000
index 000000000..e43f520f9
--- /dev/null
+++ b/egs/librispeech/ASR/pruned_transducer_stateless/transformer.py
@@ -0,0 +1 @@
+../transducer_stateless/transformer.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/train.py b/egs/librispeech/ASR/streaming_conformer_ctc/train.py
index 8b4d6701e..9beb185a2 100755
--- a/egs/librispeech/ASR/streaming_conformer_ctc/train.py
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/train.py
@@ -138,6 +138,13 @@ def get_parser():
help="Proportion of samples trained with short right context",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -575,7 +582,7 @@ def run(rank, world_size, args):
params = get_params()
params.update(vars(args))
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -645,6 +652,7 @@ def run(rank, world_size, args):
)
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
cur_lr = optimizer._rate
diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py b/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py
index c1b16bcf0..51e10fb2f 100644
--- a/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py
+++ b/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py
@@ -1,4 +1,5 @@
# Copyright 2021 Piotr Żelasko
+# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@@ -16,6 +17,7 @@
import argparse
+import inspect
import logging
from functools import lru_cache
from pathlib import Path
@@ -28,6 +30,7 @@ from lhotse.dataset import (
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
+ SpecAugment,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
from torch.utils.data import DataLoader
@@ -179,14 +182,14 @@ class LibriSpeechAsrDataModule:
)
def train_dataloaders(self, cuts_train: CutSet) -> DataLoader:
- logging.info("About to get Musan cuts")
- cuts_musan = load_manifest(
- self.args.manifest_dir / "cuts_musan.json.gz"
- )
transforms = []
if self.args.enable_musan:
logging.info("Enable MUSAN")
+ logging.info("About to get Musan cuts")
+ cuts_musan = load_manifest(
+ self.args.manifest_dir / "cuts_musan.json.gz"
+ )
transforms.append(
CutMix(
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
@@ -215,15 +218,23 @@ class LibriSpeechAsrDataModule:
logging.info(
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
)
+ # Set the value of num_frame_masks according to Lhotse's version.
+ # In different Lhotse's versions, the default of num_frame_masks is
+ # different.
+ num_frame_masks = 10
+ num_frame_masks_parameter = inspect.signature(
+ SpecAugment.__init__
+ ).parameters["num_frame_masks"]
+ if num_frame_masks_parameter.default == 1:
+ num_frame_masks = 2
+ logging.info(f"Num frame mask: {num_frame_masks}")
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
- num_frame_masks=10,
+ num_frame_masks=num_frame_masks,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
- max_frames_mask_fraction=0.15,
- p=0.9
)
)
else:
@@ -384,211 +395,3 @@ class LibriSpeechAsrDataModule:
def test_other_cuts(self) -> CutSet:
logging.info("About to get test-other cuts")
return load_manifest(self.args.manifest_dir / "cuts_test-other.json.gz")
-
-
-import math
-import random
-import numpy as np
-from typing import Optional, Dict
-
-import torch
-
-from lhotse import CutSet
-
-class SpecAugment(torch.nn.Module):
- """
- SpecAugment performs three augmentations:
- - time warping of the feature matrix
- - masking of ranges of features (frequency bands)
- - masking of ranges of frames (time)
-
- The current implementation works with batches, but processes each example separately
- in a loop rather than simultaneously to achieve different augmentation parameters for
- each example.
- """
-
- def __init__(
- self,
- time_warp_factor: Optional[int] = 80,
- num_feature_masks: int = 1,
- features_mask_size: int = 13,
- num_frame_masks: int = 1,
- frames_mask_size: int = 70,
- max_frames_mask_fraction: float = 0.2,
- p=0.5,
- ):
- """
- SpecAugment's constructor.
-
- :param time_warp_factor: parameter for the time warping; larger values mean more warping.
- Set to ``None``, or less than ``1``, to disable.
- :param num_feature_masks: how many feature masks should be applied. Set to ``0`` to disable.
- :param features_mask_size: the width of the feature mask (expressed in the number of masked feature bins).
- This is the ``F`` parameter from the SpecAugment paper.
- :param num_frame_masks: how many frame (temporal) masks should be applied. Set to ``0`` to disable.
- :param frames_mask_size: the width of the frame (temporal) masks (expressed in the number of masked frames).
- This is the ``T`` parameter from the SpecAugment paper.
- :param max_frames_mask_fraction: limits the size of the frame (temporal) mask to this value times the length
- of the utterance (or supervision segment).
- This is the parameter denoted by ``p`` in the SpecAugment paper.
- :param p: the probability of applying this transform.
- It is different from ``p`` in the SpecAugment paper!
- """
- super().__init__()
- assert 0 <= p <= 1
- assert num_feature_masks >= 0
- assert num_frame_masks >= 0
- assert features_mask_size > 0
- assert frames_mask_size > 0
- self.time_warp_factor = time_warp_factor
- self.num_feature_masks = num_feature_masks
- self.features_mask_size = features_mask_size
- self.num_frame_masks = num_frame_masks
- self.frames_mask_size = frames_mask_size
- self.max_frames_mask_fraction = max_frames_mask_fraction
- self.p = p
-
- def forward(
- self,
- features: torch.Tensor,
- supervision_segments: Optional[torch.IntTensor] = None,
- *args,
- **kwargs,
- ) -> torch.Tensor:
- """
- Computes SpecAugment for a batch of feature matrices.
-
- Since the batch will usually already be padded, the user can optionally
- provide a ``supervision_segments`` tensor that will be used to apply SpecAugment
- only to selected areas of the input. The format of this input is described below.
-
- :param features: a batch of feature matrices with shape ``(B, T, F)``.
- :param supervision_segments: an int tensor of shape ``(S, 3)``. ``S`` is the number of
- supervision segments that exist in ``features`` -- there may be either
- less or more than the batch size.
- The second dimension encoder three kinds of information:
- the sequence index of the corresponding feature matrix in `features`,
- the start frame index, and the number of frames for each segment.
- :return: an augmented tensor of shape ``(B, T, F)``.
- """
- assert len(features.shape) == 3, (
- "SpecAugment only supports batches of " "single-channel feature matrices."
- )
- features = features.clone()
- if supervision_segments is None:
- # No supervisions - apply spec augment to full feature matrices.
- for sequence_idx in range(features.size(0)):
- features[sequence_idx] = self._forward_single(features[sequence_idx])
- else:
- # Supervisions provided - we will apply time warping only on the supervised areas.
- for sequence_idx, start_frame, num_frames in supervision_segments:
- end_frame = start_frame + num_frames
- features[sequence_idx, start_frame:end_frame] = self._forward_single(
- features[sequence_idx, start_frame:end_frame], warp=True, mask=False
- )
- # ... and then time-mask the full feature matrices. Note that in this mode,
- # it might happen that masks are applied to different sequences/examples
- # than the time warping.
- for sequence_idx in range(features.size(0)):
- features[sequence_idx] = self._forward_single(
- features[sequence_idx], warp=False, mask=True
- )
- return features
-
- def _forward_single(
- self, features: torch.Tensor, warp: bool = True, mask: bool = True
- ) -> torch.Tensor:
- """
- Apply SpecAugment to a single feature matrix of shape (T, F).
- """
- if random.random() > self.p:
- # Randomly choose whether this transform is applied
- return features
- if warp:
- if self.time_warp_factor is not None and self.time_warp_factor >= 1:
- features = time_warp(features, factor=self.time_warp_factor)
- if mask:
- from torchaudio.functional import mask_along_axis
-
- mean = features.mean()
- for _ in range(self.num_feature_masks):
- features = mask_along_axis(
- features.unsqueeze(0),
- mask_param=self.features_mask_size,
- mask_value=mean,
- axis=2,
- ).squeeze(0)
- _max_tot_mask_frames = self.max_frames_mask_fraction * features.size(0)
- num_frame_masks = min(self.num_frame_masks, math.ceil(_max_tot_mask_frames / self.frames_mask_size))
- max_mask_frames = min(self.frames_mask_size, _max_tot_mask_frames // num_frame_masks)
- for _ in range(num_frame_masks):
- features = mask_along_axis(
- features.unsqueeze(0),
- mask_param=max_mask_frames,
- mask_value=mean,
- axis=1,
- ).squeeze(0)
- return features
-
- def state_dict(self) -> Dict:
- return dict(
- time_warp_factor=self.time_warp_factor,
- num_feature_masks=self.num_feature_masks,
- features_mask_size=self.features_mask_size,
- num_frame_masks=self.num_frame_masks,
- frames_mask_size=self.frames_mask_size,
- max_frames_mask_fraction=self.max_frames_mask_fraction,
- p=self.p,
- )
-
- def load_state_dict(self, state_dict: Dict):
- self.time_warp_factor = state_dict.get(
- "time_warp_factor", self.time_warp_factor
- )
- self.num_feature_masks = state_dict.get(
- "num_feature_masks", self.num_feature_masks
- )
- self.features_mask_size = state_dict.get(
- "features_mask_size", self.features_mask_size
- )
- self.num_frame_masks = state_dict.get("num_frame_masks", self.num_frame_masks)
- self.frames_mask_size = state_dict.get(
- "frames_mask_size", self.frames_mask_size
- )
- self.max_frames_mask_fraction = state_dict.get(
- "max_frames_mask_fraction", self.max_frames_mask_fraction
- )
- self.p = state_dict.get("p", self.p)
-
-
-def time_warp(features: torch.Tensor, factor: int) -> torch.Tensor:
- """
- Time warping as described in the SpecAugment paper.
- Implementation based on Espresso:
- https://github.com/freewym/espresso/blob/master/espresso/tools/specaug_interpolate.py#L51
-
- :param features: input tensor of shape ``(T, F)``
- :param factor: time warping parameter.
- :return: a warped tensor of shape ``(T, F)``
- """
- t = features.size(0)
- if t - factor <= factor + 1:
- return features
- center = np.random.randint(factor + 1, t - factor)
- warped = np.random.randint(center - factor, center + factor + 1)
- if warped == center:
- return features
- features = features.unsqueeze(0).unsqueeze(0)
- left = torch.nn.functional.interpolate(
- features[:, :, :center, :],
- size=(warped, features.size(3)),
- mode="bicubic",
- align_corners=False,
- )
- right = torch.nn.functional.interpolate(
- features[:, :, center:, :],
- size=(t - warped, features.size(3)),
- mode="bicubic",
- align_corners=False,
- )
- return torch.cat((left, right), dim=2).squeeze(0).squeeze(0)
diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/train.py b/egs/librispeech/ASR/tdnn_lstm_ctc/train.py
index 7439e157a..8597525ba 100755
--- a/egs/librispeech/ASR/tdnn_lstm_ctc/train.py
+++ b/egs/librispeech/ASR/tdnn_lstm_ctc/train.py
@@ -95,6 +95,13 @@ def get_parser():
""",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -486,7 +493,7 @@ def run(rank, world_size, args):
params = get_params()
params.update(vars(args))
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -544,6 +551,7 @@ def run(rank, world_size, args):
valid_dl = librispeech.valid_dataloaders(valid_cuts)
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
if epoch > params.start_epoch:
diff --git a/egs/librispeech/ASR/transducer/conformer.py b/egs/librispeech/ASR/transducer/conformer.py
deleted file mode 100644
index 81d7708f9..000000000
--- a/egs/librispeech/ASR/transducer/conformer.py
+++ /dev/null
@@ -1,920 +0,0 @@
-#!/usr/bin/env python3
-# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
-#
-# See ../../../../LICENSE for clarification regarding multiple authors
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import math
-import warnings
-from typing import Optional, Tuple
-
-import torch
-from torch import Tensor, nn
-from transformer import Transformer
-
-from icefall.utils import make_pad_mask
-
-
-class Conformer(Transformer):
- """
- Args:
- num_features (int): Number of input features
- output_dim (int): Number of output dimension
- subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
- d_model (int): attention dimension
- nhead (int): number of head
- dim_feedforward (int): feedforward dimention
- num_encoder_layers (int): number of encoder layers
- dropout (float): dropout rate
- cnn_module_kernel (int): Kernel size of convolution module
- normalize_before (bool): whether to use layer_norm before the first block.
- vgg_frontend (bool): whether to use vgg frontend.
- """
-
- def __init__(
- self,
- num_features: int,
- output_dim: int,
- subsampling_factor: int = 4,
- d_model: int = 256,
- nhead: int = 4,
- dim_feedforward: int = 2048,
- num_encoder_layers: int = 12,
- dropout: float = 0.1,
- cnn_module_kernel: int = 31,
- normalize_before: bool = True,
- vgg_frontend: bool = False,
- ) -> None:
- super(Conformer, self).__init__(
- num_features=num_features,
- output_dim=output_dim,
- subsampling_factor=subsampling_factor,
- d_model=d_model,
- nhead=nhead,
- dim_feedforward=dim_feedforward,
- num_encoder_layers=num_encoder_layers,
- dropout=dropout,
- normalize_before=normalize_before,
- vgg_frontend=vgg_frontend,
- )
-
- self.encoder_pos = RelPositionalEncoding(d_model, dropout)
-
- encoder_layer = ConformerEncoderLayer(
- d_model,
- nhead,
- dim_feedforward,
- dropout,
- cnn_module_kernel,
- normalize_before,
- )
- self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
- self.normalize_before = normalize_before
- if self.normalize_before:
- self.after_norm = nn.LayerNorm(d_model)
- else:
- # Note: TorchScript detects that self.after_norm could be used inside forward()
- # and throws an error without this change.
- self.after_norm = identity
-
- def forward(
- self, x: torch.Tensor, x_lens: torch.Tensor
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Args:
- x:
- The input tensor. Its shape is (batch_size, seq_len, feature_dim).
- x_lens:
- A tensor of shape (batch_size,) containing the number of frames in
- `x` before padding.
- Returns:
- Return a tuple containing 2 tensors:
- - logits, its shape is (batch_size, output_seq_len, output_dim)
- - logit_lens, a tensor of shape (batch_size,) containing the number
- of frames in `logits` before padding.
- """
- x = self.encoder_embed(x)
- x, pos_emb = self.encoder_pos(x)
- x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
-
- # Caution: We assume the subsampling factor is 4!
- lengths = ((x_lens - 1) // 2 - 1) // 2
- assert x.size(0) == lengths.max().item()
- mask = make_pad_mask(lengths)
-
- x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, N, C)
-
- if self.normalize_before:
- x = self.after_norm(x)
-
- logits = self.encoder_output_layer(x)
- logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
-
- return logits, lengths
-
-
-class ConformerEncoderLayer(nn.Module):
- """
- ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
- See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
-
- Args:
- d_model: the number of expected features in the input (required).
- nhead: the number of heads in the multiheadattention models (required).
- dim_feedforward: the dimension of the feedforward network model (default=2048).
- dropout: the dropout value (default=0.1).
- cnn_module_kernel (int): Kernel size of convolution module.
- normalize_before: whether to use layer_norm before the first block.
-
- Examples::
- >>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
- >>> src = torch.rand(10, 32, 512)
- >>> pos_emb = torch.rand(32, 19, 512)
- >>> out = encoder_layer(src, pos_emb)
- """
-
- def __init__(
- self,
- d_model: int,
- nhead: int,
- dim_feedforward: int = 2048,
- dropout: float = 0.1,
- cnn_module_kernel: int = 31,
- normalize_before: bool = True,
- ) -> None:
- super(ConformerEncoderLayer, self).__init__()
- self.self_attn = RelPositionMultiheadAttention(
- d_model, nhead, dropout=0.0
- )
-
- self.feed_forward = nn.Sequential(
- nn.Linear(d_model, dim_feedforward),
- Swish(),
- nn.Dropout(dropout),
- nn.Linear(dim_feedforward, d_model),
- )
-
- self.feed_forward_macaron = nn.Sequential(
- nn.Linear(d_model, dim_feedforward),
- Swish(),
- nn.Dropout(dropout),
- nn.Linear(dim_feedforward, d_model),
- )
-
- self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
-
- self.norm_ff_macaron = nn.LayerNorm(
- d_model
- ) # for the macaron style FNN module
- self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
- self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
-
- self.ff_scale = 0.5
-
- self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
- self.norm_final = nn.LayerNorm(
- d_model
- ) # for the final output of the block
-
- self.dropout = nn.Dropout(dropout)
-
- self.normalize_before = normalize_before
-
- def forward(
- self,
- src: Tensor,
- pos_emb: Tensor,
- src_mask: Optional[Tensor] = None,
- src_key_padding_mask: Optional[Tensor] = None,
- ) -> Tensor:
- """
- Pass the input through the encoder layer.
-
- Args:
- src: the sequence to the encoder layer (required).
- pos_emb: Positional embedding tensor (required).
- src_mask: the mask for the src sequence (optional).
- src_key_padding_mask: the mask for the src keys per batch (optional).
-
- Shape:
- src: (S, N, E).
- pos_emb: (N, 2*S-1, E)
- src_mask: (S, S).
- src_key_padding_mask: (N, S).
- S is the source sequence length, N is the batch size, E is the feature number
- """
-
- # macaron style feed forward module
- residual = src
- if self.normalize_before:
- src = self.norm_ff_macaron(src)
- src = residual + self.ff_scale * self.dropout(
- self.feed_forward_macaron(src)
- )
- if not self.normalize_before:
- src = self.norm_ff_macaron(src)
-
- # multi-headed self-attention module
- residual = src
- if self.normalize_before:
- src = self.norm_mha(src)
- src_att = self.self_attn(
- src,
- src,
- src,
- pos_emb=pos_emb,
- attn_mask=src_mask,
- key_padding_mask=src_key_padding_mask,
- )[0]
- src = residual + self.dropout(src_att)
- if not self.normalize_before:
- src = self.norm_mha(src)
-
- # convolution module
- residual = src
- if self.normalize_before:
- src = self.norm_conv(src)
- src = residual + self.dropout(self.conv_module(src))
- if not self.normalize_before:
- src = self.norm_conv(src)
-
- # feed forward module
- residual = src
- if self.normalize_before:
- src = self.norm_ff(src)
- src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
- if not self.normalize_before:
- src = self.norm_ff(src)
-
- if self.normalize_before:
- src = self.norm_final(src)
-
- return src
-
-
-class ConformerEncoder(nn.TransformerEncoder):
- r"""ConformerEncoder is a stack of N encoder layers
-
- Args:
- encoder_layer: an instance of the ConformerEncoderLayer() class (required).
- num_layers: the number of sub-encoder-layers in the encoder (required).
- norm: the layer normalization component (optional).
-
- Examples::
- >>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
- >>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
- >>> src = torch.rand(10, 32, 512)
- >>> pos_emb = torch.rand(32, 19, 512)
- >>> out = conformer_encoder(src, pos_emb)
- """
-
- def __init__(
- self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
- ) -> None:
- super(ConformerEncoder, self).__init__(
- encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
- )
-
- def forward(
- self,
- src: Tensor,
- pos_emb: Tensor,
- mask: Optional[Tensor] = None,
- src_key_padding_mask: Optional[Tensor] = None,
- ) -> Tensor:
- r"""Pass the input through the encoder layers in turn.
-
- Args:
- src: the sequence to the encoder (required).
- pos_emb: Positional embedding tensor (required).
- mask: the mask for the src sequence (optional).
- src_key_padding_mask: the mask for the src keys per batch (optional).
-
- Shape:
- src: (S, N, E).
- pos_emb: (N, 2*S-1, E)
- mask: (S, S).
- src_key_padding_mask: (N, S).
- S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
-
- """
- output = src
-
- for mod in self.layers:
- output = mod(
- output,
- pos_emb,
- src_mask=mask,
- src_key_padding_mask=src_key_padding_mask,
- )
-
- if self.norm is not None:
- output = self.norm(output)
-
- return output
-
-
-class RelPositionalEncoding(torch.nn.Module):
- """Relative positional encoding module.
-
- See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
- Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
-
- Args:
- d_model: Embedding dimension.
- dropout_rate: Dropout rate.
- max_len: Maximum input length.
-
- """
-
- def __init__(
- self, d_model: int, dropout_rate: float, max_len: int = 5000
- ) -> None:
- """Construct an PositionalEncoding object."""
- super(RelPositionalEncoding, self).__init__()
- self.d_model = d_model
- self.xscale = math.sqrt(self.d_model)
- self.dropout = torch.nn.Dropout(p=dropout_rate)
- self.pe = None
- self.extend_pe(torch.tensor(0.0).expand(1, max_len))
-
- def extend_pe(self, x: Tensor) -> None:
- """Reset the positional encodings."""
- if self.pe is not None:
- # self.pe contains both positive and negative parts
- # the length of self.pe is 2 * input_len - 1
- if self.pe.size(1) >= x.size(1) * 2 - 1:
- # Note: TorchScript doesn't implement operator== for torch.Device
- if self.pe.dtype != x.dtype or str(self.pe.device) != str(
- x.device
- ):
- self.pe = self.pe.to(dtype=x.dtype, device=x.device)
- return
- # Suppose `i` means to the position of query vecotr and `j` means the
- # position of key vector. We use position relative positions when keys
- # are to the left (i>j) and negative relative positions otherwise (i Tuple[Tensor, Tensor]:
- """Add positional encoding.
-
- Args:
- x (torch.Tensor): Input tensor (batch, time, `*`).
-
- Returns:
- torch.Tensor: Encoded tensor (batch, time, `*`).
- torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
-
- """
- self.extend_pe(x)
- x = x * self.xscale
- pos_emb = self.pe[
- :,
- self.pe.size(1) // 2
- - x.size(1)
- + 1 : self.pe.size(1) // 2 # noqa E203
- + x.size(1),
- ]
- return self.dropout(x), self.dropout(pos_emb)
-
-
-class RelPositionMultiheadAttention(nn.Module):
- r"""Multi-Head Attention layer with relative position encoding
-
- See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
-
- Args:
- embed_dim: total dimension of the model.
- num_heads: parallel attention heads.
- dropout: a Dropout layer on attn_output_weights. Default: 0.0.
-
- Examples::
-
- >>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
- >>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
- """
-
- def __init__(
- self,
- embed_dim: int,
- num_heads: int,
- dropout: float = 0.0,
- ) -> None:
- super(RelPositionMultiheadAttention, self).__init__()
- self.embed_dim = embed_dim
- self.num_heads = num_heads
- self.dropout = dropout
- self.head_dim = embed_dim // num_heads
- assert (
- self.head_dim * num_heads == self.embed_dim
- ), "embed_dim must be divisible by num_heads"
-
- self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
- self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
-
- # linear transformation for positional encoding.
- self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False)
- # these two learnable bias are used in matrix c and matrix d
- # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
- self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
- self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
-
- self._reset_parameters()
-
- def _reset_parameters(self) -> None:
- nn.init.xavier_uniform_(self.in_proj.weight)
- nn.init.constant_(self.in_proj.bias, 0.0)
- nn.init.constant_(self.out_proj.bias, 0.0)
-
- nn.init.xavier_uniform_(self.pos_bias_u)
- nn.init.xavier_uniform_(self.pos_bias_v)
-
- def forward(
- self,
- query: Tensor,
- key: Tensor,
- value: Tensor,
- pos_emb: Tensor,
- key_padding_mask: Optional[Tensor] = None,
- need_weights: bool = True,
- attn_mask: Optional[Tensor] = None,
- ) -> Tuple[Tensor, Optional[Tensor]]:
- r"""
- Args:
- query, key, value: map a query and a set of key-value pairs to an output.
- pos_emb: Positional embedding tensor
- key_padding_mask: if provided, specified padding elements in the key will
- be ignored by the attention. When given a binary mask and a value is True,
- the corresponding value on the attention layer will be ignored. When given
- a byte mask and a value is non-zero, the corresponding value on the attention
- layer will be ignored
- need_weights: output attn_output_weights.
- attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
- the batches while a 3D mask allows to specify a different mask for the entries of each batch.
-
- Shape:
- - Inputs:
- - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
- the embedding dimension.
- - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
- the embedding dimension.
- - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
- the embedding dimension.
- - pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
- the embedding dimension.
- - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
- If a ByteTensor is provided, the non-zero positions will be ignored while the position
- with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
- value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
- 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
- S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
- positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
- while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
- is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
- is provided, it will be added to the attention weight.
-
- - Outputs:
- - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
- E is the embedding dimension.
- - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
- L is the target sequence length, S is the source sequence length.
- """
- return self.multi_head_attention_forward(
- query,
- key,
- value,
- pos_emb,
- self.embed_dim,
- self.num_heads,
- self.in_proj.weight,
- self.in_proj.bias,
- self.dropout,
- self.out_proj.weight,
- self.out_proj.bias,
- training=self.training,
- key_padding_mask=key_padding_mask,
- need_weights=need_weights,
- attn_mask=attn_mask,
- )
-
- def rel_shift(self, x: Tensor) -> Tensor:
- """Compute relative positional encoding.
-
- Args:
- x: Input tensor (batch, head, time1, 2*time1-1).
- time1 means the length of query vector.
-
- Returns:
- Tensor: tensor of shape (batch, head, time1, time2)
- (note: time2 has the same value as time1, but it is for
- the key, while time1 is for the query).
- """
- (batch_size, num_heads, time1, n) = x.shape
- assert n == 2 * time1 - 1
- # Note: TorchScript requires explicit arg for stride()
- batch_stride = x.stride(0)
- head_stride = x.stride(1)
- time1_stride = x.stride(2)
- n_stride = x.stride(3)
- return x.as_strided(
- (batch_size, num_heads, time1, time1),
- (batch_stride, head_stride, time1_stride - n_stride, n_stride),
- storage_offset=n_stride * (time1 - 1),
- )
-
- def multi_head_attention_forward(
- self,
- query: Tensor,
- key: Tensor,
- value: Tensor,
- pos_emb: Tensor,
- embed_dim_to_check: int,
- num_heads: int,
- in_proj_weight: Tensor,
- in_proj_bias: Tensor,
- dropout_p: float,
- out_proj_weight: Tensor,
- out_proj_bias: Tensor,
- training: bool = True,
- key_padding_mask: Optional[Tensor] = None,
- need_weights: bool = True,
- attn_mask: Optional[Tensor] = None,
- ) -> Tuple[Tensor, Optional[Tensor]]:
- r"""
- Args:
- query, key, value: map a query and a set of key-value pairs to an output.
- pos_emb: Positional embedding tensor
- embed_dim_to_check: total dimension of the model.
- num_heads: parallel attention heads.
- in_proj_weight, in_proj_bias: input projection weight and bias.
- dropout_p: probability of an element to be zeroed.
- out_proj_weight, out_proj_bias: the output projection weight and bias.
- training: apply dropout if is ``True``.
- key_padding_mask: if provided, specified padding elements in the key will
- be ignored by the attention. This is an binary mask. When the value is True,
- the corresponding value on the attention layer will be filled with -inf.
- need_weights: output attn_output_weights.
- attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
- the batches while a 3D mask allows to specify a different mask for the entries of each batch.
-
- Shape:
- Inputs:
- - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
- the embedding dimension.
- - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
- the embedding dimension.
- - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
- the embedding dimension.
- - pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
- length, N is the batch size, E is the embedding dimension.
- - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
- If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
- will be unchanged. If a BoolTensor is provided, the positions with the
- value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
- 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
- S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
- positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
- while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
- are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
- is provided, it will be added to the attention weight.
-
- Outputs:
- - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
- E is the embedding dimension.
- - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
- L is the target sequence length, S is the source sequence length.
- """
-
- tgt_len, bsz, embed_dim = query.size()
- assert embed_dim == embed_dim_to_check
- assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
-
- head_dim = embed_dim // num_heads
- assert (
- head_dim * num_heads == embed_dim
- ), "embed_dim must be divisible by num_heads"
- scaling = float(head_dim) ** -0.5
-
- if torch.equal(query, key) and torch.equal(key, value):
- # self-attention
- q, k, v = nn.functional.linear(
- query, in_proj_weight, in_proj_bias
- ).chunk(3, dim=-1)
-
- elif torch.equal(key, value):
- # encoder-decoder attention
- # This is inline in_proj function with in_proj_weight and in_proj_bias
- _b = in_proj_bias
- _start = 0
- _end = embed_dim
- _w = in_proj_weight[_start:_end, :]
- if _b is not None:
- _b = _b[_start:_end]
- q = nn.functional.linear(query, _w, _b)
- # This is inline in_proj function with in_proj_weight and in_proj_bias
- _b = in_proj_bias
- _start = embed_dim
- _end = None
- _w = in_proj_weight[_start:, :]
- if _b is not None:
- _b = _b[_start:]
- k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
-
- else:
- # This is inline in_proj function with in_proj_weight and in_proj_bias
- _b = in_proj_bias
- _start = 0
- _end = embed_dim
- _w = in_proj_weight[_start:_end, :]
- if _b is not None:
- _b = _b[_start:_end]
- q = nn.functional.linear(query, _w, _b)
-
- # This is inline in_proj function with in_proj_weight and in_proj_bias
- _b = in_proj_bias
- _start = embed_dim
- _end = embed_dim * 2
- _w = in_proj_weight[_start:_end, :]
- if _b is not None:
- _b = _b[_start:_end]
- k = nn.functional.linear(key, _w, _b)
-
- # This is inline in_proj function with in_proj_weight and in_proj_bias
- _b = in_proj_bias
- _start = embed_dim * 2
- _end = None
- _w = in_proj_weight[_start:, :]
- if _b is not None:
- _b = _b[_start:]
- v = nn.functional.linear(value, _w, _b)
-
- if attn_mask is not None:
- assert (
- attn_mask.dtype == torch.float32
- or attn_mask.dtype == torch.float64
- or attn_mask.dtype == torch.float16
- or attn_mask.dtype == torch.uint8
- or attn_mask.dtype == torch.bool
- ), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
- attn_mask.dtype
- )
- if attn_mask.dtype == torch.uint8:
- warnings.warn(
- "Byte tensor for attn_mask is deprecated. Use bool tensor instead."
- )
- attn_mask = attn_mask.to(torch.bool)
-
- if attn_mask.dim() == 2:
- attn_mask = attn_mask.unsqueeze(0)
- if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
- raise RuntimeError(
- "The size of the 2D attn_mask is not correct."
- )
- elif attn_mask.dim() == 3:
- if list(attn_mask.size()) != [
- bsz * num_heads,
- query.size(0),
- key.size(0),
- ]:
- raise RuntimeError(
- "The size of the 3D attn_mask is not correct."
- )
- else:
- raise RuntimeError(
- "attn_mask's dimension {} is not supported".format(
- attn_mask.dim()
- )
- )
- # attn_mask's dim is 3 now.
-
- # convert ByteTensor key_padding_mask to bool
- if (
- key_padding_mask is not None
- and key_padding_mask.dtype == torch.uint8
- ):
- warnings.warn(
- "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
- )
- key_padding_mask = key_padding_mask.to(torch.bool)
-
- q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim)
- k = k.contiguous().view(-1, bsz, num_heads, head_dim)
- v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
-
- src_len = k.size(0)
-
- if key_padding_mask is not None:
- assert key_padding_mask.size(0) == bsz, "{} == {}".format(
- key_padding_mask.size(0), bsz
- )
- assert key_padding_mask.size(1) == src_len, "{} == {}".format(
- key_padding_mask.size(1), src_len
- )
-
- q = q.transpose(0, 1) # (batch, time1, head, d_k)
-
- pos_emb_bsz = pos_emb.size(0)
- assert pos_emb_bsz in (1, bsz) # actually it is 1
- p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
- p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
-
- q_with_bias_u = (q + self.pos_bias_u).transpose(
- 1, 2
- ) # (batch, head, time1, d_k)
-
- q_with_bias_v = (q + self.pos_bias_v).transpose(
- 1, 2
- ) # (batch, head, time1, d_k)
-
- # compute attention score
- # first compute matrix a and matrix c
- # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
- k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
- matrix_ac = torch.matmul(
- q_with_bias_u, k
- ) # (batch, head, time1, time2)
-
- # compute matrix b and matrix d
- matrix_bd = torch.matmul(
- q_with_bias_v, p.transpose(-2, -1)
- ) # (batch, head, time1, 2*time1-1)
- matrix_bd = self.rel_shift(matrix_bd)
-
- attn_output_weights = (
- matrix_ac + matrix_bd
- ) * scaling # (batch, head, time1, time2)
-
- attn_output_weights = attn_output_weights.view(
- bsz * num_heads, tgt_len, -1
- )
-
- assert list(attn_output_weights.size()) == [
- bsz * num_heads,
- tgt_len,
- src_len,
- ]
-
- if attn_mask is not None:
- if attn_mask.dtype == torch.bool:
- attn_output_weights.masked_fill_(attn_mask, float("-inf"))
- else:
- attn_output_weights += attn_mask
-
- if key_padding_mask is not None:
- attn_output_weights = attn_output_weights.view(
- bsz, num_heads, tgt_len, src_len
- )
- attn_output_weights = attn_output_weights.masked_fill(
- key_padding_mask.unsqueeze(1).unsqueeze(2),
- float("-inf"),
- )
- attn_output_weights = attn_output_weights.view(
- bsz * num_heads, tgt_len, src_len
- )
-
- attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
- attn_output_weights = nn.functional.dropout(
- attn_output_weights, p=dropout_p, training=training
- )
-
- attn_output = torch.bmm(attn_output_weights, v)
- assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
- attn_output = (
- attn_output.transpose(0, 1)
- .contiguous()
- .view(tgt_len, bsz, embed_dim)
- )
- attn_output = nn.functional.linear(
- attn_output, out_proj_weight, out_proj_bias
- )
-
- if need_weights:
- # average attention weights over heads
- attn_output_weights = attn_output_weights.view(
- bsz, num_heads, tgt_len, src_len
- )
- return attn_output, attn_output_weights.sum(dim=1) / num_heads
- else:
- return attn_output, None
-
-
-class ConvolutionModule(nn.Module):
- """ConvolutionModule in Conformer model.
- Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
-
- Args:
- channels (int): The number of channels of conv layers.
- kernel_size (int): Kernerl size of conv layers.
- bias (bool): Whether to use bias in conv layers (default=True).
-
- """
-
- def __init__(
- self, channels: int, kernel_size: int, bias: bool = True
- ) -> None:
- """Construct an ConvolutionModule object."""
- super(ConvolutionModule, self).__init__()
- # kernerl_size should be a odd number for 'SAME' padding
- assert (kernel_size - 1) % 2 == 0
-
- self.pointwise_conv1 = nn.Conv1d(
- channels,
- 2 * channels,
- kernel_size=1,
- stride=1,
- padding=0,
- bias=bias,
- )
- self.depthwise_conv = nn.Conv1d(
- channels,
- channels,
- kernel_size,
- stride=1,
- padding=(kernel_size - 1) // 2,
- groups=channels,
- bias=bias,
- )
- self.norm = nn.LayerNorm(channels)
- self.pointwise_conv2 = nn.Conv1d(
- channels,
- channels,
- kernel_size=1,
- stride=1,
- padding=0,
- bias=bias,
- )
- self.activation = Swish()
-
- def forward(self, x: Tensor) -> Tensor:
- """Compute convolution module.
-
- Args:
- x: Input tensor (#time, batch, channels).
-
- Returns:
- Tensor: Output tensor (#time, batch, channels).
-
- """
- # exchange the temporal dimension and the feature dimension
- x = x.permute(1, 2, 0) # (#batch, channels, time).
-
- # GLU mechanism
- x = self.pointwise_conv1(x) # (batch, 2*channels, time)
- x = nn.functional.glu(x, dim=1) # (batch, channels, time)
-
- # 1D Depthwise Conv
- x = self.depthwise_conv(x)
- # x is (batch, channels, time)
- x = x.permute(0, 2, 1)
- x = self.norm(x)
- x = x.permute(0, 2, 1)
-
- x = self.activation(x)
-
- x = self.pointwise_conv2(x) # (batch, channel, time)
-
- return x.permute(2, 0, 1)
-
-
-class Swish(torch.nn.Module):
- """Construct an Swish object."""
-
- def forward(self, x: Tensor) -> Tensor:
- """Return Swich activation function."""
- return x * torch.sigmoid(x)
-
-
-def identity(x):
- return x
diff --git a/egs/librispeech/ASR/transducer/conformer.py b/egs/librispeech/ASR/transducer/conformer.py
new file mode 120000
index 000000000..70a7ddf11
--- /dev/null
+++ b/egs/librispeech/ASR/transducer/conformer.py
@@ -0,0 +1 @@
+../transducer_stateless/conformer.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/transducer/encoder_interface.py b/egs/librispeech/ASR/transducer/encoder_interface.py
deleted file mode 100644
index 257facce4..000000000
--- a/egs/librispeech/ASR/transducer/encoder_interface.py
+++ /dev/null
@@ -1,43 +0,0 @@
-# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
-#
-# See ../../../../LICENSE for clarification regarding multiple authors
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from typing import Tuple
-
-import torch
-import torch.nn as nn
-
-
-class EncoderInterface(nn.Module):
- def forward(
- self, x: torch.Tensor, x_lens: torch.Tensor
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Args:
- x:
- A tensor of shape (batch_size, input_seq_len, num_features)
- containing the input features.
- x_lens:
- A tensor of shape (batch_size,) containing the number of frames
- in `x` before padding.
- Returns:
- Return a tuple containing two tensors:
- - encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
- containing unnormalized probabilities, i.e., the output of a
- linear layer.
- - encoder_out_lens, a tensor of shape (batch_size,) containing
- the number of frames in `encoder_out` before padding.
- """
- raise NotImplementedError("Please implement it in a subclass")
diff --git a/egs/librispeech/ASR/transducer/encoder_interface.py b/egs/librispeech/ASR/transducer/encoder_interface.py
new file mode 120000
index 000000000..aa5d0217a
--- /dev/null
+++ b/egs/librispeech/ASR/transducer/encoder_interface.py
@@ -0,0 +1 @@
+../transducer_stateless/encoder_interface.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/transducer/train.py b/egs/librispeech/ASR/transducer/train.py
index 903ba8491..a6ce79520 100755
--- a/egs/librispeech/ASR/transducer/train.py
+++ b/egs/librispeech/ASR/transducer/train.py
@@ -130,6 +130,13 @@ def get_parser():
help="The lr_factor for Noam optimizer",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -544,7 +551,7 @@ def run(rank, world_size, args):
params.valid_interval = 800
params.warm_step = 8000
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -633,6 +640,7 @@ def run(rank, world_size, args):
)
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
cur_lr = optimizer._rate
diff --git a/egs/librispeech/ASR/transducer/transformer.py b/egs/librispeech/ASR/transducer/transformer.py
deleted file mode 100644
index e851dcc32..000000000
--- a/egs/librispeech/ASR/transducer/transformer.py
+++ /dev/null
@@ -1,418 +0,0 @@
-# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
-#
-# See ../../../../LICENSE for clarification regarding multiple authors
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import math
-from typing import Optional, Tuple
-
-import torch
-import torch.nn as nn
-from encoder_interface import EncoderInterface
-from subsampling import Conv2dSubsampling, VggSubsampling
-
-from icefall.utils import make_pad_mask
-
-
-class Transformer(EncoderInterface):
- def __init__(
- self,
- num_features: int,
- output_dim: int,
- subsampling_factor: int = 4,
- d_model: int = 256,
- nhead: int = 4,
- dim_feedforward: int = 2048,
- num_encoder_layers: int = 12,
- dropout: float = 0.1,
- normalize_before: bool = True,
- vgg_frontend: bool = False,
- ) -> None:
- """
- Args:
- num_features:
- The input dimension of the model.
- output_dim:
- The output dimension of the model.
- subsampling_factor:
- Number of output frames is num_in_frames // subsampling_factor.
- Currently, subsampling_factor MUST be 4.
- d_model:
- Attention dimension.
- nhead:
- Number of heads in multi-head attention.
- Must satisfy d_model // nhead == 0.
- dim_feedforward:
- The output dimension of the feedforward layers in encoder.
- num_encoder_layers:
- Number of encoder layers.
- dropout:
- Dropout in encoder.
- normalize_before:
- If True, use pre-layer norm; False to use post-layer norm.
- vgg_frontend:
- True to use vgg style frontend for subsampling.
- """
- super().__init__()
-
- self.num_features = num_features
- self.output_dim = output_dim
- self.subsampling_factor = subsampling_factor
- if subsampling_factor != 4:
- raise NotImplementedError("Support only 'subsampling_factor=4'.")
-
- # self.encoder_embed converts the input of shape (N, T, num_features)
- # to the shape (N, T//subsampling_factor, d_model).
- # That is, it does two things simultaneously:
- # (1) subsampling: T -> T//subsampling_factor
- # (2) embedding: num_features -> d_model
- if vgg_frontend:
- self.encoder_embed = VggSubsampling(num_features, d_model)
- else:
- self.encoder_embed = Conv2dSubsampling(num_features, d_model)
-
- self.encoder_pos = PositionalEncoding(d_model, dropout)
-
- encoder_layer = TransformerEncoderLayer(
- d_model=d_model,
- nhead=nhead,
- dim_feedforward=dim_feedforward,
- dropout=dropout,
- normalize_before=normalize_before,
- )
-
- if normalize_before:
- encoder_norm = nn.LayerNorm(d_model)
- else:
- encoder_norm = None
-
- self.encoder = nn.TransformerEncoder(
- encoder_layer=encoder_layer,
- num_layers=num_encoder_layers,
- norm=encoder_norm,
- )
-
- # TODO(fangjun): remove dropout
- self.encoder_output_layer = nn.Sequential(
- nn.Dropout(p=dropout), nn.Linear(d_model, output_dim)
- )
-
- def forward(
- self, x: torch.Tensor, x_lens: torch.Tensor
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Args:
- x:
- The input tensor. Its shape is (batch_size, seq_len, feature_dim).
- x_lens:
- A tensor of shape (batch_size,) containing the number of frames in
- `x` before padding.
- Returns:
- Return a tuple containing 2 tensors:
- - logits, its shape is (batch_size, output_seq_len, output_dim)
- - logit_lens, a tensor of shape (batch_size,) containing the number
- of frames in `logits` before padding.
- """
- x = self.encoder_embed(x)
- x = self.encoder_pos(x)
- x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
-
- # Caution: We assume the subsampling factor is 4!
- lengths = ((x_lens - 1) // 2 - 1) // 2
- assert x.size(0) == lengths.max().item()
-
- mask = make_pad_mask(lengths)
- x = self.encoder(x, src_key_padding_mask=mask) # (T, N, C)
-
- logits = self.encoder_output_layer(x)
- logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
-
- return logits, lengths
-
-
-class TransformerEncoderLayer(nn.Module):
- """
- Modified from torch.nn.TransformerEncoderLayer.
- Add support of normalize_before,
- i.e., use layer_norm before the first block.
-
- Args:
- d_model:
- the number of expected features in the input (required).
- nhead:
- the number of heads in the multiheadattention models (required).
- dim_feedforward:
- the dimension of the feedforward network model (default=2048).
- dropout:
- the dropout value (default=0.1).
- activation:
- the activation function of intermediate layer, relu or
- gelu (default=relu).
- normalize_before:
- whether to use layer_norm before the first block.
-
- Examples::
- >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
- >>> src = torch.rand(10, 32, 512)
- >>> out = encoder_layer(src)
- """
-
- def __init__(
- self,
- d_model: int,
- nhead: int,
- dim_feedforward: int = 2048,
- dropout: float = 0.1,
- activation: str = "relu",
- normalize_before: bool = True,
- ) -> None:
- super(TransformerEncoderLayer, self).__init__()
- self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
- # Implementation of Feedforward model
- self.linear1 = nn.Linear(d_model, dim_feedforward)
- self.dropout = nn.Dropout(dropout)
- self.linear2 = nn.Linear(dim_feedforward, d_model)
-
- self.norm1 = nn.LayerNorm(d_model)
- self.norm2 = nn.LayerNorm(d_model)
- self.dropout1 = nn.Dropout(dropout)
- self.dropout2 = nn.Dropout(dropout)
-
- self.activation = _get_activation_fn(activation)
-
- self.normalize_before = normalize_before
-
- def __setstate__(self, state):
- if "activation" not in state:
- state["activation"] = nn.functional.relu
- super(TransformerEncoderLayer, self).__setstate__(state)
-
- def forward(
- self,
- src: torch.Tensor,
- src_mask: Optional[torch.Tensor] = None,
- src_key_padding_mask: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- """
- Pass the input through the encoder layer.
-
- Args:
- src: the sequence to the encoder layer (required).
- src_mask: the mask for the src sequence (optional).
- src_key_padding_mask: the mask for the src keys per batch (optional)
-
- Shape:
- src: (S, N, E).
- src_mask: (S, S).
- src_key_padding_mask: (N, S).
- S is the source sequence length, T is the target sequence length,
- N is the batch size, E is the feature number
- """
- residual = src
- if self.normalize_before:
- src = self.norm1(src)
- src2 = self.self_attn(
- src,
- src,
- src,
- attn_mask=src_mask,
- key_padding_mask=src_key_padding_mask,
- )[0]
- src = residual + self.dropout1(src2)
- if not self.normalize_before:
- src = self.norm1(src)
-
- residual = src
- if self.normalize_before:
- src = self.norm2(src)
- src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
- src = residual + self.dropout2(src2)
- if not self.normalize_before:
- src = self.norm2(src)
- return src
-
-
-def _get_activation_fn(activation: str):
- if activation == "relu":
- return nn.functional.relu
- elif activation == "gelu":
- return nn.functional.gelu
-
- raise RuntimeError(
- "activation should be relu/gelu, not {}".format(activation)
- )
-
-
-class PositionalEncoding(nn.Module):
- """This class implements the positional encoding
- proposed in the following paper:
-
- - Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
-
- PE(pos, 2i) = sin(pos / (10000^(2i/d_modle))
- PE(pos, 2i+1) = cos(pos / (10000^(2i/d_modle))
-
- Note::
-
- 1 / (10000^(2i/d_model)) = exp(-log(10000^(2i/d_model)))
- = exp(-1* 2i / d_model * log(100000))
- = exp(2i * -(log(10000) / d_model))
- """
-
- def __init__(self, d_model: int, dropout: float = 0.1) -> None:
- """
- Args:
- d_model:
- Embedding dimension.
- dropout:
- Dropout probability to be applied to the output of this module.
- """
- super().__init__()
- self.d_model = d_model
- self.xscale = math.sqrt(self.d_model)
- self.dropout = nn.Dropout(p=dropout)
- # not doing: self.pe = None because of errors thrown by torchscript
- self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
-
- def extend_pe(self, x: torch.Tensor) -> None:
- """Extend the time t in the positional encoding if required.
-
- The shape of `self.pe` is (1, T1, d_model). The shape of the input x
- is (N, T, d_model). If T > T1, then we change the shape of self.pe
- to (N, T, d_model). Otherwise, nothing is done.
-
- Args:
- x:
- It is a tensor of shape (N, T, C).
- Returns:
- Return None.
- """
- if self.pe is not None:
- if self.pe.size(1) >= x.size(1):
- self.pe = self.pe.to(dtype=x.dtype, device=x.device)
- return
- pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
- position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
- div_term = torch.exp(
- torch.arange(0, self.d_model, 2, dtype=torch.float32)
- * -(math.log(10000.0) / self.d_model)
- )
- pe[:, 0::2] = torch.sin(position * div_term)
- pe[:, 1::2] = torch.cos(position * div_term)
- pe = pe.unsqueeze(0)
- # Now pe is of shape (1, T, d_model), where T is x.size(1)
- self.pe = pe.to(device=x.device, dtype=x.dtype)
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Add positional encoding.
-
- Args:
- x:
- Its shape is (N, T, C)
-
- Returns:
- Return a tensor of shape (N, T, C)
- """
- self.extend_pe(x)
- x = x * self.xscale + self.pe[:, : x.size(1), :]
- return self.dropout(x)
-
-
-class Noam(object):
- """
- Implements Noam optimizer.
-
- Proposed in
- "Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
-
- Modified from
- https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
-
- Args:
- params:
- iterable of parameters to optimize or dicts defining parameter groups
- model_size:
- attention dimension of the transformer model
- factor:
- learning rate factor
- warm_step:
- warmup steps
- """
-
- def __init__(
- self,
- params,
- model_size: int = 256,
- factor: float = 10.0,
- warm_step: int = 25000,
- weight_decay=0,
- ) -> None:
- """Construct an Noam object."""
- self.optimizer = torch.optim.Adam(
- params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
- )
- self._step = 0
- self.warmup = warm_step
- self.factor = factor
- self.model_size = model_size
- self._rate = 0
-
- @property
- def param_groups(self):
- """Return param_groups."""
- return self.optimizer.param_groups
-
- def step(self):
- """Update parameters and rate."""
- self._step += 1
- rate = self.rate()
- for p in self.optimizer.param_groups:
- p["lr"] = rate
- self._rate = rate
- self.optimizer.step()
-
- def rate(self, step=None):
- """Implement `lrate` above."""
- if step is None:
- step = self._step
- return (
- self.factor
- * self.model_size ** (-0.5)
- * min(step ** (-0.5), step * self.warmup ** (-1.5))
- )
-
- def zero_grad(self):
- """Reset gradient."""
- self.optimizer.zero_grad()
-
- def state_dict(self):
- """Return state_dict."""
- return {
- "_step": self._step,
- "warmup": self.warmup,
- "factor": self.factor,
- "model_size": self.model_size,
- "_rate": self._rate,
- "optimizer": self.optimizer.state_dict(),
- }
-
- def load_state_dict(self, state_dict):
- """Load state_dict."""
- for key, value in state_dict.items():
- if key == "optimizer":
- self.optimizer.load_state_dict(state_dict["optimizer"])
- else:
- setattr(self, key, value)
diff --git a/egs/librispeech/ASR/transducer/transformer.py b/egs/librispeech/ASR/transducer/transformer.py
new file mode 120000
index 000000000..e43f520f9
--- /dev/null
+++ b/egs/librispeech/ASR/transducer/transformer.py
@@ -0,0 +1 @@
+../transducer_stateless/transformer.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/transducer_lstm/train.py b/egs/librispeech/ASR/transducer_lstm/train.py
index 62e9b5b12..9f06ed512 100755
--- a/egs/librispeech/ASR/transducer_lstm/train.py
+++ b/egs/librispeech/ASR/transducer_lstm/train.py
@@ -131,6 +131,13 @@ def get_parser():
help="The lr_factor for Noam optimizer",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -548,7 +555,7 @@ def run(rank, world_size, args):
params.valid_interval = 800
params.warm_step = 8000
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -639,6 +646,7 @@ def run(rank, world_size, args):
)
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
cur_lr = optimizer._rate
diff --git a/egs/librispeech/ASR/transducer_stateless/README.md b/egs/librispeech/ASR/transducer_stateless/README.md
index 964bddfab..978fa2ada 100644
--- a/egs/librispeech/ASR/transducer_stateless/README.md
+++ b/egs/librispeech/ASR/transducer_stateless/README.md
@@ -20,3 +20,120 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
--max-duration 250 \
--lr-factor 2.5
```
+
+## How to get framewise token alignment
+
+Assume that you already have a trained model. If not, you can either
+train one by yourself or download a pre-trained model from hugging face:
+
+
+**Caution**: If you are going to use your own trained model, remember
+to set `--modified-transducer-prob` to a nonzero value since the
+force alignment code assumes that `--max-sym-per-frame` is 1.
+
+
+The following shows how to get framewise token alignment using the above
+pre-trained model.
+
+```bash
+git clone https://github.com/k2-fsa/icefall
+cd icefall/egs/librispeech/ASR
+mkdir tmp
+sudo apt-get install git-lfs
+git lfs install
+git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01 ./tmp/
+
+ln -s $PWD/tmp/exp/pretrained.pt $PWD/tmp/epoch-999.pt
+
+./transducer_stateless/compute_ali.py \
+ --exp-dir ./tmp/exp \
+ --bpe-model ./tmp/data/lang_bpe_500/bpe.model \
+ --epoch 999 \
+ --avg 1 \
+ --max-duration 100 \
+ --dataset dev-clean \
+ --out-dir data/ali
+```
+
+After running the above commands, you will find the following two files
+in the folder `./data/ali`:
+
+```
+-rw-r--r-- 1 xxx xxx 412K Mar 7 15:45 cuts_dev-clean.json.gz
+-rw-r--r-- 1 xxx xxx 2.9M Mar 7 15:45 token_ali_dev-clean.h5
+```
+
+You can find usage examples in `./test_compute_ali.py` about
+extracting framewise token alignment information from the above
+two files.
+
+## How to get word starting time from framewise token alignment
+
+Assume you have run the above commands to get framewise token alignment
+using a pre-trained model from `tmp/exp/epoch-999.pt`. You can use the following
+commands to obtain word starting time.
+
+```bash
+./transducer_stateless/test_compute_ali.py \
+ --bpe-model ./tmp/data/lang_bpe_500/bpe.model \
+ --ali-dir data/ali \
+ --dataset dev-clean
+```
+
+**Caution**: Since the frame shift is 10ms and the subsampling factor
+of the model is 4, the time resolution is 0.04 second.
+
+**Note**: The script `test_compute_ali.py` is for illustration only
+and it processes only one batch and then exits.
+
+You will get the following output:
+
+```
+5694-64029-0022-1998-0
+[('THE', '0.20'), ('LEADEN', '0.36'), ('HAIL', '0.72'), ('STORM', '1.00'), ('SWEPT', '1.48'), ('THEM', '1.88'), ('OFF', '2.00'), ('THE', '2.24'), ('FIELD', '2.36'), ('THEY', '3.20'), ('FELL', '3.36'), ('BACK', '3.64'), ('AND', '3.92'), ('RE', '4.04'), ('FORMED', '4.20')]
+
+3081-166546-0040-308-0
+[('IN', '0.32'), ('OLDEN', '0.60'), ('DAYS', '1.00'), ('THEY', '1.40'), ('WOULD', '1.56'), ('HAVE', '1.76'), ('SAID', '1.92'), ('STRUCK', '2.60'), ('BY', '3.16'), ('A', '3.36'), ('BOLT', '3.44'), ('FROM', '3.84'), ('HEAVEN', '4.04')]
+
+2035-147960-0016-1283-0
+[('A', '0.44'), ('SNAKE', '0.52'), ('OF', '0.84'), ('HIS', '0.96'), ('SIZE', '1.12'), ('IN', '1.60'), ('FIGHTING', '1.72'), ('TRIM', '2.12'), ('WOULD', '2.56'), ('BE', '2.76'), ('MORE', '2.88'), ('THAN', '3.08'), ('ANY', '3.28'), ('BOY', '3.56'), ('COULD', '3.88'), ('HANDLE', '4.04')]
+
+2428-83699-0020-1734-0
+[('WHEN', '0.28'), ('THE', '0.48'), ('TRAP', '0.60'), ('DID', '0.88'), ('APPEAR', '1.08'), ('IT', '1.80'), ('LOOKED', '1.96'), ('TO',
+'2.24'), ('ME', '2.36'), ('UNCOMMONLY', '2.52'), ('LIKE', '3.16'), ('AN', '3.40'), ('OPEN', '3.56'), ('SPRING', '3.92'), ('CART', '4.28')]
+
+8297-275154-0026-2108-0
+[('LET', '0.44'), ('ME', '0.72'), ('REST', '0.92'), ('A', '1.32'), ('LITTLE', '1.40'), ('HE', '1.80'), ('PLEADED', '2.00'), ('IF', '3.04'), ("I'M", '3.28'), ('NOT', '3.52'), ('IN', '3.76'), ('THE', '3.88'), ('WAY', '4.00')]
+
+652-129742-0007-1002-0
+[('SURROUND', '0.28'), ('WITH', '0.80'), ('A', '0.92'), ('GARNISH', '1.00'), ('OF', '1.44'), ('COOKED', '1.56'), ('AND', '1.88'), ('DICED', '4.16'), ('CARROTS', '4.28'), ('TURNIPS', '4.44'), ('GREEN', '4.60'), ('PEAS', '4.72')]
+```
+
+
+For the row:
+```
+5694-64029-0022-1998-0
+[('THE', '0.20'), ('LEADEN', '0.36'), ('HAIL', '0.72'), ('STORM', '1.00'), ('SWEPT', '1.48'),
+('THEM', '1.88'), ('OFF', '2.00'), ('THE', '2.24'), ('FIELD', '2.36'), ('THEY', '3.20'), ('FELL', '3.36'),
+('BACK', '3.64'), ('AND', '3.92'), ('RE', '4.04'), ('FORMED', '4.20')]
+```
+
+- `5694-64029-0022-1998-0` is the cut ID.
+- `('THE', '0.20')` means the word `THE` starts at 0.20 second.
+- `('LEADEN', '0.36')` means the word `LEADEN` starts at 0.36 second.
+
+
+You can compare the above word starting time with the one
+from
+
+```
+5694-64029-0022 ",THE,LEADEN,HAIL,STORM,SWEPT,THEM,OFF,THE,FIELD,,THEY,FELL,BACK,AND,RE,FORMED," "0.230,0.360,0.670,1.010,1.440,1.860,1.990,2.230,2.350,2.870,3.230,3.390,3.660,3.960,4.060,4.160,4.850,4.9"
+```
+
+We reformat it below for readability:
+
+```
+5694-64029-0022 ",THE,LEADEN,HAIL,STORM,SWEPT,THEM,OFF,THE,FIELD,,THEY,FELL,BACK,AND,RE,FORMED,"
+"0.230,0.360,0.670,1.010,1.440,1.860,1.990,2.230,2.350,2.870,3.230,3.390,3.660,3.960,4.060,4.160,4.850,4.9"
+ the leaden hail storm swept them off the field sil they fell back and re formed sil
+```
diff --git a/egs/librispeech/ASR/transducer_stateless/alignment.py b/egs/librispeech/ASR/transducer_stateless/alignment.py
new file mode 100644
index 000000000..f143611ea
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless/alignment.py
@@ -0,0 +1,268 @@
+# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+from dataclasses import dataclass
+from typing import Iterator, List, Optional
+
+import sentencepiece as spm
+import torch
+from model import Transducer
+
+# The force alignment problem can be formulated as finding
+# a path in a rectangular lattice, where the path starts
+# from the lower left corner and ends at the upper right
+# corner. The horizontal axis of the lattice is `t` (representing
+# acoustic frame indexes) and the vertical axis is `u` (representing
+# BPE tokens of the transcript).
+#
+# The notations `t` and `u` are from the paper
+# https://arxiv.org/pdf/1211.3711.pdf
+#
+# Beam search is used to find the path with the
+# highest log probabilities.
+#
+# It assumes the maximum number of symbols that can be
+# emitted per frame is 1. You can use `--modified-transducer-prob`
+# from `./train.py` to train a model that satisfies this assumption.
+
+
+# AlignItem is the ending node of a path originated from the starting node.
+# len(ys) equals to `t` and pos_u is the u coordinate
+# in the lattice.
+@dataclass
+class AlignItem:
+ # total log prob of the path that ends at this item.
+ # The path is originated from the starting node.
+ log_prob: float
+
+ # It contains framewise token alignment
+ ys: List[int]
+
+ # It equals to the number of non-zero entries in ys
+ pos_u: int
+
+
+class AlignItemList:
+ def __init__(self, items: Optional[List[AlignItem]] = None):
+ """
+ Args:
+ items:
+ A list of AlignItem
+ """
+ if items is None:
+ items = []
+ self.data = items
+
+ def __iter__(self) -> Iterator:
+ return iter(self.data)
+
+ def __len__(self) -> int:
+ """Return the number of AlignItem in this object."""
+ return len(self.data)
+
+ def __getitem__(self, i: int) -> AlignItem:
+ """Return the i-th item in this object."""
+ return self.data[i]
+
+ def append(self, item: AlignItem) -> None:
+ """Append an item to the end of this object."""
+ self.data.append(item)
+
+ def get_decoder_input(
+ self,
+ ys: List[int],
+ context_size: int,
+ blank_id: int,
+ ) -> List[List[int]]:
+ """Get input for the decoder for each item in this object.
+
+ Args:
+ ys:
+ The transcript of the utterance in BPE tokens.
+ context_size:
+ Context size of the NN decoder model.
+ blank_id:
+ The ID of the blank symbol.
+ Returns:
+ Return a list-of-list int. `ans[i]` contains the decoder
+ input for the i-th item in this object and its lengths
+ is `context_size`.
+ """
+ ans: List[List[int]] = []
+ buf = [blank_id] * context_size + ys
+ for item in self:
+ # fmt: off
+ ans.append(buf[item.pos_u:(item.pos_u + context_size)])
+ # fmt: on
+ return ans
+
+ def topk(self, k: int) -> "AlignItemList":
+ """Return the top-k items.
+
+ Items are ordered by their log probs in descending order
+ and the top-k items are returned.
+
+ Args:
+ k:
+ Size of top-k.
+ Returns:
+ Return a new AlignItemList that contains the top-k items
+ in this object. Caution: It uses shallow copy.
+ """
+ items = list(self)
+ items = sorted(items, key=lambda i: i.log_prob, reverse=True)
+ return AlignItemList(items[:k])
+
+
+def force_alignment(
+ model: Transducer,
+ encoder_out: torch.Tensor,
+ ys: List[int],
+ beam_size: int = 4,
+) -> List[int]:
+ """Compute the force alignment of an utterance given its transcript
+ in BPE tokens and the corresponding acoustic output from the encoder.
+
+ Caution:
+ We assume that the maximum number of sybmols per frame is 1.
+ That is, the model should be trained using a nonzero value
+ for the option `--modified-transducer-prob` in train.py.
+
+ Args:
+ model:
+ The transducer model.
+ encoder_out:
+ A tensor of shape (N, T, C). Support only for N==1 at present.
+ ys:
+ A list of BPE token IDs. We require that len(ys) <= T.
+ beam_size:
+ Size of the beam used in beam search.
+ Returns:
+ Return a list of int such that
+ - len(ans) == T
+ - After removing blanks from ans, we have ans == ys.
+ """
+ assert encoder_out.ndim == 3, encoder_out.ndim
+ assert encoder_out.size(0) == 1, encoder_out.size(0)
+ assert 0 < len(ys) <= encoder_out.size(1), (len(ys), encoder_out.size(1))
+
+ blank_id = model.decoder.blank_id
+ context_size = model.decoder.context_size
+
+ device = model.device
+
+ T = encoder_out.size(1)
+ U = len(ys)
+ assert 0 < U <= T
+
+ encoder_out_len = torch.tensor([1])
+ decoder_out_len = encoder_out_len
+
+ start = AlignItem(log_prob=0.0, ys=[], pos_u=0)
+ B = AlignItemList([start])
+
+ for t in range(T):
+ # fmt: off
+ current_encoder_out = encoder_out[:, t:t+1, :]
+ # current_encoder_out is of shape (1, 1, encoder_out_dim)
+ # fmt: on
+
+ A = B # shallow copy
+ B = AlignItemList()
+
+ decoder_input = A.get_decoder_input(
+ ys=ys, context_size=context_size, blank_id=blank_id
+ )
+ decoder_input = torch.tensor(decoder_input, device=device)
+ # decoder_input is of shape (num_active_items, context_size)
+
+ decoder_out = model.decoder(decoder_input, need_pad=False)
+ # decoder_output is of shape (num_active_items, 1, decoder_output_dim)
+
+ current_encoder_out = current_encoder_out.expand(
+ decoder_out.size(0), 1, -1
+ )
+
+ logits = model.joiner(
+ current_encoder_out,
+ decoder_out,
+ encoder_out_len.expand(decoder_out.size(0)),
+ decoder_out_len.expand(decoder_out.size(0)),
+ )
+
+ # logits is of shape (num_active_items, vocab_size)
+ log_probs = logits.log_softmax(dim=-1).tolist()
+
+ for i, item in enumerate(A):
+ if (T - 1 - t) >= (U - item.pos_u):
+ # horizontal transition (left -> right)
+ new_item = AlignItem(
+ log_prob=item.log_prob + log_probs[i][blank_id],
+ ys=item.ys + [blank_id],
+ pos_u=item.pos_u,
+ )
+ B.append(new_item)
+
+ if item.pos_u < U:
+ # diagonal transition (lower left -> upper right)
+ u = ys[item.pos_u]
+ new_item = AlignItem(
+ log_prob=item.log_prob + log_probs[i][u],
+ ys=item.ys + [u],
+ pos_u=item.pos_u + 1,
+ )
+ B.append(new_item)
+
+ if len(B) > beam_size:
+ B = B.topk(beam_size)
+
+ ans = B.topk(1)[0].ys
+
+ assert len(ans) == T
+ assert list(filter(lambda i: i != blank_id, ans)) == ys
+
+ return ans
+
+
+def get_word_starting_frames(
+ ali: List[int], sp: spm.SentencePieceProcessor
+) -> List[int]:
+ """Get the starting frame of each word from the given token alignments.
+
+ When a word is encoded into BPE tokens, the first token starts
+ with underscore "_", which can be used to identify the starting frame
+ of a word.
+
+ Args:
+ ali:
+ Framewise token alignment. It can be the return value of
+ :func:`force_alignment`.
+ sp:
+ The sentencepiece model.
+ Returns:
+ Return a list of int representing the starting frame of each word
+ in the alignment.
+ Caution:
+ You have to take into account the model subsampling factor when
+ converting the starting frame into time.
+ """
+ underscore = b"\xe2\x96\x81".decode() # '_'
+ ans = []
+ for i in range(len(ali)):
+ if sp.id_to_piece(ali[i]).startswith(underscore):
+ ans.append(i)
+ return ans
diff --git a/egs/librispeech/ASR/transducer_stateless/beam_search.py b/egs/librispeech/ASR/transducer_stateless/beam_search.py
index 1cce48235..c5efb733d 100644
--- a/egs/librispeech/ASR/transducer_stateless/beam_search.py
+++ b/egs/librispeech/ASR/transducer_stateless/beam_search.py
@@ -17,7 +17,6 @@
from dataclasses import dataclass
from typing import Dict, List, Optional
-import numpy as np
import torch
from model import Transducer
@@ -108,8 +107,9 @@ class Hypothesis:
# Newly predicted tokens are appended to `ys`.
ys: List[int]
- # The log prob of ys
- log_prob: float
+ # The log prob of ys.
+ # It contains only one entry.
+ log_prob: torch.Tensor
@property
def key(self) -> str:
@@ -145,8 +145,10 @@ class HypothesisList(object):
"""
key = hyp.key
if key in self:
- old_hyp = self._data[key]
- old_hyp.log_prob = np.logaddexp(old_hyp.log_prob, hyp.log_prob)
+ old_hyp = self._data[key] # shallow copy
+ torch.logaddexp(
+ old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
+ )
else:
self._data[key] = hyp
@@ -184,7 +186,7 @@ class HypothesisList(object):
assert key in self, f"{key} does not exist"
del self._data[key]
- def filter(self, threshold: float) -> "HypothesisList":
+ def filter(self, threshold: torch.Tensor) -> "HypothesisList":
"""Remove all Hypotheses whose log_prob is less than threshold.
Caution:
@@ -312,6 +314,113 @@ def run_joiner(
return log_prob
+def modified_beam_search(
+ model: Transducer,
+ encoder_out: torch.Tensor,
+ beam: int = 4,
+) -> List[int]:
+ """It limits the maximum number of symbols per frame to 1.
+
+ Args:
+ model:
+ An instance of `Transducer`.
+ encoder_out:
+ A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
+ beam:
+ Beam size.
+ Returns:
+ Return the decoded result.
+ """
+
+ assert encoder_out.ndim == 3
+
+ # support only batch_size == 1 for now
+ assert encoder_out.size(0) == 1, encoder_out.size(0)
+ blank_id = model.decoder.blank_id
+ context_size = model.decoder.context_size
+
+ device = model.device
+
+ decoder_input = torch.tensor(
+ [blank_id] * context_size, device=device
+ ).reshape(1, context_size)
+
+ decoder_out = model.decoder(decoder_input, need_pad=False)
+
+ T = encoder_out.size(1)
+
+ B = HypothesisList()
+ B.add(
+ Hypothesis(
+ ys=[blank_id] * context_size,
+ log_prob=torch.zeros(1, dtype=torch.float32, device=device),
+ )
+ )
+
+ encoder_out_len = torch.tensor([1])
+ decoder_out_len = torch.tensor([1])
+
+ for t in range(T):
+ # fmt: off
+ current_encoder_out = encoder_out[:, t:t+1, :]
+ # current_encoder_out is of shape (1, 1, encoder_out_dim)
+ # fmt: on
+ A = list(B)
+ B = HypothesisList()
+
+ ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
+ # ys_log_probs is of shape (num_hyps, 1)
+
+ decoder_input = torch.tensor(
+ [hyp.ys[-context_size:] for hyp in A],
+ device=device,
+ )
+ # decoder_input is of shape (num_hyps, context_size)
+
+ decoder_out = model.decoder(decoder_input, need_pad=False)
+ # decoder_output is of shape (num_hyps, 1, decoder_output_dim)
+
+ current_encoder_out = current_encoder_out.expand(
+ decoder_out.size(0), 1, -1
+ )
+
+ logits = model.joiner(
+ current_encoder_out,
+ decoder_out,
+ encoder_out_len.expand(decoder_out.size(0)),
+ decoder_out_len.expand(decoder_out.size(0)),
+ )
+ # logits is of shape (num_hyps, vocab_size)
+ log_probs = logits.log_softmax(dim=-1)
+
+ log_probs.add_(ys_log_probs)
+
+ log_probs = log_probs.reshape(-1)
+ topk_log_probs, topk_indexes = log_probs.topk(beam)
+
+ # topk_hyp_indexes are indexes into `A`
+ topk_hyp_indexes = topk_indexes // logits.size(-1)
+ topk_token_indexes = topk_indexes % logits.size(-1)
+
+ topk_hyp_indexes = topk_hyp_indexes.tolist()
+ topk_token_indexes = topk_token_indexes.tolist()
+
+ for i in range(len(topk_hyp_indexes)):
+ hyp = A[topk_hyp_indexes[i]]
+ new_ys = hyp.ys[:]
+ new_token = topk_token_indexes[i]
+ if new_token != blank_id:
+ new_ys.append(new_token)
+ new_log_prob = topk_log_probs[i]
+ new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
+ B.add(new_hyp)
+
+ best_hyp = B.get_most_probable(length_norm=True)
+ ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
+
+ return ys
+
+
def beam_search(
model: Transducer,
encoder_out: torch.Tensor,
@@ -351,7 +460,12 @@ def beam_search(
t = 0
B = HypothesisList()
- B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0))
+ B.add(
+ Hypothesis(
+ ys=[blank_id] * context_size,
+ log_prob=torch.zeros(1, dtype=torch.float32, device=device),
+ )
+ )
max_sym_per_utt = 20000
@@ -371,9 +485,6 @@ def beam_search(
joint_cache: Dict[str, torch.Tensor] = {}
- # TODO(fangjun): Implement prefix search to update the `log_prob`
- # of hypotheses in A
-
while True:
y_star = A.get_most_probable()
A.remove(y_star)
@@ -396,18 +507,21 @@ def beam_search(
# First, process the blank symbol
skip_log_prob = log_prob[blank_id]
- new_y_star_log_prob = y_star.log_prob + skip_log_prob.item()
+ new_y_star_log_prob = y_star.log_prob + skip_log_prob
# ys[:] returns a copy of ys
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
# Second, process other non-blank labels
values, indices = log_prob.topk(beam + 1)
- for i, v in zip(indices.tolist(), values.tolist()):
+ for idx in range(values.size(0)):
+ i = indices[idx].item()
if i == blank_id:
continue
+
new_ys = y_star.ys + [i]
- new_log_prob = y_star.log_prob + v
+
+ new_log_prob = y_star.log_prob + values[idx]
A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
# Check whether B contains more than "beam" elements more probable
diff --git a/egs/librispeech/ASR/transducer_stateless/compute_ali.py b/egs/librispeech/ASR/transducer_stateless/compute_ali.py
new file mode 100755
index 000000000..48769e9d1
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless/compute_ali.py
@@ -0,0 +1,326 @@
+#!/usr/bin/env python3
+# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Usage:
+ ./transducer_stateless/compute_ali.py \
+ --exp-dir ./transducer_stateless/exp \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --epoch 20 \
+ --avg 10 \
+ --max-duration 300 \
+ --dataset train-clean-100 \
+ --out-dir data/ali
+"""
+
+import argparse
+import logging
+from pathlib import Path
+from typing import List
+
+import numpy as np
+import sentencepiece as spm
+import torch
+from alignment import force_alignment
+from asr_datamodule import LibriSpeechAsrDataModule
+from lhotse import CutSet
+from lhotse.features.io import FeaturesWriter, NumpyHdf5Writer
+from train import get_params, get_transducer_model
+
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.utils import AttributeDict, setup_logger
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--epoch",
+ type=int,
+ default=34,
+ help="It specifies the checkpoint to use for decoding."
+ "Note: Epoch counts from 0.",
+ )
+ parser.add_argument(
+ "--avg",
+ type=int,
+ default=20,
+ help="Number of checkpoints to average. Automatically select "
+ "consecutive checkpoints before the checkpoint specified by "
+ "'--epoch'. ",
+ )
+
+ parser.add_argument(
+ "--bpe-model",
+ type=str,
+ default="data/lang_bpe_500/bpe.model",
+ help="Path to the BPE model",
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=str,
+ default="transducer_stateless/exp",
+ help="The experiment dir",
+ )
+
+ parser.add_argument(
+ "--out-dir",
+ type=str,
+ required=True,
+ help="""Output directory.
+ It contains 2 generated files:
+
+ - token_ali_xxx.h5
+ - cuts_xxx.json.gz
+
+ where xxx is the value of `--dataset`. For instance, if
+ `--dataset` is `train-clean-100`, it will contain 2 files:
+
+ - `token_ali_train-clean-100.h5`
+ - `cuts_train-clean-100.json.gz`
+ """,
+ )
+
+ parser.add_argument(
+ "--dataset",
+ type=str,
+ required=True,
+ help="""The name of the dataset to compute alignments for.
+ Possible values are:
+ - test-clean.
+ - test-other
+ - train-clean-100
+ - train-clean-360
+ - train-other-500
+ - dev-clean
+ - dev-other
+ """,
+ )
+
+ parser.add_argument(
+ "--beam-size",
+ type=int,
+ default=4,
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+
+ return parser
+
+
+def compute_alignments(
+ model: torch.nn.Module,
+ dl: torch.utils.data,
+ ali_writer: FeaturesWriter,
+ params: AttributeDict,
+ sp: spm.SentencePieceProcessor,
+):
+ try:
+ num_batches = len(dl)
+ except TypeError:
+ num_batches = "?"
+ num_cuts = 0
+
+ device = model.device
+ cuts = []
+
+ for batch_idx, batch in enumerate(dl):
+ feature = batch["inputs"]
+
+ # at entry, feature is [N, T, C]
+ assert feature.ndim == 3
+ feature = feature.to(device)
+
+ supervisions = batch["supervisions"]
+
+ cut_list = supervisions["cut"]
+ for cut in cut_list:
+ assert len(cut.supervisions) == 1, f"{len(cut.supervisions)}"
+
+ feature_lens = supervisions["num_frames"].to(device)
+
+ encoder_out, encoder_out_lens = model.encoder(
+ x=feature, x_lens=feature_lens
+ )
+
+ batch_size = encoder_out.size(0)
+
+ texts = supervisions["text"]
+
+ ys_list: List[List[int]] = sp.encode(texts, out_type=int)
+
+ ali_list = []
+ for i in range(batch_size):
+ # fmt: off
+ encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+ # fmt: on
+
+ ali = force_alignment(
+ model=model,
+ encoder_out=encoder_out_i,
+ ys=ys_list[i],
+ beam_size=params.beam_size,
+ )
+ ali_list.append(ali)
+ assert len(ali_list) == len(cut_list)
+
+ for cut, ali in zip(cut_list, ali_list):
+ cut.token_alignment = ali_writer.store_array(
+ key=cut.id,
+ value=np.asarray(ali, dtype=np.int32),
+ # frame shift is 0.01s, subsampling_factor is 4
+ frame_shift=0.04,
+ temporal_dim=0,
+ start=0,
+ )
+
+ cuts += cut_list
+
+ num_cuts += len(cut_list)
+
+ if batch_idx % 2 == 0:
+ batch_str = f"{batch_idx}/{num_batches}"
+
+ logging.info(
+ f"batch {batch_str}, cuts processed until now is {num_cuts}"
+ )
+
+ return CutSet.from_cuts(cuts)
+
+
+@torch.no_grad()
+def main():
+ parser = get_parser()
+ LibriSpeechAsrDataModule.add_arguments(parser)
+ args = parser.parse_args()
+
+ args.enable_spec_aug = False
+ args.enable_musan = False
+ args.return_cuts = True
+ args.concatenate_cuts = False
+
+ params = get_params()
+ params.update(vars(args))
+
+ setup_logger(f"{params.exp_dir}/log-ali")
+
+ sp = spm.SentencePieceProcessor()
+ sp.load(params.bpe_model)
+
+ # is defined in local/train_bpe_model.py
+ params.blank_id = sp.piece_to_id("")
+ params.vocab_size = sp.get_piece_size()
+
+ logging.info(f"Computing alignments for {params.dataset} - started")
+ logging.info(params)
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+ logging.info(f"Device: {device}")
+
+ out_dir = Path(params.out_dir)
+ out_dir.mkdir(exist_ok=True)
+
+ out_ali_filename = out_dir / f"token_ali_{params.dataset}.h5"
+ out_manifest_filename = out_dir / f"cuts_{params.dataset}.json.gz"
+
+ done_file = out_dir / f".{params.dataset}.done"
+ if done_file.is_file():
+ logging.info(f"{done_file} exists - skipping")
+ exit()
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ if params.avg == 1:
+ load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+ else:
+ start = params.epoch - params.avg + 1
+ filenames = []
+ for i in range(start, params.epoch + 1):
+ if start >= 0:
+ filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+ logging.info(f"averaging {filenames}")
+ model.to(device)
+ model.load_state_dict(
+ average_checkpoints(filenames, device=device), strict=False
+ )
+
+ model.to(device)
+ model.eval()
+ model.device = device
+
+ num_param = sum([p.numel() for p in model.parameters()])
+ logging.info(f"Number of model parameters: {num_param}")
+
+ librispeech = LibriSpeechAsrDataModule(args)
+ if params.dataset == "test-clean":
+ test_clean_cuts = librispeech.test_clean_cuts()
+ dl = librispeech.test_dataloaders(test_clean_cuts)
+ elif params.dataset == "test-other":
+ test_other_cuts = librispeech.test_other_cuts()
+ dl = librispeech.test_dataloaders(test_other_cuts)
+ elif params.dataset == "train-clean-100":
+ train_clean_100_cuts = librispeech.train_clean_100_cuts()
+ dl = librispeech.train_dataloaders(train_clean_100_cuts)
+ elif params.dataset == "train-clean-360":
+ train_clean_360_cuts = librispeech.train_clean_360_cuts()
+ dl = librispeech.train_dataloaders(train_clean_360_cuts)
+ elif params.dataset == "train-other-500":
+ train_other_500_cuts = librispeech.train_other_500_cuts()
+ dl = librispeech.train_dataloaders(train_other_500_cuts)
+ elif params.dataset == "dev-clean":
+ dev_clean_cuts = librispeech.dev_clean_cuts()
+ dl = librispeech.valid_dataloaders(dev_clean_cuts)
+ else:
+ assert params.dataset == "dev-other", f"{params.dataset}"
+ dev_other_cuts = librispeech.dev_other_cuts()
+ dl = librispeech.valid_dataloaders(dev_other_cuts)
+
+ logging.info(f"Processing {params.dataset}")
+
+ with NumpyHdf5Writer(out_ali_filename) as ali_writer:
+ cut_set = compute_alignments(
+ model=model,
+ dl=dl,
+ ali_writer=ali_writer,
+ params=params,
+ sp=sp,
+ )
+
+ cut_set.to_file(out_manifest_filename)
+
+ logging.info(
+ f"For dataset {params.dataset}, its framewise token alignments are "
+ f"saved to {out_ali_filename} and the cut manifest "
+ f"file is {out_manifest_filename}. Number of cuts: {len(cut_set)}"
+ )
+ done_file.touch()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/transducer_stateless/conformer.py b/egs/librispeech/ASR/transducer_stateless/conformer.py
index 6278734e5..bf96b41f9 100644
--- a/egs/librispeech/ASR/transducer_stateless/conformer.py
+++ b/egs/librispeech/ASR/transducer_stateless/conformer.py
@@ -252,13 +252,12 @@ class ConformerEncoder(nn.Module):
>>> out = conformer_encoder(src, pos_emb)
"""
- def __init__(
- self, encoder_layer: nn.Module,
- num_layers: int,
- aux_layers: Sequence[int],
- ) -> None:
- super(ConformerEncoder, self).__init__()
- self.layers = nn.ModuleList([copy.deepcopy(encoder_layer) for i in range(num_layers)])
+ def __init__(self, encoder_layer: nn.Module, num_layers: int,
+ aux_layers: Sequence[int]) -> None:
+ super().__init__()
+ self.layers = nn.ModuleList(
+ [copy.deepcopy(encoder_layer) for i in range(num_layers)]
+ )
self.aux_layers = set(aux_layers + [num_layers - 1])
assert num_layers - 1 not in aux_layers
self.num_layers = num_layers
diff --git a/egs/librispeech/ASR/transducer_stateless/decode.py b/egs/librispeech/ASR/transducer_stateless/decode.py
index e5987b75e..f23a3a300 100755
--- a/egs/librispeech/ASR/transducer_stateless/decode.py
+++ b/egs/librispeech/ASR/transducer_stateless/decode.py
@@ -33,6 +33,15 @@ Usage:
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
+
+(3) modified beam search
+./transducer_stateless/decode.py \
+ --epoch 14 \
+ --avg 7 \
+ --exp-dir ./transducer_stateless/exp \
+ --max-duration 100 \
+ --decoding-method modified_beam_search \
+ --beam-size 4
"""
@@ -46,7 +55,7 @@ import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
-from beam_search import beam_search, greedy_search
+from beam_search import beam_search, greedy_search, modified_beam_search
from conformer import Conformer
from decoder import Decoder
from joiner import Joiner
@@ -104,6 +113,7 @@ def get_parser():
help="""Possible values are:
- greedy_search
- beam_search
+ - modified_beam_search
""",
)
@@ -111,7 +121,8 @@ def get_parser():
"--beam-size",
type=int,
default=4,
- help="Used only when --decoding-method is beam_search",
+ help="""Used only when --decoding-method is
+ beam_search or modified_beam_search""",
)
parser.add_argument(
@@ -125,7 +136,8 @@ def get_parser():
"--max-sym-per-frame",
type=int,
default=3,
- help="Maximum number of symbols per frame",
+ help="""Maximum number of symbols per frame.
+ Used only when --decoding_method is greedy_search""",
)
return parser
@@ -256,6 +268,10 @@ def decode_one_batch(
hyp = beam_search(
model=model, encoder_out=encoder_out_i, beam=params.beam_size
)
+ elif params.decoding_method == "modified_beam_search":
+ hyp = modified_beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
@@ -389,11 +405,15 @@ def main():
params = get_params()
params.update(vars(args))
- assert params.decoding_method in ("greedy_search", "beam_search")
+ assert params.decoding_method in (
+ "greedy_search",
+ "beam_search",
+ "modified_beam_search",
+ )
params.res_dir = params.exp_dir / params.decoding_method
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
- if params.decoding_method == "beam_search":
+ if "beam_search" in params.decoding_method:
params.suffix += f"-beam-{params.beam_size}"
else:
params.suffix += f"-context-{params.context_size}"
diff --git a/egs/librispeech/ASR/transducer_stateless/decoder.py b/egs/librispeech/ASR/transducer_stateless/decoder.py
index 838b6794d..db51fb1cd 100644
--- a/egs/librispeech/ASR/transducer_stateless/decoder.py
+++ b/egs/librispeech/ASR/transducer_stateless/decoder.py
@@ -78,7 +78,7 @@ class Decoder(nn.Module):
"""
Args:
y:
- A 2-D tensor of shape (N, U) with blank prepended.
+ A 2-D tensor of shape (N, U).
need_pad:
True to left pad the input. Should be True during training.
False to not pad the input. Should be False during inference.
diff --git a/egs/librispeech/ASR/transducer_stateless/joiner.py b/egs/librispeech/ASR/transducer_stateless/joiner.py
index 8311461d3..241f405b6 100644
--- a/egs/librispeech/ASR/transducer_stateless/joiner.py
+++ b/egs/librispeech/ASR/transducer_stateless/joiner.py
@@ -39,6 +39,12 @@ class Joiner(nn.Module):
Output from the encoder. Its shape is (N, T, self.input_dim).
decoder_out:
Output from the decoder. Its shape is (N, U, self.input_dim).
+ encoder_out_len:
+ A 1-D tensor of shape (N,) containing valid number of frames
+ before padding in `encoder_out`.
+ decoder_out_len:
+ A 1-D tensor of shape (N,) containing valid number of frames
+ before padding in `decoder_out`.
Returns:
Return a tensor of shape (sum_all_TU, self.output_dim).
"""
@@ -49,6 +55,9 @@ class Joiner(nn.Module):
N = encoder_out.size(0)
+ encoder_out_len = encoder_out_len.tolist()
+ decoder_out_len = decoder_out_len.tolist()
+
encoder_out_list = [
encoder_out[i, : encoder_out_len[i], :] for i in range(N)
]
diff --git a/egs/librispeech/ASR/transducer_stateless/model.py b/egs/librispeech/ASR/transducer_stateless/model.py
index a45f0e295..fc16f2631 100644
--- a/egs/librispeech/ASR/transducer_stateless/model.py
+++ b/egs/librispeech/ASR/transducer_stateless/model.py
@@ -14,6 +14,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
+import random
+
import k2
import torch
import torch.nn as nn
@@ -62,6 +64,7 @@ class Transducer(nn.Module):
x: torch.Tensor,
x_lens: torch.Tensor,
y: k2.RaggedTensor,
+ modified_transducer_prob: float = 0.0,
warmup_mode: bool = False
) -> torch.Tensor:
"""
@@ -74,6 +77,8 @@ class Transducer(nn.Module):
y:
A ragged tensor with 2 axes [utt][label]. It contains labels of each
utterance.
+ modified_transducer_prob:
+ The probability to use modified transducer loss.
Returns:
Return the transducer loss.
"""
@@ -115,6 +120,16 @@ class Transducer(nn.Module):
# reference stage
import optimized_transducer
+ assert 0 <= modified_transducer_prob <= 1
+
+ if modified_transducer_prob == 0:
+ one_sym_per_frame = False
+ elif random.random() < modified_transducer_prob:
+ # random.random() returns a float in the range [0, 1)
+ one_sym_per_frame = True
+ else:
+ one_sym_per_frame = False
+
loss = optimized_transducer.transducer_loss(
logits=logits,
targets=y_padded,
@@ -122,6 +137,7 @@ class Transducer(nn.Module):
target_lengths=y_lens,
blank=blank_id,
reduction="sum",
+ one_sym_per_frame=one_sym_per_frame,
from_log_softmax=False,
)
diff --git a/egs/librispeech/ASR/transducer_stateless/pretrained.py b/egs/librispeech/ASR/transducer_stateless/pretrained.py
index c248de777..ad8d89918 100755
--- a/egs/librispeech/ASR/transducer_stateless/pretrained.py
+++ b/egs/librispeech/ASR/transducer_stateless/pretrained.py
@@ -22,10 +22,11 @@ Usage:
--checkpoint ./transducer_stateless/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \
+ --max-sym-per-frame 1 \
/path/to/foo.wav \
/path/to/bar.wav \
-(1) beam search
+(2) beam search
./transducer_stateless/pretrained.py \
--checkpoint ./transducer_stateless/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
@@ -34,6 +35,15 @@ Usage:
/path/to/foo.wav \
/path/to/bar.wav \
+(3) modified beam search
+./transducer_stateless/pretrained.py \
+ --checkpoint ./transducer_stateless/exp/pretrained.pt \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --method modified_beam_search \
+ --beam-size 4 \
+ /path/to/foo.wav \
+ /path/to/bar.wav \
+
You can also use `./transducer_stateless/exp/epoch-xx.pt`.
Note: ./transducer_stateless/exp/pretrained.pt is generated by
@@ -51,7 +61,7 @@ import sentencepiece as spm
import torch
import torch.nn as nn
import torchaudio
-from beam_search import beam_search, greedy_search
+from beam_search import beam_search, greedy_search, modified_beam_search
from conformer import Conformer
from decoder import Decoder
from joiner import Joiner
@@ -91,6 +101,7 @@ def get_parser():
help="""Possible values are:
- greedy_search
- beam_search
+ - modified_beam_search
""",
)
@@ -108,7 +119,7 @@ def get_parser():
"--beam-size",
type=int,
default=4,
- help="Used only when --method is beam_search",
+ help="Used only when --method is beam_search and modified_beam_search ",
)
parser.add_argument(
@@ -218,6 +229,7 @@ def read_sound_files(
return ans
+@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
@@ -301,6 +313,10 @@ def main():
hyp = beam_search(
model=model, encoder_out=encoder_out_i, beam=params.beam_size
)
+ elif params.method == "modified_beam_search":
+ hyp = modified_beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
else:
raise ValueError(f"Unsupported method: {params.method}")
diff --git a/egs/librispeech/ASR/transducer_stateless/test_compute_ali.py b/egs/librispeech/ASR/transducer_stateless/test_compute_ali.py
new file mode 100755
index 000000000..99d5b3788
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless/test_compute_ali.py
@@ -0,0 +1,167 @@
+#!/usr/bin/env python3
+# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+"""
+This script shows how to get word starting time
+from framewise token alignment.
+
+Usage:
+ ./transducer_stateless/compute_ali.py \
+ --exp-dir ./transducer_stateless/exp \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --epoch 20 \
+ --avg 10 \
+ --max-duration 300 \
+ --dataset train-clean-100 \
+ --out-dir data/ali
+
+And the you can run:
+
+ ./transducer_stateless/test_compute_ali.py \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --ali-dir data/ali \
+ --dataset train-clean-100
+"""
+import argparse
+import logging
+from pathlib import Path
+
+import sentencepiece as spm
+import torch
+from alignment import get_word_starting_frames
+from lhotse import CutSet, load_manifest
+from lhotse.dataset import K2SpeechRecognitionDataset, SingleCutSampler
+from lhotse.dataset.collation import collate_custom_field
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--bpe-model",
+ type=str,
+ default="data/lang_bpe_500/bpe.model",
+ help="Path to the BPE model",
+ )
+
+ parser.add_argument(
+ "--ali-dir",
+ type=Path,
+ default="./data/ali",
+ help="It specifies the directory where alignments can be found.",
+ )
+
+ parser.add_argument(
+ "--dataset",
+ type=str,
+ required=True,
+ help="""The name of the dataset:
+ Possible values are:
+ - test-clean.
+ - test-other
+ - train-clean-100
+ - train-clean-360
+ - train-other-500
+ - dev-clean
+ - dev-other
+ """,
+ )
+
+ return parser
+
+
+def main():
+ args = get_parser().parse_args()
+
+ sp = spm.SentencePieceProcessor()
+ sp.load(args.bpe_model)
+
+ cuts_json = args.ali_dir / f"cuts_{args.dataset}.json.gz"
+
+ logging.info(f"Loading {cuts_json}")
+ cuts = load_manifest(cuts_json)
+
+ sampler = SingleCutSampler(
+ cuts,
+ max_duration=30,
+ shuffle=False,
+ )
+
+ dataset = K2SpeechRecognitionDataset(return_cuts=True)
+
+ dl = torch.utils.data.DataLoader(
+ dataset,
+ sampler=sampler,
+ batch_size=None,
+ num_workers=1,
+ persistent_workers=False,
+ )
+
+ frame_shift = 10 # ms
+ subsampling_factor = 4
+
+ frame_shift_in_second = frame_shift * subsampling_factor / 1000.0
+
+ # key: cut.id
+ # value: a list of pairs (word, time_in_second)
+ word_starting_time_dict = {}
+ for batch in dl:
+ supervisions = batch["supervisions"]
+ cuts = supervisions["cut"]
+
+ token_alignment, token_alignment_length = collate_custom_field(
+ CutSet.from_cuts(cuts), "token_alignment"
+ )
+
+ for i in range(len(cuts)):
+ assert (
+ (cuts[i].features.num_frames - 1) // 2 - 1
+ ) // 2 == token_alignment_length[i]
+
+ word_starting_frames = get_word_starting_frames(
+ token_alignment[i, : token_alignment_length[i]].tolist(), sp=sp
+ )
+ word_starting_time = [
+ "{:.2f}".format(i * frame_shift_in_second)
+ for i in word_starting_frames
+ ]
+
+ words = supervisions["text"][i].split()
+
+ assert len(word_starting_frames) == len(words)
+ word_starting_time_dict[cuts[i].id] = list(
+ zip(words, word_starting_time)
+ )
+
+ # This is a demo script and we exit here after processing
+ # one batch.
+ # You can find word starting time in the dict "word_starting_time_dict"
+ for cut_id, word_time in word_starting_time_dict.items():
+ print(f"{cut_id}\n{word_time}\n")
+ break
+
+
+if __name__ == "__main__":
+ formatter = (
+ "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+ )
+
+ logging.basicConfig(format=formatter, level=logging.INFO)
+ main()
diff --git a/egs/librispeech/ASR/transducer_stateless/test_conformer.py b/egs/librispeech/ASR/transducer_stateless/test_conformer.py
new file mode 100755
index 000000000..d1350c8ab
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless/test_conformer.py
@@ -0,0 +1,51 @@
+#!/usr/bin/env python3
+# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey
+# Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+To run this file, do:
+
+ cd icefall/egs/librispeech/ASR
+ python ./transducer_stateless/test_conformer.py
+"""
+
+import torch
+from conformer import Conformer
+
+
+def test_conformer():
+ feature_dim = 50
+ c = Conformer(
+ num_features=feature_dim, output_dim=256, d_model=128, nhead=4
+ )
+ batch_size = 5
+ seq_len = 20
+ # Just make sure the forward pass runs.
+ logits, lengths = c(
+ torch.randn(batch_size, seq_len, feature_dim),
+ torch.full((batch_size,), seq_len, dtype=torch.int64),
+ )
+ print(logits.shape)
+ print(lengths.shape)
+
+
+def main():
+ test_conformer()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/transducer_stateless/test_joiner.py b/egs/librispeech/ASR/transducer_stateless/test_joiner.py
new file mode 100755
index 000000000..593577c7c
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless/test_joiner.py
@@ -0,0 +1,57 @@
+#!/usr/bin/env python3
+# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+To run this file, do:
+
+ cd icefall/egs/librispeech/ASR
+ python ./transducer_stateless/test_joiner.py
+"""
+
+import torch
+from joiner import Joiner
+
+
+def test_joiner():
+ device = torch.device("cpu")
+ input_dim = 3
+ output_dim = 5
+ joiner = Joiner(input_dim, output_dim)
+ joiner.to(device)
+
+ encoder_out = torch.rand(3, 10, input_dim, device=device)
+ decoder_out = torch.rand(3, 8, input_dim, device=device)
+
+ encoder_out_len = torch.tensor([5, 10, 3], device=device)
+ decoder_out_len = torch.tensor([6, 8, 7], device=device)
+
+ out = joiner(
+ encoder_out=encoder_out,
+ decoder_out=decoder_out,
+ encoder_out_len=encoder_out_len,
+ decoder_out_len=decoder_out_len,
+ )
+ assert out.size(0) == (encoder_out_len * decoder_out_len).sum()
+ assert out.size(1) == output_dim
+
+
+def main():
+ test_joiner()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/transducer_stateless/train.py b/egs/librispeech/ASR/transducer_stateless/train.py
index 1190522e7..239ec92da 100755
--- a/egs/librispeech/ASR/transducer_stateless/train.py
+++ b/egs/librispeech/ASR/transducer_stateless/train.py
@@ -57,6 +57,7 @@ from torch.nn.utils import clip_grad_norm_
from torch.utils.tensorboard import SummaryWriter
from transformer import Noam
+from icefall import diagnostics
from icefall.checkpoint import load_checkpoint
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
from icefall.dist import cleanup_dist, setup_dist
@@ -140,6 +141,24 @@ def get_parser():
"2 means tri-gram",
)
+ parser.add_argument(
+ "--modified-transducer-prob",
+ type=float,
+ default=0.25,
+ help="""The probability to use modified transducer loss.
+ In modified transduer, it limits the maximum number of symbols
+ per frame to 1. See also the option --max-sym-per-frame in
+ transducer_stateless/decode.py
+ """,
+ )
+
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
parser.add_argument(
"--print-diagnostics",
type=str2bool,
@@ -394,8 +413,13 @@ def compute_loss(
y = k2.RaggedTensor(y).to(device)
with torch.set_grad_enabled(is_training):
- loss = model(x=feature, x_lens=feature_lens, y=y,
- warmup_mode=is_warmup_mode)
+ loss = model(
+ x=feature,
+ x_lens=feature_lens,
+ y=y,
+ modified_transducer_prob=params.modified_transducer_prob,
+ warmup_mode=is_warmup_mode
+ )
assert loss.requires_grad == is_training
@@ -559,7 +583,7 @@ def run(rank, world_size, args):
params.valid_interval = 800
params.warm_step = 8000
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -613,10 +637,11 @@ def run(rank, world_size, args):
librispeech = LibriSpeechAsrDataModule(args)
if params.print_diagnostics:
- opts = diagnostics.TensorDiagnosticOptions(2**22) # allow 4 megabytes per sub-module
+ opts = diagnostics.TensorDiagnosticOptions(
+ 2 ** 22
+ ) # allow 4 megabytes per sub-module
diagnostic = diagnostics.attach_diagnostics(model, opts)
-
train_cuts = librispeech.train_clean_100_cuts()
if params.full_libri:
train_cuts += librispeech.train_clean_360_cuts()
@@ -654,6 +679,7 @@ def run(rank, world_size, args):
)
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
cur_lr = optimizer._rate
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/README.md b/egs/librispeech/ASR/transducer_stateless_multi_datasets/README.md
new file mode 100644
index 000000000..574fbf78e
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/README.md
@@ -0,0 +1,27 @@
+## Introduction
+
+The decoder, i.e., the prediction network, is from
+https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
+(Rnn-Transducer with Stateless Prediction Network)
+
+You can use the following command to start the training:
+
+```bash
+cd egs/librispeech/ASR
+./prepare.sh
+./prepare_giga_speech.sh
+
+export CUDA_VISIBLE_DEVICES="0,1"
+
+./transducer_stateless_multi_datasets/train.py \
+ --world-size 2 \
+ --num-epochs 60 \
+ --start-epoch 0 \
+ --exp-dir transducer_stateless_multi_datasets/exp-100 \
+ --full-libri 0 \
+ --max-duration 300 \
+ --lr-factor 1 \
+ --bpe-model data/lang_bpe_500/bpe.model \
+ --modified-transducer-prob 0.25
+ --giga-prob 0.2
+```
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/__init__.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/asr_datamodule.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/asr_datamodule.py
new file mode 100644
index 000000000..669ad1d1b
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/asr_datamodule.py
@@ -0,0 +1,316 @@
+# Copyright 2021 Piotr Żelasko
+# 2022 Xiaomi Corp. (authors: Fangjun Kuang
+# Mingshuang Luo)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+import inspect
+import logging
+from pathlib import Path
+from typing import Optional
+
+from lhotse import CutSet, Fbank, FbankConfig
+from lhotse.dataset import (
+ BucketingSampler,
+ CutMix,
+ DynamicBucketingSampler,
+ K2SpeechRecognitionDataset,
+ SpecAugment,
+)
+from lhotse.dataset.input_strategies import (
+ OnTheFlyFeatures,
+ PrecomputedFeatures,
+)
+from torch.utils.data import DataLoader
+
+from icefall.utils import str2bool
+
+
+class AsrDataModule:
+ def __init__(self, args: argparse.Namespace):
+ self.args = args
+
+ @classmethod
+ def add_arguments(cls, parser: argparse.ArgumentParser):
+ group = parser.add_argument_group(
+ title="ASR data related options",
+ description="These options are used for the preparation of "
+ "PyTorch DataLoaders from Lhotse CutSet's -- they control the "
+ "effective batch sizes, sampling strategies, applied data "
+ "augmentations, etc.",
+ )
+
+ group.add_argument(
+ "--max-duration",
+ type=int,
+ default=200.0,
+ help="Maximum pooled recordings duration (seconds) in a "
+ "single batch. You can reduce it if it causes CUDA OOM.",
+ )
+
+ group.add_argument(
+ "--bucketing-sampler",
+ type=str2bool,
+ default=True,
+ help="When enabled, the batches will come from buckets of "
+ "similar duration (saves padding frames).",
+ )
+
+ group.add_argument(
+ "--num-buckets",
+ type=int,
+ default=30,
+ help="The number of buckets for the BucketingSampler "
+ "and DynamicBucketingSampler."
+ "(you might want to increase it for larger datasets).",
+ )
+
+ group.add_argument(
+ "--shuffle",
+ type=str2bool,
+ default=True,
+ help="When enabled (=default), the examples will be "
+ "shuffled for each epoch.",
+ )
+
+ group.add_argument(
+ "--return-cuts",
+ type=str2bool,
+ default=True,
+ help="When enabled, each batch will have the "
+ "field: batch['supervisions']['cut'] with the cuts that "
+ "were used to construct it.",
+ )
+
+ group.add_argument(
+ "--num-workers",
+ type=int,
+ default=2,
+ help="The number of training dataloader workers that "
+ "collect the batches.",
+ )
+
+ group.add_argument(
+ "--enable-spec-aug",
+ type=str2bool,
+ default=True,
+ help="When enabled, use SpecAugment for training dataset.",
+ )
+
+ group.add_argument(
+ "--spec-aug-time-warp-factor",
+ type=int,
+ default=80,
+ help="Used only when --enable-spec-aug is True. "
+ "It specifies the factor for time warping in SpecAugment. "
+ "Larger values mean more warping. "
+ "A value less than 1 means to disable time warp.",
+ )
+
+ group.add_argument(
+ "--enable-musan",
+ type=str2bool,
+ default=True,
+ help="When enabled, select noise from MUSAN and mix it"
+ "with training dataset. ",
+ )
+
+ group.add_argument(
+ "--manifest-dir",
+ type=Path,
+ default=Path("data/fbank"),
+ help="Path to directory with train/valid/test cuts.",
+ )
+
+ group.add_argument(
+ "--on-the-fly-feats",
+ type=str2bool,
+ default=False,
+ help="When enabled, use on-the-fly cut mixing and feature "
+ "extraction. Will drop existing precomputed feature manifests "
+ "if available. Used only in dev/test CutSet",
+ )
+
+ def train_dataloaders(
+ self,
+ cuts_train: CutSet,
+ dynamic_bucketing: bool,
+ on_the_fly_feats: bool,
+ cuts_musan: Optional[CutSet] = None,
+ ) -> DataLoader:
+ """
+ Args:
+ cuts_train:
+ Cuts for training.
+ cuts_musan:
+ If not None, it is the cuts for mixing.
+ dynamic_bucketing:
+ True to use DynamicBucketingSampler;
+ False to use BucketingSampler.
+ on_the_fly_feats:
+ True to use OnTheFlyFeatures;
+ False to use PrecomputedFeatures.
+ """
+ transforms = []
+ if cuts_musan is not None:
+ logging.info("Enable MUSAN")
+ transforms.append(
+ CutMix(
+ cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
+ )
+ )
+ else:
+ logging.info("Disable MUSAN")
+
+ input_transforms = []
+
+ if self.args.enable_spec_aug:
+ logging.info("Enable SpecAugment")
+ logging.info(
+ f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
+ )
+ # Set the value of num_frame_masks according to Lhotse's version.
+ # In different Lhotse's versions, the default of num_frame_masks is
+ # different.
+ num_frame_masks = 10
+ num_frame_masks_parameter = inspect.signature(
+ SpecAugment.__init__
+ ).parameters["num_frame_masks"]
+ if num_frame_masks_parameter.default == 1:
+ num_frame_masks = 2
+ logging.info(f"Num frame mask: {num_frame_masks}")
+ input_transforms.append(
+ SpecAugment(
+ time_warp_factor=self.args.spec_aug_time_warp_factor,
+ num_frame_masks=num_frame_masks,
+ features_mask_size=27,
+ num_feature_masks=2,
+ frames_mask_size=100,
+ )
+ )
+ else:
+ logging.info("Disable SpecAugment")
+
+ logging.info("About to create train dataset")
+ train = K2SpeechRecognitionDataset(
+ cut_transforms=transforms,
+ input_transforms=input_transforms,
+ return_cuts=self.args.return_cuts,
+ )
+
+ # NOTE: the PerturbSpeed transform should be added only if we
+ # remove it from data prep stage.
+ # Add on-the-fly speed perturbation; since originally it would
+ # have increased epoch size by 3, we will apply prob 2/3 and use
+ # 3x more epochs.
+ # Speed perturbation probably should come first before
+ # concatenation, but in principle the transforms order doesn't have
+ # to be strict (e.g. could be randomized)
+ # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
+ # Drop feats to be on the safe side.
+ train = K2SpeechRecognitionDataset(
+ cut_transforms=transforms,
+ input_strategy=(
+ OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
+ if on_the_fly_feats
+ else PrecomputedFeatures()
+ ),
+ input_transforms=input_transforms,
+ return_cuts=self.args.return_cuts,
+ )
+
+ if dynamic_bucketing:
+ logging.info("Using DynamicBucketingSampler.")
+ train_sampler = DynamicBucketingSampler(
+ cuts_train,
+ max_duration=self.args.max_duration,
+ shuffle=self.args.shuffle,
+ num_buckets=self.args.num_buckets,
+ drop_last=True,
+ )
+ else:
+ logging.info("Using BucketingSampler.")
+ train_sampler = BucketingSampler(
+ cuts_train,
+ max_duration=self.args.max_duration,
+ shuffle=self.args.shuffle,
+ num_buckets=self.args.num_buckets,
+ bucket_method="equal_duration",
+ drop_last=True,
+ )
+
+ logging.info("About to create train dataloader")
+ train_dl = DataLoader(
+ train,
+ sampler=train_sampler,
+ batch_size=None,
+ num_workers=self.args.num_workers,
+ persistent_workers=False,
+ )
+ return train_dl
+
+ def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
+ transforms = []
+
+ logging.info("About to create dev dataset")
+ if self.args.on_the_fly_feats:
+ validate = K2SpeechRecognitionDataset(
+ cut_transforms=transforms,
+ input_strategy=OnTheFlyFeatures(
+ Fbank(FbankConfig(num_mel_bins=80))
+ ),
+ return_cuts=self.args.return_cuts,
+ )
+ else:
+ validate = K2SpeechRecognitionDataset(
+ cut_transforms=transforms,
+ return_cuts=self.args.return_cuts,
+ )
+ valid_sampler = BucketingSampler(
+ cuts_valid,
+ max_duration=self.args.max_duration,
+ shuffle=False,
+ )
+ logging.info("About to create dev dataloader")
+ valid_dl = DataLoader(
+ validate,
+ sampler=valid_sampler,
+ batch_size=None,
+ num_workers=2,
+ persistent_workers=False,
+ )
+
+ return valid_dl
+
+ def test_dataloaders(self, cuts: CutSet) -> DataLoader:
+ logging.debug("About to create test dataset")
+ test = K2SpeechRecognitionDataset(
+ input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
+ if self.args.on_the_fly_feats
+ else PrecomputedFeatures(),
+ return_cuts=self.args.return_cuts,
+ )
+ sampler = BucketingSampler(
+ cuts, max_duration=self.args.max_duration, shuffle=False
+ )
+ logging.debug("About to create test dataloader")
+ test_dl = DataLoader(
+ test,
+ batch_size=None,
+ sampler=sampler,
+ num_workers=self.args.num_workers,
+ )
+ return test_dl
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/beam_search.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/beam_search.py
new file mode 120000
index 000000000..08cb32ef7
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/beam_search.py
@@ -0,0 +1 @@
+../transducer_stateless/beam_search.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/conformer.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/conformer.py
new file mode 120000
index 000000000..70a7ddf11
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/conformer.py
@@ -0,0 +1 @@
+../transducer_stateless/conformer.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/decode.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/decode.py
new file mode 100755
index 000000000..136afe9c0
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/decode.py
@@ -0,0 +1,490 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+(1) greedy search
+./transducer_stateless_multi_datasets/decode.py \
+ --epoch 14 \
+ --avg 7 \
+ --exp-dir ./transducer_stateless_multi_datasets/exp \
+ --max-duration 100 \
+ --decoding-method greedy_search
+
+(2) beam search
+./transducer_stateless_multi_datasets/decode.py \
+ --epoch 14 \
+ --avg 7 \
+ --exp-dir ./transducer_stateless_multi_datasets/exp \
+ --max-duration 100 \
+ --decoding-method beam_search \
+ --beam-size 4
+"""
+
+
+import argparse
+import logging
+from collections import defaultdict
+from pathlib import Path
+from typing import Dict, List, Tuple
+
+import sentencepiece as spm
+import torch
+import torch.nn as nn
+from asr_datamodule import AsrDataModule
+from beam_search import beam_search, greedy_search, modified_beam_search
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from librispeech import LibriSpeech
+from model import Transducer
+
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.env import get_env_info
+from icefall.utils import (
+ AttributeDict,
+ setup_logger,
+ store_transcripts,
+ write_error_stats,
+)
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--epoch",
+ type=int,
+ default=29,
+ help="It specifies the checkpoint to use for decoding."
+ "Note: Epoch counts from 0.",
+ )
+ parser.add_argument(
+ "--avg",
+ type=int,
+ default=13,
+ help="Number of checkpoints to average. Automatically select "
+ "consecutive checkpoints before the checkpoint specified by "
+ "'--epoch'. ",
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=str,
+ default="transducer_stateless_multi_datasets/exp",
+ help="The experiment dir",
+ )
+
+ parser.add_argument(
+ "--bpe-model",
+ type=str,
+ default="data/lang_bpe_500/bpe.model",
+ help="Path to the BPE model",
+ )
+
+ parser.add_argument(
+ "--decoding-method",
+ type=str,
+ default="greedy_search",
+ help="""Possible values are:
+ - greedy_search
+ - beam_search
+ - modified_beam_search
+ """,
+ )
+
+ parser.add_argument(
+ "--beam-size",
+ type=int,
+ default=4,
+ help="""Used only when --decoding-method is
+ beam_search or modified_beam_search""",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+ parser.add_argument(
+ "--max-sym-per-frame",
+ type=int,
+ default=3,
+ help="""Maximum number of symbols per frame.
+ Used only when --decoding_method is greedy_search""",
+ )
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ params = AttributeDict(
+ {
+ # parameters for conformer
+ "feature_dim": 80,
+ "encoder_out_dim": 512,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ "env_info": get_env_info(),
+ }
+ )
+ return params
+
+
+def get_encoder_model(params: AttributeDict):
+ # TODO: We can add an option to switch between Conformer and Transformer
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.encoder_out_dim,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict):
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.encoder_out_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict):
+ joiner = Joiner(
+ input_dim=params.encoder_out_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict):
+ encoder = get_encoder_model(params)
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ )
+
+ return model
+
+
+def decode_one_batch(
+ params: AttributeDict,
+ model: nn.Module,
+ sp: spm.SentencePieceProcessor,
+ batch: dict,
+) -> Dict[str, List[List[str]]]:
+ """Decode one batch and return the result in a dict. The dict has the
+ following format:
+
+ - key: It indicates the setting used for decoding. For example,
+ if greedy_search is used, it would be "greedy_search"
+ If beam search with a beam size of 7 is used, it would be
+ "beam_7"
+ - value: It contains the decoding result. `len(value)` equals to
+ batch size. `value[i]` is the decoding result for the i-th
+ utterance in the given batch.
+ Args:
+ params:
+ It's the return value of :func:`get_params`.
+ model:
+ The neural model.
+ sp:
+ The BPE model.
+ batch:
+ It is the return value from iterating
+ `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
+ for the format of the `batch`.
+ Returns:
+ Return the decoding result. See above description for the format of
+ the returned dict.
+ """
+ device = model.device
+ feature = batch["inputs"]
+ assert feature.ndim == 3
+
+ feature = feature.to(device)
+ # at entry, feature is (N, T, C)
+
+ supervisions = batch["supervisions"]
+ feature_lens = supervisions["num_frames"].to(device)
+
+ encoder_out, encoder_out_lens = model.encoder(
+ x=feature, x_lens=feature_lens
+ )
+ hyps = []
+ batch_size = encoder_out.size(0)
+
+ for i in range(batch_size):
+ # fmt: off
+ encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+ # fmt: on
+ if params.decoding_method == "greedy_search":
+ hyp = greedy_search(
+ model=model,
+ encoder_out=encoder_out_i,
+ max_sym_per_frame=params.max_sym_per_frame,
+ )
+ elif params.decoding_method == "beam_search":
+ hyp = beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
+ elif params.decoding_method == "modified_beam_search":
+ hyp = modified_beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
+ else:
+ raise ValueError(
+ f"Unsupported decoding method: {params.decoding_method}"
+ )
+ hyps.append(sp.decode(hyp).split())
+
+ if params.decoding_method == "greedy_search":
+ return {"greedy_search": hyps}
+ else:
+ return {f"beam_{params.beam_size}": hyps}
+
+
+def decode_dataset(
+ dl: torch.utils.data.DataLoader,
+ params: AttributeDict,
+ model: nn.Module,
+ sp: spm.SentencePieceProcessor,
+) -> Dict[str, List[Tuple[List[str], List[str]]]]:
+ """Decode dataset.
+
+ Args:
+ dl:
+ PyTorch's dataloader containing the dataset to decode.
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The neural model.
+ sp:
+ The BPE model.
+ Returns:
+ Return a dict, whose key may be "greedy_search" if greedy search
+ is used, or it may be "beam_7" if beam size of 7 is used.
+ Its value is a list of tuples. Each tuple contains two elements:
+ The first is the reference transcript, and the second is the
+ predicted result.
+ """
+ num_cuts = 0
+
+ try:
+ num_batches = len(dl)
+ except TypeError:
+ num_batches = "?"
+
+ if params.decoding_method == "greedy_search":
+ log_interval = 100
+ else:
+ log_interval = 2
+
+ results = defaultdict(list)
+ for batch_idx, batch in enumerate(dl):
+ texts = batch["supervisions"]["text"]
+
+ hyps_dict = decode_one_batch(
+ params=params,
+ model=model,
+ sp=sp,
+ batch=batch,
+ )
+
+ for name, hyps in hyps_dict.items():
+ this_batch = []
+ assert len(hyps) == len(texts)
+ for hyp_words, ref_text in zip(hyps, texts):
+ ref_words = ref_text.split()
+ this_batch.append((ref_words, hyp_words))
+
+ results[name].extend(this_batch)
+
+ num_cuts += len(texts)
+
+ if batch_idx % log_interval == 0:
+ batch_str = f"{batch_idx}/{num_batches}"
+
+ logging.info(
+ f"batch {batch_str}, cuts processed until now is {num_cuts}"
+ )
+ return results
+
+
+def save_results(
+ params: AttributeDict,
+ test_set_name: str,
+ results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
+):
+ test_set_wers = dict()
+ for key, results in results_dict.items():
+ recog_path = (
+ params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
+ )
+ store_transcripts(filename=recog_path, texts=results)
+ logging.info(f"The transcripts are stored in {recog_path}")
+
+ # The following prints out WERs, per-word error statistics and aligned
+ # ref/hyp pairs.
+ errs_filename = (
+ params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
+ )
+ with open(errs_filename, "w") as f:
+ wer = write_error_stats(
+ f, f"{test_set_name}-{key}", results, enable_log=True
+ )
+ test_set_wers[key] = wer
+
+ logging.info("Wrote detailed error stats to {}".format(errs_filename))
+
+ test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
+ errs_info = (
+ params.res_dir
+ / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
+ )
+ with open(errs_info, "w") as f:
+ print("settings\tWER", file=f)
+ for key, val in test_set_wers:
+ print("{}\t{}".format(key, val), file=f)
+
+ s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
+ note = "\tbest for {}".format(test_set_name)
+ for key, val in test_set_wers:
+ s += "{}\t{}{}\n".format(key, val, note)
+ note = ""
+ logging.info(s)
+
+
+@torch.no_grad()
+def main():
+ parser = get_parser()
+ AsrDataModule.add_arguments(parser)
+ args = parser.parse_args()
+ args.exp_dir = Path(args.exp_dir)
+
+ params = get_params()
+ params.update(vars(args))
+
+ assert params.decoding_method in (
+ "greedy_search",
+ "beam_search",
+ "modified_beam_search",
+ )
+ params.res_dir = params.exp_dir / params.decoding_method
+
+ params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
+ if "beam_search" in params.decoding_method:
+ params.suffix += f"-beam-{params.beam_size}"
+ else:
+ params.suffix += f"-context-{params.context_size}"
+ params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
+
+ setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
+ logging.info("Decoding started")
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"Device: {device}")
+
+ sp = spm.SentencePieceProcessor()
+ sp.load(params.bpe_model)
+
+ # is defined in local/train_bpe_model.py
+ params.blank_id = sp.piece_to_id("")
+ params.vocab_size = sp.get_piece_size()
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ if params.avg == 1:
+ load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+ else:
+ start = params.epoch - params.avg + 1
+ filenames = []
+ for i in range(start, params.epoch + 1):
+ if start >= 0:
+ filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+ logging.info(f"averaging {filenames}")
+ model.to(device)
+ model.load_state_dict(
+ average_checkpoints(filenames, device=device), strict=False
+ )
+
+ model.to(device)
+ model.eval()
+ model.device = device
+
+ num_param = sum([p.numel() for p in model.parameters()])
+ logging.info(f"Number of model parameters: {num_param}")
+
+ asr_datamodule = AsrDataModule(args)
+ librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
+
+ test_clean_cuts = librispeech.test_clean_cuts()
+ test_other_cuts = librispeech.test_other_cuts()
+
+ test_clean_dl = asr_datamodule.test_dataloaders(test_clean_cuts)
+ test_other_dl = asr_datamodule.test_dataloaders(test_other_cuts)
+
+ test_sets = ["test-clean", "test-other"]
+ test_dl = [test_clean_dl, test_other_dl]
+
+ for test_set, test_dl in zip(test_sets, test_dl):
+ results_dict = decode_dataset(
+ dl=test_dl,
+ params=params,
+ model=model,
+ sp=sp,
+ )
+
+ save_results(
+ params=params,
+ test_set_name=test_set,
+ results_dict=results_dict,
+ )
+
+ logging.info("Done!")
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/decoder.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/decoder.py
new file mode 120000
index 000000000..eada91097
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/decoder.py
@@ -0,0 +1 @@
+../transducer_stateless/decoder.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/encoder_interface.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/encoder_interface.py
new file mode 120000
index 000000000..aa5d0217a
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/encoder_interface.py
@@ -0,0 +1 @@
+../transducer_stateless/encoder_interface.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/export.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/export.py
new file mode 100755
index 000000000..7d14d011d
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/export.py
@@ -0,0 +1,252 @@
+#!/usr/bin/env python3
+#
+# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# This script converts several saved checkpoints
+# to a single one using model averaging.
+"""
+Usage:
+./transducer_stateless_multi_datasets/export.py \
+ --exp-dir ./transducer_stateless_multi_datasets/exp \
+ --bpe-model data/lang_bpe_500/bpe.model \
+ --epoch 20 \
+ --avg 10
+
+It will generate a file exp_dir/pretrained.pt
+
+To use the generated file with `transducer_stateless_multi_datasets/decode.py`,
+you can do::
+
+ cd /path/to/exp_dir
+ ln -s pretrained.pt epoch-9999.pt
+
+ cd /path/to/egs/librispeech/ASR
+ ./transducer_stateless_multi_datasets/decode.py \
+ --exp-dir ./transducer_stateless_multi_datasets/exp \
+ --epoch 9999 \
+ --avg 1 \
+ --max-duration 1 \
+ --bpe-model data/lang_bpe_500/bpe.model
+"""
+
+import argparse
+import logging
+from pathlib import Path
+
+import sentencepiece as spm
+import torch
+import torch.nn as nn
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from model import Transducer
+
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.env import get_env_info
+from icefall.utils import AttributeDict, str2bool
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--epoch",
+ type=int,
+ default=20,
+ help="It specifies the checkpoint to use for decoding."
+ "Note: Epoch counts from 0.",
+ )
+
+ parser.add_argument(
+ "--avg",
+ type=int,
+ default=10,
+ help="Number of checkpoints to average. Automatically select "
+ "consecutive checkpoints before the checkpoint specified by "
+ "'--epoch'. ",
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=str,
+ default="transducer_stateless_multi_datasets/exp",
+ help="""It specifies the directory where all training related
+ files, e.g., checkpoints, log, etc, are saved
+ """,
+ )
+
+ parser.add_argument(
+ "--bpe-model",
+ type=str,
+ default="data/lang_bpe_500/bpe.model",
+ help="Path to the BPE model",
+ )
+
+ parser.add_argument(
+ "--jit",
+ type=str2bool,
+ default=False,
+ help="""True to save a model after applying torch.jit.script.
+ """,
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ params = AttributeDict(
+ {
+ # parameters for conformer
+ "feature_dim": 80,
+ "encoder_out_dim": 512,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ "env_info": get_env_info(),
+ }
+ )
+ return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.encoder_out_dim,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.encoder_out_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+ joiner = Joiner(
+ input_dim=params.encoder_out_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+ encoder = get_encoder_model(params)
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ )
+ return model
+
+
+def main():
+ args = get_parser().parse_args()
+ args.exp_dir = Path(args.exp_dir)
+
+ assert args.jit is False, "Support torchscript will be added later"
+
+ params = get_params()
+ params.update(vars(args))
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"device: {device}")
+
+ sp = spm.SentencePieceProcessor()
+ sp.load(params.bpe_model)
+
+ # is defined in local/train_bpe_model.py
+ params.blank_id = sp.piece_to_id("")
+ params.vocab_size = sp.get_piece_size()
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ model.to(device)
+
+ if params.avg == 1:
+ load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+ else:
+ start = params.epoch - params.avg + 1
+ filenames = []
+ for i in range(start, params.epoch + 1):
+ if start >= 0:
+ filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+ logging.info(f"averaging {filenames}")
+ model.to(device)
+ model.load_state_dict(
+ average_checkpoints(filenames, device=device), strict=False
+ )
+
+ model.eval()
+
+ model.to("cpu")
+ model.eval()
+
+ if params.jit:
+ logging.info("Using torch.jit.script")
+ model = torch.jit.script(model)
+ filename = params.exp_dir / "cpu_jit.pt"
+ model.save(str(filename))
+ logging.info(f"Saved to {filename}")
+ else:
+ logging.info("Not using torch.jit.script")
+ # Save it using a format so that it can be loaded
+ # by :func:`load_checkpoint`
+ filename = params.exp_dir / "pretrained.pt"
+ torch.save({"model": model.state_dict()}, str(filename))
+ logging.info(f"Saved to {filename}")
+
+
+if __name__ == "__main__":
+ formatter = (
+ "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+ )
+
+ logging.basicConfig(format=formatter, level=logging.INFO)
+ main()
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/gigaspeech.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/gigaspeech.py
new file mode 100644
index 000000000..286771d7d
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/gigaspeech.py
@@ -0,0 +1,75 @@
+# Copyright 2021 Piotr Żelasko
+# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import logging
+from pathlib import Path
+
+from lhotse import CutSet, load_manifest
+
+
+class GigaSpeech:
+ def __init__(self, manifest_dir: str):
+ """
+ Args:
+ manifest_dir:
+ It is expected to contain the following files::
+
+ - cuts_XL_raw.jsonl.gz
+ - cuts_L_raw.jsonl.gz
+ - cuts_M_raw.jsonl.gz
+ - cuts_S_raw.jsonl.gz
+ - cuts_XS_raw.jsonl.gz
+ - cuts_DEV_raw.jsonl.gz
+ - cuts_TEST_raw.jsonl.gz
+ """
+ self.manifest_dir = Path(manifest_dir)
+
+ def train_XL_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_XL_raw.jsonl.gz"
+ logging.info(f"About to get train-XL cuts from {f}")
+ return CutSet.from_jsonl_lazy(f)
+
+ def train_L_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_L_raw.jsonl.gz"
+ logging.info(f"About to get train-L cuts from {f}")
+ return CutSet.from_jsonl_lazy(f)
+
+ def train_M_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_M_raw.jsonl.gz"
+ logging.info(f"About to get train-M cuts from {f}")
+ return CutSet.from_jsonl_lazy(f)
+
+ def train_S_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_S_raw.jsonl.gz"
+ logging.info(f"About to get train-S cuts from {f}")
+ return CutSet.from_jsonl_lazy(f)
+
+ def train_XS_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_XS_raw.jsonl.gz"
+ logging.info(f"About to get train-XS cuts from {f}")
+ return CutSet.from_jsonl_lazy(f)
+
+ def test_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_TEST.jsonl.gz"
+ logging.info(f"About to get TEST cuts from {f}")
+ return load_manifest(f)
+
+ def dev_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_DEV.jsonl.gz"
+ logging.info(f"About to get DEV cuts from {f}")
+ return load_manifest(f)
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/joiner.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/joiner.py
new file mode 120000
index 000000000..cfc14f0a9
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/joiner.py
@@ -0,0 +1 @@
+../transducer_stateless/joiner.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/librispeech.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/librispeech.py
new file mode 100644
index 000000000..00b7c8334
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/librispeech.py
@@ -0,0 +1,74 @@
+# Copyright 2021 Piotr Żelasko
+# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import logging
+from pathlib import Path
+
+from lhotse import CutSet, load_manifest
+
+
+class LibriSpeech:
+ def __init__(self, manifest_dir: str):
+ """
+ Args:
+ manifest_dir:
+ It is expected to contain the following files::
+
+ - cuts_dev-clean.json.gz
+ - cuts_dev-other.json.gz
+ - cuts_test-clean.json.gz
+ - cuts_test-other.json.gz
+ - cuts_train-clean-100.json.gz
+ - cuts_train-clean-360.json.gz
+ - cuts_train-other-500.json.gz
+ """
+ self.manifest_dir = Path(manifest_dir)
+
+ def train_clean_100_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_train-clean-100.json.gz"
+ logging.info(f"About to get train-clean-100 cuts from {f}")
+ return load_manifest(f)
+
+ def train_clean_360_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_train-clean-360.json.gz"
+ logging.info(f"About to get train-clean-360 cuts from {f}")
+ return load_manifest(f)
+
+ def train_other_500_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_train-other-500.json.gz"
+ logging.info(f"About to get train-other-500 cuts from {f}")
+ return load_manifest(f)
+
+ def test_clean_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_test-clean.json.gz"
+ logging.info(f"About to get test-clean cuts from {f}")
+ return load_manifest(f)
+
+ def test_other_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_test-other.json.gz"
+ logging.info(f"About to get test-other cuts from {f}")
+ return load_manifest(f)
+
+ def dev_clean_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_dev-clean.json.gz"
+ logging.info(f"About to get dev-clean cuts from {f}")
+ return load_manifest(f)
+
+ def dev_other_cuts(self) -> CutSet:
+ f = self.manifest_dir / "cuts_dev-other.json.gz"
+ logging.info(f"About to get dev-other cuts from {f}")
+ return load_manifest(f)
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/model.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/model.py
new file mode 100644
index 000000000..8141f9a83
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/model.py
@@ -0,0 +1,168 @@
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import random
+from typing import Optional
+
+import k2
+import torch
+import torch.nn as nn
+from encoder_interface import EncoderInterface
+
+from icefall.utils import add_sos
+
+
+class Transducer(nn.Module):
+ """It implements https://arxiv.org/pdf/1211.3711.pdf
+ "Sequence Transduction with Recurrent Neural Networks"
+ """
+
+ def __init__(
+ self,
+ encoder: EncoderInterface,
+ decoder: nn.Module,
+ joiner: nn.Module,
+ decoder_giga: Optional[nn.Module] = None,
+ joiner_giga: Optional[nn.Module] = None,
+ ):
+ """
+ Args:
+ encoder:
+ It is the transcription network in the paper. Its accepts
+ two inputs: `x` of (N, T, C) and `x_lens` of shape (N,).
+ It returns two tensors: `logits` of shape (N, T, C) and
+ `logit_lens` of shape (N,).
+ decoder:
+ It is the prediction network in the paper. Its input shape
+ is (N, U) and its output shape is (N, U, C). It should contain
+ one attribute: `blank_id`.
+ joiner:
+ It has two inputs with shapes: (N, T, C) and (N, U, C). Its
+ output shape is (N, T, U, C). Note that its output contains
+ unnormalized probs, i.e., not processed by log-softmax.
+ decoder_giga:
+ The decoder for the GigaSpeech dataset.
+ joiner_giga:
+ The joiner for the GigaSpeech dataset.
+ """
+ super().__init__()
+ assert isinstance(encoder, EncoderInterface), type(encoder)
+ assert hasattr(decoder, "blank_id")
+
+ if decoder_giga is not None:
+ assert hasattr(decoder_giga, "blank_id")
+
+ self.encoder = encoder
+
+ self.decoder = decoder
+ self.joiner = joiner
+
+ self.decoder_giga = decoder_giga
+ self.joiner_giga = joiner_giga
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ x_lens: torch.Tensor,
+ y: k2.RaggedTensor,
+ libri: bool = True,
+ modified_transducer_prob: float = 0.0,
+ ) -> torch.Tensor:
+ """
+ Args:
+ x:
+ A 3-D tensor of shape (N, T, C).
+ x_lens:
+ A 1-D tensor of shape (N,). It contains the number of frames in `x`
+ before padding.
+ y:
+ A ragged tensor with 2 axes [utt][label]. It contains labels of each
+ utterance.
+ libri:
+ True to use the decoder and joiner for the LibriSpeech dataset.
+ False to use the decoder and joiner for the GigaSpeech dataset.
+ modified_transducer_prob:
+ The probability to use modified transducer loss.
+ Returns:
+ Return the transducer loss.
+ """
+ assert x.ndim == 3, x.shape
+ assert x_lens.ndim == 1, x_lens.shape
+ assert y.num_axes == 2, y.num_axes
+
+ assert x.size(0) == x_lens.size(0) == y.dim0
+
+ encoder_out, x_lens = self.encoder(x, x_lens)
+ assert torch.all(x_lens > 0)
+
+ # Now for the decoder, i.e., the prediction network
+ row_splits = y.shape.row_splits(1)
+ y_lens = row_splits[1:] - row_splits[:-1]
+
+ blank_id = self.decoder.blank_id
+ sos_y = add_sos(y, sos_id=blank_id)
+
+ sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
+ sos_y_padded = sos_y_padded.to(torch.int64)
+
+ if libri:
+ decoder = self.decoder
+ joiner = self.joiner
+ else:
+ decoder = self.decoder_giga
+ joiner = self.joiner_giga
+
+ decoder_out = decoder(sos_y_padded)
+
+ # +1 here since a blank is prepended to each utterance.
+ logits = joiner(
+ encoder_out=encoder_out,
+ decoder_out=decoder_out,
+ encoder_out_len=x_lens,
+ decoder_out_len=y_lens + 1,
+ )
+
+ # rnnt_loss requires 0 padded targets
+ # Note: y does not start with SOS
+ y_padded = y.pad(mode="constant", padding_value=0)
+
+ # We don't put this `import` at the beginning of the file
+ # as it is required only in the training, not during the
+ # reference stage
+ import optimized_transducer
+
+ assert 0 <= modified_transducer_prob <= 1
+
+ if modified_transducer_prob == 0:
+ one_sym_per_frame = False
+ elif random.random() < modified_transducer_prob:
+ # random.random() returns a float in the range [0, 1)
+ one_sym_per_frame = True
+ else:
+ one_sym_per_frame = False
+
+ loss = optimized_transducer.transducer_loss(
+ logits=logits,
+ targets=y_padded,
+ logit_lengths=x_lens,
+ target_lengths=y_lens,
+ blank=blank_id,
+ reduction="sum",
+ one_sym_per_frame=one_sym_per_frame,
+ from_log_softmax=False,
+ )
+
+ return loss
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/pretrained.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/pretrained.py
new file mode 100755
index 000000000..5ba3acea1
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/pretrained.py
@@ -0,0 +1,340 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+
+(1) greedy search
+./transducer_stateless_multi_datasets/pretrained.py \
+ --checkpoint ./transducer_stateless_multi_datasets/exp/pretrained.pt \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --method greedy_search \
+ --max-sym-per-frame 1 \
+ /path/to/foo.wav \
+ /path/to/bar.wav
+
+(2) beam search
+./transducer_stateless_multi_datasets/pretrained.py \
+ --checkpoint ./transducer_stateless_multi_datasets/exp/pretrained.pt \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --method beam_search \
+ --beam-size 4 \
+ /path/to/foo.wav \
+ /path/to/bar.wav
+
+(3) modified beam search
+./transducer_stateless_multi_datasets/pretrained.py \
+ --checkpoint ./transducer_stateless_multi_datasets/exp/pretrained.pt \
+ --bpe-model ./data/lang_bpe_500/bpe.model \
+ --method modified_beam_search \
+ --beam-size 4 \
+ /path/to/foo.wav \
+ /path/to/bar.wav
+
+You can also use `./transducer_stateless_multi_datasets/exp/epoch-xx.pt`.
+
+Note: ./transducer_stateless_multi_datasets/exp/pretrained.pt is generated by
+./transducer_stateless_multi_datasets/export.py
+"""
+
+
+import argparse
+import logging
+import math
+from typing import List
+
+import kaldifeat
+import sentencepiece as spm
+import torch
+import torch.nn as nn
+import torchaudio
+from beam_search import beam_search, greedy_search, modified_beam_search
+from conformer import Conformer
+from decoder import Decoder
+from joiner import Joiner
+from model import Transducer
+from torch.nn.utils.rnn import pad_sequence
+
+from icefall.env import get_env_info
+from icefall.utils import AttributeDict
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--checkpoint",
+ type=str,
+ required=True,
+ help="Path to the checkpoint. "
+ "The checkpoint is assumed to be saved by "
+ "icefall.checkpoint.save_checkpoint().",
+ )
+
+ parser.add_argument(
+ "--bpe-model",
+ type=str,
+ help="""Path to bpe.model.
+ Used only when method is ctc-decoding.
+ """,
+ )
+
+ parser.add_argument(
+ "--method",
+ type=str,
+ default="greedy_search",
+ help="""Possible values are:
+ - greedy_search
+ - beam_search
+ - modified_beam_search
+ """,
+ )
+
+ parser.add_argument(
+ "sound_files",
+ type=str,
+ nargs="+",
+ help="The input sound file(s) to transcribe. "
+ "Supported formats are those supported by torchaudio.load(). "
+ "For example, wav and flac are supported. "
+ "The sample rate has to be 16kHz.",
+ )
+
+ parser.add_argument(
+ "--beam-size",
+ type=int,
+ default=4,
+ help="Used only when --method is beam_search and modified_beam_search ",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+ parser.add_argument(
+ "--max-sym-per-frame",
+ type=int,
+ default=3,
+ help="""Maximum number of symbols per frame. Used only when
+ --method is greedy_search.
+ """,
+ )
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ params = AttributeDict(
+ {
+ "sample_rate": 16000,
+ # parameters for conformer
+ "feature_dim": 80,
+ "encoder_out_dim": 512,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ "env_info": get_env_info(),
+ }
+ )
+ return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.encoder_out_dim,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.encoder_out_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+ joiner = Joiner(
+ input_dim=params.encoder_out_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+ encoder = get_encoder_model(params)
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ )
+ return model
+
+
+def read_sound_files(
+ filenames: List[str], expected_sample_rate: float
+) -> List[torch.Tensor]:
+ """Read a list of sound files into a list 1-D float32 torch tensors.
+ Args:
+ filenames:
+ A list of sound filenames.
+ expected_sample_rate:
+ The expected sample rate of the sound files.
+ Returns:
+ Return a list of 1-D float32 torch tensors.
+ """
+ ans = []
+ for f in filenames:
+ wave, sample_rate = torchaudio.load(f)
+ assert sample_rate == expected_sample_rate, (
+ f"expected sample rate: {expected_sample_rate}. "
+ f"Given: {sample_rate}"
+ )
+ # We use only the first channel
+ ans.append(wave[0])
+ return ans
+
+
+@torch.no_grad()
+def main():
+ parser = get_parser()
+ args = parser.parse_args()
+
+ params = get_params()
+
+ params.update(vars(args))
+
+ sp = spm.SentencePieceProcessor()
+ sp.load(params.bpe_model)
+
+ # is defined in local/train_bpe_model.py
+ params.blank_id = sp.piece_to_id("")
+ params.vocab_size = sp.get_piece_size()
+
+ logging.info(f"{params}")
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"device: {device}")
+
+ logging.info("Creating model")
+ model = get_transducer_model(params)
+
+ checkpoint = torch.load(args.checkpoint, map_location="cpu")
+ model.load_state_dict(checkpoint["model"], strict=False)
+ model.to(device)
+ model.eval()
+ model.device = device
+
+ logging.info("Constructing Fbank computer")
+ opts = kaldifeat.FbankOptions()
+ opts.device = device
+ opts.frame_opts.dither = 0
+ opts.frame_opts.snip_edges = False
+ opts.frame_opts.samp_freq = params.sample_rate
+ opts.mel_opts.num_bins = params.feature_dim
+
+ fbank = kaldifeat.Fbank(opts)
+
+ logging.info(f"Reading sound files: {params.sound_files}")
+ waves = read_sound_files(
+ filenames=params.sound_files, expected_sample_rate=params.sample_rate
+ )
+ waves = [w.to(device) for w in waves]
+
+ logging.info("Decoding started")
+ features = fbank(waves)
+ feature_lengths = [f.size(0) for f in features]
+
+ features = pad_sequence(
+ features, batch_first=True, padding_value=math.log(1e-10)
+ )
+
+ feature_lengths = torch.tensor(feature_lengths, device=device)
+
+ with torch.no_grad():
+ encoder_out, encoder_out_lens = model.encoder(
+ x=features, x_lens=feature_lengths
+ )
+
+ num_waves = encoder_out.size(0)
+ hyps = []
+ msg = f"Using {params.method}"
+ if params.method == "beam_search":
+ msg += f" with beam size {params.beam_size}"
+ logging.info(msg)
+ for i in range(num_waves):
+ # fmt: off
+ encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
+ # fmt: on
+ if params.method == "greedy_search":
+ hyp = greedy_search(
+ model=model,
+ encoder_out=encoder_out_i,
+ max_sym_per_frame=params.max_sym_per_frame,
+ )
+ elif params.method == "beam_search":
+ hyp = beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
+ elif params.method == "modified_beam_search":
+ hyp = modified_beam_search(
+ model=model, encoder_out=encoder_out_i, beam=params.beam_size
+ )
+ else:
+ raise ValueError(f"Unsupported method: {params.method}")
+
+ hyps.append(sp.decode(hyp).split())
+
+ s = "\n"
+ for filename, hyp in zip(params.sound_files, hyps):
+ words = " ".join(hyp)
+ s += f"{filename}:\n{words}\n\n"
+ logging.info(s)
+
+ logging.info("Decoding Done")
+
+
+if __name__ == "__main__":
+ formatter = (
+ "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
+ )
+
+ logging.basicConfig(format=formatter, level=logging.INFO)
+ main()
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/subsampling.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/subsampling.py
new file mode 120000
index 000000000..73068da26
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/subsampling.py
@@ -0,0 +1 @@
+../transducer/subsampling.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/test_asr_datamodule.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/test_asr_datamodule.py
new file mode 100755
index 000000000..e1833b841
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/test_asr_datamodule.py
@@ -0,0 +1,102 @@
+#!/usr/bin/env python3
+# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+To run this file, do:
+
+ cd icefall/egs/librispeech/ASR
+ python ./transducer_stateless_multi_datasets/test_asr_datamodule.py
+"""
+
+import argparse
+import random
+from pathlib import Path
+
+from asr_datamodule import AsrDataModule
+from gigaspeech import GigaSpeech
+from lhotse import load_manifest
+from librispeech import LibriSpeech
+
+
+def test_dataset():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+ AsrDataModule.add_arguments(parser)
+ args = parser.parse_args()
+ print(args)
+
+ if args.enable_musan:
+ cuts_musan = load_manifest(
+ Path(args.manifest_dir) / "cuts_musan.json.gz"
+ )
+ else:
+ cuts_musan = None
+
+ librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
+ gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir)
+
+ train_clean_100 = librispeech.train_clean_100_cuts()
+ train_S = gigaspeech.train_S_cuts()
+
+ asr_datamodule = AsrDataModule(args)
+
+ libri_train_dl = asr_datamodule.train_dataloaders(
+ train_clean_100,
+ dynamic_bucketing=False,
+ on_the_fly_feats=False,
+ cuts_musan=cuts_musan,
+ )
+
+ giga_train_dl = asr_datamodule.train_dataloaders(
+ train_S,
+ dynamic_bucketing=True,
+ on_the_fly_feats=True,
+ cuts_musan=cuts_musan,
+ )
+
+ seed = 20220216
+ rng = random.Random(seed)
+
+ for epoch in range(2):
+ print("epoch", epoch)
+ batch_idx = 0
+ libri_train_dl.sampler.set_epoch(epoch)
+ giga_train_dl.sampler.set_epoch(epoch)
+
+ iter_libri = iter(libri_train_dl)
+ iter_giga = iter(giga_train_dl)
+ while True:
+ idx = rng.choices((0, 1), weights=[0.8, 0.2], k=1)[0]
+ dl = iter_libri if idx == 0 else iter_giga
+ batch_idx += 1
+
+ print("dl idx", idx, "batch_idx", batch_idx)
+ try:
+ _ = next(dl)
+ except StopIteration:
+ print("dl idx", idx)
+ print("Go to the next epoch")
+ break
+
+
+def main():
+ test_dataset()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/test_decoder.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/test_decoder.py
new file mode 100755
index 000000000..9ee197ee8
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/test_decoder.py
@@ -0,0 +1,58 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+To run this file, do:
+
+ cd icefall/egs/librispeech/ASR
+ python ./transducer_stateless_multi_datasets/test_decoder.py
+"""
+
+import torch
+from decoder import Decoder
+
+
+def test_decoder():
+ vocab_size = 3
+ blank_id = 0
+ embedding_dim = 128
+ context_size = 4
+
+ decoder = Decoder(
+ vocab_size=vocab_size,
+ embedding_dim=embedding_dim,
+ blank_id=blank_id,
+ context_size=context_size,
+ )
+ N = 100
+ U = 20
+ x = torch.randint(low=0, high=vocab_size, size=(N, U))
+ y = decoder(x)
+ assert y.shape == (N, U, embedding_dim)
+
+ # for inference
+ x = torch.randint(low=0, high=vocab_size, size=(N, context_size))
+ y = decoder(x, need_pad=False)
+ assert y.shape == (N, 1, embedding_dim)
+
+
+def main():
+ test_decoder()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py
new file mode 100755
index 000000000..105f82417
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py
@@ -0,0 +1,913 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
+# Wei Kang
+# Mingshuang Luo)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Usage:
+
+cd egs/librispeech/ASR/
+./prepare.sh
+./prepare_giga_speech.sh
+
+# 100-hours
+export CUDA_VISIBLE_DEVICES="0,1"
+
+./transducer_stateless_multi_datasets/train.py \
+ --world-size 2 \
+ --num-epochs 60 \
+ --start-epoch 0 \
+ --exp-dir transducer_stateless_multi_datasets/exp-100-2 \
+ --full-libri 0 \
+ --max-duration 300 \
+ --lr-factor 1 \
+ --bpe-model data/lang_bpe_500/bpe.model \
+ --modified-transducer-prob 0.25
+ --giga-prob 0.2
+
+# 960-hours
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+
+./transducer_stateless_multi_datasets/train.py \
+ --world-size 4 \
+ --num-epochs 40 \
+ --start-epoch 0 \
+ --exp-dir transducer_stateless_multi_datasets/exp-full-2 \
+ --full-libri 1 \
+ --max-duration 300 \
+ --lr-factor 5 \
+ --bpe-model data/lang_bpe_500/bpe.model \
+ --modified-transducer-prob 0.25 \
+ --giga-prob 0.2
+"""
+
+
+import argparse
+import logging
+import random
+from pathlib import Path
+from shutil import copyfile
+from typing import Optional, Tuple
+
+import k2
+import sentencepiece as spm
+import torch
+import torch.multiprocessing as mp
+import torch.nn as nn
+from asr_datamodule import AsrDataModule
+from conformer import Conformer
+from decoder import Decoder
+from gigaspeech import GigaSpeech
+from joiner import Joiner
+from lhotse import CutSet, load_manifest
+from lhotse.cut import Cut
+from lhotse.utils import fix_random_seed
+from librispeech import LibriSpeech
+from model import Transducer
+from torch import Tensor
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.nn.utils import clip_grad_norm_
+from torch.utils.tensorboard import SummaryWriter
+from transformer import Noam
+
+from icefall.checkpoint import load_checkpoint
+from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
+from icefall.dist import cleanup_dist, setup_dist
+from icefall.env import get_env_info
+from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--world-size",
+ type=int,
+ default=1,
+ help="Number of GPUs for DDP training.",
+ )
+
+ parser.add_argument(
+ "--master-port",
+ type=int,
+ default=12354,
+ help="Master port to use for DDP training.",
+ )
+
+ parser.add_argument(
+ "--full-libri",
+ type=str2bool,
+ default=True,
+ help="When enabled, use 960h LibriSpeech. "
+ "Otherwise, use 100h subset.",
+ )
+
+ parser.add_argument(
+ "--tensorboard",
+ type=str2bool,
+ default=True,
+ help="Should various information be logged in tensorboard.",
+ )
+
+ parser.add_argument(
+ "--num-epochs",
+ type=int,
+ default=30,
+ help="Number of epochs to train.",
+ )
+
+ parser.add_argument(
+ "--start-epoch",
+ type=int,
+ default=0,
+ help="""Resume training from from this epoch.
+ If it is positive, it will load checkpoint from
+ transducer_stateless/exp/epoch-{start_epoch-1}.pt
+ """,
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=str,
+ default="transducer_stateless_multi_datasets/exp",
+ help="""The experiment dir.
+ It specifies the directory where all training related
+ files, e.g., checkpoints, log, etc, are saved
+ """,
+ )
+
+ parser.add_argument(
+ "--bpe-model",
+ type=str,
+ default="data/lang_bpe_500/bpe.model",
+ help="Path to the BPE model",
+ )
+
+ parser.add_argument(
+ "--lr-factor",
+ type=float,
+ default=5.0,
+ help="The lr_factor for Noam optimizer",
+ )
+
+ parser.add_argument(
+ "--context-size",
+ type=int,
+ default=2,
+ help="The context size in the decoder. 1 means bigram; "
+ "2 means tri-gram",
+ )
+
+ parser.add_argument(
+ "--modified-transducer-prob",
+ type=float,
+ default=0.25,
+ help="""The probability to use modified transducer loss.
+ In modified transduer, it limits the maximum number of symbols
+ per frame to 1. See also the option --max-sym-per-frame in
+ transducer_stateless/decode.py
+ """,
+ )
+
+ parser.add_argument(
+ "--giga-prob",
+ type=float,
+ default=0.2,
+ help="The probability to select a batch from the GigaSpeech dataset",
+ )
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ """Return a dict containing training parameters.
+
+ All training related parameters that are not passed from the commandline
+ are saved in the variable `params`.
+
+ Commandline options are merged into `params` after they are parsed, so
+ you can also access them via `params`.
+
+ Explanation of options saved in `params`:
+
+ - best_train_loss: Best training loss so far. It is used to select
+ the model that has the lowest training loss. It is
+ updated during the training.
+
+ - best_valid_loss: Best validation loss so far. It is used to select
+ the model that has the lowest validation loss. It is
+ updated during the training.
+
+ - best_train_epoch: It is the epoch that has the best training loss.
+
+ - best_valid_epoch: It is the epoch that has the best validation loss.
+
+ - batch_idx_train: Used to writing statistics to tensorboard. It
+ contains number of batches trained so far across
+ epochs.
+
+ - log_interval: Print training loss if batch_idx % log_interval` is 0
+
+ - reset_interval: Reset statistics if batch_idx % reset_interval is 0
+
+ - valid_interval: Run validation if batch_idx % valid_interval is 0
+
+ - feature_dim: The model input dim. It has to match the one used
+ in computing features.
+
+ - subsampling_factor: The subsampling factor for the model.
+
+ - attention_dim: Hidden dim for multi-head attention model.
+
+ - num_decoder_layers: Number of decoder layer of transformer decoder.
+
+ - warm_step: The warm_step for Noam optimizer.
+ """
+ params = AttributeDict(
+ {
+ "best_train_loss": float("inf"),
+ "best_valid_loss": float("inf"),
+ "best_train_epoch": -1,
+ "best_valid_epoch": -1,
+ "batch_idx_train": 0,
+ "log_interval": 50,
+ "reset_interval": 200,
+ "valid_interval": 3000, # For the 100h subset, use 800
+ # parameters for conformer
+ "feature_dim": 80,
+ "encoder_out_dim": 512,
+ "subsampling_factor": 4,
+ "attention_dim": 512,
+ "nhead": 8,
+ "dim_feedforward": 2048,
+ "num_encoder_layers": 12,
+ "vgg_frontend": False,
+ # parameters for Noam
+ "warm_step": 80000, # For the 100h subset, use 8k
+ "env_info": get_env_info(),
+ }
+ )
+
+ return params
+
+
+def get_encoder_model(params: AttributeDict) -> nn.Module:
+ # TODO: We can add an option to switch between Conformer and Transformer
+ encoder = Conformer(
+ num_features=params.feature_dim,
+ output_dim=params.encoder_out_dim,
+ subsampling_factor=params.subsampling_factor,
+ d_model=params.attention_dim,
+ nhead=params.nhead,
+ dim_feedforward=params.dim_feedforward,
+ num_encoder_layers=params.num_encoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ )
+ return encoder
+
+
+def get_decoder_model(params: AttributeDict) -> nn.Module:
+ decoder = Decoder(
+ vocab_size=params.vocab_size,
+ embedding_dim=params.encoder_out_dim,
+ blank_id=params.blank_id,
+ context_size=params.context_size,
+ )
+ return decoder
+
+
+def get_joiner_model(params: AttributeDict) -> nn.Module:
+ joiner = Joiner(
+ input_dim=params.encoder_out_dim,
+ output_dim=params.vocab_size,
+ )
+ return joiner
+
+
+def get_transducer_model(params: AttributeDict) -> nn.Module:
+ encoder = get_encoder_model(params)
+
+ decoder = get_decoder_model(params)
+ joiner = get_joiner_model(params)
+
+ decoder_giga = get_decoder_model(params)
+ joiner_giga = get_joiner_model(params)
+
+ model = Transducer(
+ encoder=encoder,
+ decoder=decoder,
+ joiner=joiner,
+ decoder_giga=decoder_giga,
+ joiner_giga=joiner_giga,
+ )
+ return model
+
+
+def load_checkpoint_if_available(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: Optional[torch.optim.Optimizer] = None,
+ scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+) -> None:
+ """Load checkpoint from file.
+
+ If params.start_epoch is positive, it will load the checkpoint from
+ `params.start_epoch - 1`. Otherwise, this function does nothing.
+
+ Apart from loading state dict for `model`, `optimizer` and `scheduler`,
+ it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
+ and `best_valid_loss` in `params`.
+
+ Args:
+ params:
+ The return value of :func:`get_params`.
+ model:
+ The training model.
+ optimizer:
+ The optimizer that we are using.
+ scheduler:
+ The learning rate scheduler we are using.
+ Returns:
+ Return None.
+ """
+ if params.start_epoch <= 0:
+ return
+
+ filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
+ saved_params = load_checkpoint(
+ filename,
+ model=model,
+ optimizer=optimizer,
+ scheduler=scheduler,
+ )
+
+ keys = [
+ "best_train_epoch",
+ "best_valid_epoch",
+ "batch_idx_train",
+ "best_train_loss",
+ "best_valid_loss",
+ ]
+ for k in keys:
+ params[k] = saved_params[k]
+
+ return saved_params
+
+
+def save_checkpoint(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: Optional[torch.optim.Optimizer] = None,
+ scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+ rank: int = 0,
+) -> None:
+ """Save model, optimizer, scheduler and training stats to file.
+
+ Args:
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The training model.
+ """
+ if rank != 0:
+ return
+ filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
+ save_checkpoint_impl(
+ filename=filename,
+ model=model,
+ params=params,
+ optimizer=optimizer,
+ scheduler=scheduler,
+ rank=rank,
+ )
+
+ if params.best_train_epoch == params.cur_epoch:
+ best_train_filename = params.exp_dir / "best-train-loss.pt"
+ copyfile(src=filename, dst=best_train_filename)
+
+ if params.best_valid_epoch == params.cur_epoch:
+ best_valid_filename = params.exp_dir / "best-valid-loss.pt"
+ copyfile(src=filename, dst=best_valid_filename)
+
+
+def is_libri(c: Cut) -> bool:
+ """Return True if this cut is from the LibriSpeech dataset.
+
+ Note:
+ During data preparation, we set the custom field in
+ the supervision segment of GigaSpeech to dict(origin='giga')
+ See ../local/preprocess_gigaspeech.py.
+ """
+ return c.supervisions[0].custom is None
+
+
+def compute_loss(
+ params: AttributeDict,
+ model: nn.Module,
+ sp: spm.SentencePieceProcessor,
+ batch: dict,
+ is_training: bool,
+) -> Tuple[Tensor, MetricsTracker]:
+ """
+ Compute CTC loss given the model and its inputs.
+
+ Args:
+ params:
+ Parameters for training. See :func:`get_params`.
+ model:
+ The model for training. It is an instance of Conformer in our case.
+ batch:
+ A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+ for the content in it.
+ is_training:
+ True for training. False for validation. When it is True, this
+ function enables autograd during computation; when it is False, it
+ disables autograd.
+ """
+ device = model.device
+ feature = batch["inputs"]
+ # at entry, feature is (N, T, C)
+ assert feature.ndim == 3
+ feature = feature.to(device)
+
+ supervisions = batch["supervisions"]
+ feature_lens = supervisions["num_frames"].to(device)
+
+ libri = is_libri(supervisions["cut"][0])
+
+ texts = batch["supervisions"]["text"]
+ y = sp.encode(texts, out_type=int)
+ y = k2.RaggedTensor(y).to(device)
+
+ with torch.set_grad_enabled(is_training):
+ loss = model(
+ x=feature,
+ x_lens=feature_lens,
+ y=y,
+ libri=libri,
+ modified_transducer_prob=params.modified_transducer_prob,
+ )
+
+ assert loss.requires_grad == is_training
+
+ info = MetricsTracker()
+ info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
+
+ # Note: We use reduction=sum while computing the loss.
+ info["loss"] = loss.detach().cpu().item()
+
+ return loss, info
+
+
+def compute_validation_loss(
+ params: AttributeDict,
+ model: nn.Module,
+ sp: spm.SentencePieceProcessor,
+ valid_dl: torch.utils.data.DataLoader,
+ world_size: int = 1,
+) -> MetricsTracker:
+ """Run the validation process."""
+ model.eval()
+
+ tot_loss = MetricsTracker()
+
+ for batch_idx, batch in enumerate(valid_dl):
+ loss, loss_info = compute_loss(
+ params=params,
+ model=model,
+ sp=sp,
+ batch=batch,
+ is_training=False,
+ )
+ assert loss.requires_grad is False
+ tot_loss = tot_loss + loss_info
+
+ if world_size > 1:
+ tot_loss.reduce(loss.device)
+
+ loss_value = tot_loss["loss"] / tot_loss["frames"]
+ if loss_value < params.best_valid_loss:
+ params.best_valid_epoch = params.cur_epoch
+ params.best_valid_loss = loss_value
+
+ return tot_loss
+
+
+def train_one_epoch(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: torch.optim.Optimizer,
+ sp: spm.SentencePieceProcessor,
+ train_dl: torch.utils.data.DataLoader,
+ giga_train_dl: torch.utils.data.DataLoader,
+ valid_dl: torch.utils.data.DataLoader,
+ rng: random.Random,
+ tb_writer: Optional[SummaryWriter] = None,
+ world_size: int = 1,
+) -> None:
+ """Train the model for one epoch.
+
+ The training loss from the mean of all frames is saved in
+ `params.train_loss`. It runs the validation process every
+ `params.valid_interval` batches.
+
+ Args:
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The model for training.
+ optimizer:
+ The optimizer we are using.
+ train_dl:
+ Dataloader for the training dataset.
+ valid_dl:
+ Dataloader for the validation dataset.
+ rng:
+ For select which dataset to use.
+ tb_writer:
+ Writer to write log messages to tensorboard.
+ world_size:
+ Number of nodes in DDP training. If it is 1, DDP is disabled.
+ """
+ model.train()
+
+ libri_tot_loss = MetricsTracker()
+ giga_tot_loss = MetricsTracker()
+ tot_loss = MetricsTracker()
+
+ # index 0: for LibriSpeech
+ # index 1: for GigaSpeech
+ # This sets the probabilities for choosing which datasets
+ dl_weights = [1 - params.giga_prob, params.giga_prob]
+
+ iter_libri = iter(train_dl)
+ iter_giga = iter(giga_train_dl)
+
+ batch_idx = 0
+
+ while True:
+ idx = rng.choices((0, 1), weights=dl_weights, k=1)[0]
+ dl = iter_libri if idx == 0 else iter_giga
+
+ try:
+ batch = next(dl)
+ except StopIteration:
+ break
+
+ batch_idx += 1
+
+ params.batch_idx_train += 1
+ batch_size = len(batch["supervisions"]["text"])
+
+ libri = is_libri(batch["supervisions"]["cut"][0])
+
+ loss, loss_info = compute_loss(
+ params=params,
+ model=model,
+ sp=sp,
+ batch=batch,
+ is_training=True,
+ )
+ # summary stats
+ tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
+ if libri:
+ libri_tot_loss = (
+ libri_tot_loss * (1 - 1 / params.reset_interval)
+ ) + loss_info
+ prefix = "libri" # for logging only
+ else:
+ giga_tot_loss = (
+ giga_tot_loss * (1 - 1 / params.reset_interval)
+ ) + loss_info
+ prefix = "giga"
+
+ # NOTE: We use reduction==sum and loss is computed over utterances
+ # in the batch and there is no normalization to it so far.
+
+ optimizer.zero_grad()
+ loss.backward()
+ clip_grad_norm_(model.parameters(), 5.0, 2.0)
+ optimizer.step()
+
+ if batch_idx % params.log_interval == 0:
+ logging.info(
+ f"Epoch {params.cur_epoch}, "
+ f"batch {batch_idx}, {prefix}_loss[{loss_info}], "
+ f"tot_loss[{tot_loss}], "
+ f"libri_tot_loss[{libri_tot_loss}], "
+ f"giga_tot_loss[{giga_tot_loss}], "
+ f"batch size: {batch_size}"
+ )
+
+ if batch_idx % params.log_interval == 0:
+ if tb_writer is not None:
+ loss_info.write_summary(
+ tb_writer,
+ f"train/current_{prefix}_",
+ params.batch_idx_train,
+ )
+ tot_loss.write_summary(
+ tb_writer, "train/tot_", params.batch_idx_train
+ )
+ libri_tot_loss.write_summary(
+ tb_writer, "train/libri_tot_", params.batch_idx_train
+ )
+ giga_tot_loss.write_summary(
+ tb_writer, "train/giga_tot_", params.batch_idx_train
+ )
+
+ if batch_idx > 0 and batch_idx % params.valid_interval == 0:
+ logging.info("Computing validation loss")
+ valid_info = compute_validation_loss(
+ params=params,
+ model=model,
+ sp=sp,
+ valid_dl=valid_dl,
+ world_size=world_size,
+ )
+ model.train()
+ logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
+ if tb_writer is not None:
+ valid_info.write_summary(
+ tb_writer, "train/valid_", params.batch_idx_train
+ )
+
+ loss_value = tot_loss["loss"] / tot_loss["frames"]
+ params.train_loss = loss_value
+ if params.train_loss < params.best_train_loss:
+ params.best_train_epoch = params.cur_epoch
+ params.best_train_loss = params.train_loss
+
+
+def filter_short_and_long_utterances(cuts: CutSet) -> CutSet:
+ def remove_short_and_long_utt(c: Cut):
+ # Keep only utterances with duration between 1 second and 20 seconds
+ return 1.0 <= c.duration <= 20.0
+
+ num_in_total = len(cuts)
+ cuts = cuts.filter(remove_short_and_long_utt)
+
+ num_left = len(cuts)
+ num_removed = num_in_total - num_left
+ removed_percent = num_removed / num_in_total * 100
+
+ logging.info(f"Before removing short and long utterances: {num_in_total}")
+ logging.info(f"After removing short and long utterances: {num_left}")
+ logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
+
+ return cuts
+
+
+def run(rank, world_size, args):
+ """
+ Args:
+ rank:
+ It is a value between 0 and `world_size-1`, which is
+ passed automatically by `mp.spawn()` in :func:`main`.
+ The node with rank 0 is responsible for saving checkpoint.
+ world_size:
+ Number of GPUs for DDP training.
+ args:
+ The return value of get_parser().parse_args()
+ """
+ params = get_params()
+ params.update(vars(args))
+ if params.full_libri is False:
+ params.valid_interval = 800
+ params.warm_step = 8000
+
+ seed = 42
+ fix_random_seed(seed)
+ rng = random.Random(seed)
+ if world_size > 1:
+ setup_dist(rank, world_size, params.master_port)
+
+ setup_logger(f"{params.exp_dir}/log/log-train")
+ logging.info("Training started")
+
+ if args.tensorboard and rank == 0:
+ tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
+ else:
+ tb_writer = None
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", rank)
+ logging.info(f"Device: {device}")
+
+ sp = spm.SentencePieceProcessor()
+ sp.load(params.bpe_model)
+
+ # is defined in local/train_bpe_model.py
+ params.blank_id = sp.piece_to_id("")
+ params.vocab_size = sp.get_piece_size()
+
+ logging.info(params)
+
+ logging.info("About to create model")
+ model = get_transducer_model(params)
+
+ num_param = sum([p.numel() for p in model.parameters()])
+ logging.info(f"Number of model parameters: {num_param}")
+
+ checkpoints = load_checkpoint_if_available(params=params, model=model)
+
+ model.to(device)
+ if world_size > 1:
+ logging.info("Using DDP")
+ model = DDP(model, device_ids=[rank], find_unused_parameters=True)
+ model.device = device
+
+ optimizer = Noam(
+ model.parameters(),
+ model_size=params.attention_dim,
+ factor=params.lr_factor,
+ warm_step=params.warm_step,
+ )
+
+ if checkpoints and "optimizer" in checkpoints:
+ logging.info("Loading optimizer state dict")
+ optimizer.load_state_dict(checkpoints["optimizer"])
+
+ librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
+
+ train_cuts = librispeech.train_clean_100_cuts()
+ if params.full_libri:
+ train_cuts += librispeech.train_clean_360_cuts()
+ train_cuts += librispeech.train_other_500_cuts()
+
+ train_cuts = filter_short_and_long_utterances(train_cuts)
+
+ gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir)
+ # XL 10k hours
+ # L 2.5k hours
+ # M 1k hours
+ # S 250 hours
+ # XS 10 hours
+ # DEV 12 hours
+ # Test 40 hours
+ if params.full_libri:
+ logging.info("Using the L subset of GigaSpeech (2.5k hours)")
+ train_giga_cuts = gigaspeech.train_L_cuts()
+ else:
+ logging.info("Using the S subset of GigaSpeech (250 hours)")
+ train_giga_cuts = gigaspeech.train_S_cuts()
+
+ train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts)
+
+ if args.enable_musan:
+ cuts_musan = load_manifest(
+ Path(args.manifest_dir) / "cuts_musan.json.gz"
+ )
+ else:
+ cuts_musan = None
+
+ asr_datamodule = AsrDataModule(args)
+
+ train_dl = asr_datamodule.train_dataloaders(
+ train_cuts,
+ dynamic_bucketing=False,
+ on_the_fly_feats=False,
+ cuts_musan=cuts_musan,
+ )
+
+ giga_train_dl = asr_datamodule.train_dataloaders(
+ train_giga_cuts,
+ dynamic_bucketing=True,
+ on_the_fly_feats=True,
+ cuts_musan=cuts_musan,
+ )
+
+ valid_cuts = librispeech.dev_clean_cuts()
+ valid_cuts += librispeech.dev_other_cuts()
+ valid_dl = asr_datamodule.valid_dataloaders(valid_cuts)
+
+ # It's time consuming to include `giga_train_dl` here
+ # for dl in [train_dl, giga_train_dl]:
+ for dl in [train_dl]:
+ scan_pessimistic_batches_for_oom(
+ model=model,
+ train_dl=dl,
+ optimizer=optimizer,
+ sp=sp,
+ params=params,
+ )
+
+ for epoch in range(params.start_epoch, params.num_epochs):
+ train_dl.sampler.set_epoch(epoch)
+ giga_train_dl.sampler.set_epoch(epoch)
+
+ cur_lr = optimizer._rate
+ if tb_writer is not None:
+ tb_writer.add_scalar(
+ "train/learning_rate", cur_lr, params.batch_idx_train
+ )
+ tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
+
+ if rank == 0:
+ logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
+
+ params.cur_epoch = epoch
+
+ train_one_epoch(
+ params=params,
+ model=model,
+ optimizer=optimizer,
+ sp=sp,
+ train_dl=train_dl,
+ giga_train_dl=giga_train_dl,
+ valid_dl=valid_dl,
+ rng=rng,
+ tb_writer=tb_writer,
+ world_size=world_size,
+ )
+
+ save_checkpoint(
+ params=params,
+ model=model,
+ optimizer=optimizer,
+ rank=rank,
+ )
+
+ logging.info("Done!")
+
+ if world_size > 1:
+ torch.distributed.barrier()
+ cleanup_dist()
+
+
+def scan_pessimistic_batches_for_oom(
+ model: nn.Module,
+ train_dl: torch.utils.data.DataLoader,
+ optimizer: torch.optim.Optimizer,
+ sp: spm.SentencePieceProcessor,
+ params: AttributeDict,
+):
+ from lhotse.dataset import find_pessimistic_batches
+
+ logging.info(
+ "Sanity check -- see if any of the batches in epoch 0 would cause OOM."
+ )
+ batches, crit_values = find_pessimistic_batches(train_dl.sampler)
+ for criterion, cuts in batches.items():
+ batch = train_dl.dataset[cuts]
+ try:
+ optimizer.zero_grad()
+ loss, _ = compute_loss(
+ params=params,
+ model=model,
+ sp=sp,
+ batch=batch,
+ is_training=True,
+ )
+ loss.backward()
+ clip_grad_norm_(model.parameters(), 5.0, 2.0)
+ optimizer.step()
+ except RuntimeError as e:
+ if "CUDA out of memory" in str(e):
+ logging.error(
+ "Your GPU ran out of memory with the current "
+ "max_duration setting. We recommend decreasing "
+ "max_duration and trying again.\n"
+ f"Failing criterion: {criterion} "
+ f"(={crit_values[criterion]}) ..."
+ )
+ raise
+
+
+def main():
+ parser = get_parser()
+ AsrDataModule.add_arguments(parser)
+ args = parser.parse_args()
+ args.exp_dir = Path(args.exp_dir)
+
+ assert 0 <= args.giga_prob < 1, args.giga_prob
+
+ world_size = args.world_size
+ assert world_size >= 1
+ if world_size > 1:
+ mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
+ else:
+ run(rank=0, world_size=1, args=args)
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/transducer_stateless_multi_datasets/transformer.py b/egs/librispeech/ASR/transducer_stateless_multi_datasets/transformer.py
new file mode 120000
index 000000000..e43f520f9
--- /dev/null
+++ b/egs/librispeech/ASR/transducer_stateless_multi_datasets/transformer.py
@@ -0,0 +1 @@
+../transducer_stateless/transformer.py
\ No newline at end of file
diff --git a/egs/timit/ASR/README.md b/egs/timit/ASR/README.md
index 47103bc45..f10bfccfd 100644
--- a/egs/timit/ASR/README.md
+++ b/egs/timit/ASR/README.md
@@ -1,3 +1,3 @@
-Please refer to
-for how to run models in this recipe.
\ No newline at end of file
+Please refer to
+for how to run models in this recipe.
diff --git a/egs/timit/ASR/local/compute_fbank_musan.py b/egs/timit/ASR/local/compute_fbank_musan.py
deleted file mode 100644
index d44524e70..000000000
--- a/egs/timit/ASR/local/compute_fbank_musan.py
+++ /dev/null
@@ -1,97 +0,0 @@
-#!/usr/bin/env python3
-# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
-#
-# See ../../../../LICENSE for clarification regarding multiple authors
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-"""
-This file computes fbank features of the musan dataset.
-It looks for manifests in the directory data/manifests.
-
-The generated fbank features are saved in data/fbank.
-"""
-
-import logging
-import os
-from pathlib import Path
-
-import torch
-from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer, combine
-from lhotse.recipes.utils import read_manifests_if_cached
-
-from icefall.utils import get_executor
-
-# Torch's multithreaded behavior needs to be disabled or
-# it wastes a lot of CPU and slow things down.
-# Do this outside of main() in case it needs to take effect
-# even when we are not invoking the main (e.g. when spawning subprocesses).
-torch.set_num_threads(1)
-torch.set_num_interop_threads(1)
-
-
-def compute_fbank_musan():
- src_dir = Path("data/manifests")
- output_dir = Path("data/fbank")
- num_jobs = min(15, os.cpu_count())
- num_mel_bins = 80
-
- dataset_parts = (
- "music",
- "speech",
- "noise",
- )
- manifests = read_manifests_if_cached(
- dataset_parts=dataset_parts, output_dir=src_dir
- )
- assert manifests is not None
-
- musan_cuts_path = output_dir / "cuts_musan.json.gz"
-
- if musan_cuts_path.is_file():
- logging.info(f"{musan_cuts_path} already exists - skipping")
- return
-
- logging.info("Extracting features for Musan")
-
- extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
-
- with get_executor() as ex: # Initialize the executor only once.
- # create chunks of Musan with duration 5 - 10 seconds
- musan_cuts = (
- CutSet.from_manifests(
- recordings=combine(
- part["recordings"] for part in manifests.values()
- )
- )
- .cut_into_windows(10.0)
- .filter(lambda c: c.duration > 5)
- .compute_and_store_features(
- extractor=extractor,
- storage_path=f"{output_dir}/feats_musan",
- num_jobs=num_jobs if ex is None else 80,
- executor=ex,
- storage_type=LilcomHdf5Writer,
- )
- )
- musan_cuts.to_json(musan_cuts_path)
-
-
-if __name__ == "__main__":
- formatter = (
- "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
- )
-
- logging.basicConfig(format=formatter, level=logging.INFO)
- compute_fbank_musan()
diff --git a/egs/timit/ASR/local/compute_fbank_musan.py b/egs/timit/ASR/local/compute_fbank_musan.py
new file mode 120000
index 000000000..5833f2484
--- /dev/null
+++ b/egs/timit/ASR/local/compute_fbank_musan.py
@@ -0,0 +1 @@
+../../../librispeech/ASR/local/compute_fbank_musan.py
\ No newline at end of file
diff --git a/egs/timit/ASR/shared b/egs/timit/ASR/shared
deleted file mode 100644
index 4c5e91438..000000000
--- a/egs/timit/ASR/shared
+++ /dev/null
@@ -1 +0,0 @@
-../../../icefall/shared/
\ No newline at end of file
diff --git a/egs/timit/ASR/shared b/egs/timit/ASR/shared
new file mode 120000
index 000000000..4cbd91a7e
--- /dev/null
+++ b/egs/timit/ASR/shared
@@ -0,0 +1 @@
+../../../icefall/shared
\ No newline at end of file
diff --git a/egs/timit/ASR/tdnn_ligru_ctc/asr_datamodule.py b/egs/timit/ASR/tdnn_ligru_ctc/asr_datamodule.py
deleted file mode 100644
index 8b20d345d..000000000
--- a/egs/timit/ASR/tdnn_ligru_ctc/asr_datamodule.py
+++ /dev/null
@@ -1,330 +0,0 @@
-# Copyright 2021 Piotr Żelasko
-# 2021 Xiaomi Corp. (authors: Mingshuang Luo)
-#
-# See ../../../../LICENSE for clarification regarding multiple authors
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import argparse
-import logging
-from functools import lru_cache
-from pathlib import Path
-from typing import List, Union
-
-from lhotse import CutSet, Fbank, FbankConfig, load_manifest
-from lhotse.dataset import (
- BucketingSampler,
- CutConcatenate,
- CutMix,
- K2SpeechRecognitionDataset,
- PrecomputedFeatures,
- SingleCutSampler,
- SpecAugment,
-)
-from lhotse.dataset.input_strategies import OnTheFlyFeatures
-from torch.utils.data import DataLoader
-
-from icefall.dataset.datamodule import DataModule
-from icefall.utils import str2bool
-
-
-class TimitAsrDataModule(DataModule):
- """
- DataModule for k2 ASR experiments.
- It assumes there is always one train and valid dataloader,
- but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
- and test-other).
-
- It contains all the common data pipeline modules used in ASR
- experiments, e.g.:
- - dynamic batch size,
- - bucketing samplers,
- - cut concatenation,
- - augmentation,
- - on-the-fly feature extraction
-
- This class should be derived for specific corpora used in ASR tasks.
- """
-
- @classmethod
- def add_arguments(cls, parser: argparse.ArgumentParser):
- super().add_arguments(parser)
- group = parser.add_argument_group(
- title="ASR data related options",
- description="These options are used for the preparation of "
- "PyTorch DataLoaders from Lhotse CutSet's -- they control the "
- "effective batch sizes, sampling strategies, applied data "
- "augmentations, etc.",
- )
- group.add_argument(
- "--feature-dir",
- type=Path,
- default=Path("data/fbank"),
- help="Path to directory with train/valid/test cuts.",
- )
- group.add_argument(
- "--max-duration",
- type=int,
- default=200.0,
- help="Maximum pooled recordings duration (seconds) in a "
- "single batch. You can reduce it if it causes CUDA OOM.",
- )
- group.add_argument(
- "--bucketing-sampler",
- type=str2bool,
- default=True,
- help="When enabled, the batches will come from buckets of "
- "similar duration (saves padding frames).",
- )
- group.add_argument(
- "--num-buckets",
- type=int,
- default=30,
- help="The number of buckets for the BucketingSampler"
- "(you might want to increase it for larger datasets).",
- )
- group.add_argument(
- "--concatenate-cuts",
- type=str2bool,
- default=False,
- help="When enabled, utterances (cuts) will be concatenated "
- "to minimize the amount of padding.",
- )
- group.add_argument(
- "--duration-factor",
- type=float,
- default=1.0,
- help="Determines the maximum duration of a concatenated cut "
- "relative to the duration of the longest cut in a batch.",
- )
- group.add_argument(
- "--gap",
- type=float,
- default=1.0,
- help="The amount of padding (in seconds) inserted between "
- "concatenated cuts. This padding is filled with noise when "
- "noise augmentation is used.",
- )
- group.add_argument(
- "--on-the-fly-feats",
- type=str2bool,
- default=False,
- help="When enabled, use on-the-fly cut mixing and feature "
- "extraction. Will drop existing precomputed feature manifests "
- "if available.",
- )
- group.add_argument(
- "--shuffle",
- type=str2bool,
- default=True,
- help="When enabled (=default), the examples will be "
- "shuffled for each epoch.",
- )
- group.add_argument(
- "--return-cuts",
- type=str2bool,
- default=True,
- help="When enabled, each batch will have the "
- "field: batch['supervisions']['cut'] with the cuts that "
- "were used to construct it.",
- )
-
- group.add_argument(
- "--num-workers",
- type=int,
- default=2,
- help="The number of training dataloader workers that "
- "collect the batches.",
- )
-
- def train_dataloaders(self) -> DataLoader:
- logging.info("About to get train cuts")
- cuts_train = self.train_cuts()
-
- logging.info("About to get Musan cuts")
- cuts_musan = load_manifest(self.args.feature_dir / "cuts_musan.json.gz")
-
- logging.info("About to create train dataset")
- transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
- if self.args.concatenate_cuts:
- logging.info(
- f"Using cut concatenation with duration factor "
- f"{self.args.duration_factor} and gap {self.args.gap}."
- )
- # Cut concatenation should be the first transform in the list,
- # so that if we e.g. mix noise in, it will fill the gaps between
- # different utterances.
- transforms = [
- CutConcatenate(
- duration_factor=self.args.duration_factor, gap=self.args.gap
- )
- ] + transforms
-
- input_transforms = [
- SpecAugment(
- num_frame_masks=2,
- features_mask_size=27,
- num_feature_masks=2,
- frames_mask_size=100,
- )
- ]
-
- train = K2SpeechRecognitionDataset(
- cut_transforms=transforms,
- input_transforms=input_transforms,
- return_cuts=self.args.return_cuts,
- )
-
- if self.args.on_the_fly_feats:
- # NOTE: the PerturbSpeed transform should be added only if we
- # remove it from data prep stage.
- # Add on-the-fly speed perturbation; since originally it would
- # have increased epoch size by 3, we will apply prob 2/3 and use
- # 3x more epochs.
- # Speed perturbation probably should come first before
- # concatenation, but in principle the transforms order doesn't have
- # to be strict (e.g. could be randomized)
- # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
- # Drop feats to be on the safe side.
- train = K2SpeechRecognitionDataset(
- cut_transforms=transforms,
- input_strategy=OnTheFlyFeatures(
- Fbank(FbankConfig(num_mel_bins=80))
- ),
- input_transforms=input_transforms,
- return_cuts=self.args.return_cuts,
- )
-
- if self.args.bucketing_sampler:
- logging.info("Using BucketingSampler.")
- train_sampler = BucketingSampler(
- cuts_train,
- max_duration=self.args.max_duration,
- shuffle=self.args.shuffle,
- num_buckets=self.args.num_buckets,
- bucket_method="equal_duration",
- drop_last=True,
- )
- else:
- logging.info("Using SingleCutSampler.")
- train_sampler = SingleCutSampler(
- cuts_train,
- max_duration=self.args.max_duration,
- shuffle=self.args.shuffle,
- )
- logging.info("About to create train dataloader")
-
- train_dl = DataLoader(
- train,
- sampler=train_sampler,
- batch_size=None,
- num_workers=self.args.num_workers,
- persistent_workers=False,
- )
-
- return train_dl
-
- def valid_dataloaders(self) -> DataLoader:
- logging.info("About to get dev cuts")
- cuts_valid = self.valid_cuts()
-
- transforms = []
- if self.args.concatenate_cuts:
- transforms = [
- CutConcatenate(
- duration_factor=self.args.duration_factor, gap=self.args.gap
- )
- ] + transforms
-
- logging.info("About to create dev dataset")
- if self.args.on_the_fly_feats:
- validate = K2SpeechRecognitionDataset(
- cut_transforms=transforms,
- input_strategy=OnTheFlyFeatures(
- Fbank(FbankConfig(num_mel_bins=80))
- ),
- return_cuts=self.args.return_cuts,
- )
- else:
- validate = K2SpeechRecognitionDataset(
- cut_transforms=transforms,
- return_cuts=self.args.return_cuts,
- )
- valid_sampler = SingleCutSampler(
- cuts_valid,
- max_duration=self.args.max_duration,
- shuffle=False,
- )
- logging.info("About to create dev dataloader")
- valid_dl = DataLoader(
- validate,
- sampler=valid_sampler,
- batch_size=None,
- num_workers=2,
- persistent_workers=False,
- )
-
- return valid_dl
-
- def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
- cuts = self.test_cuts()
- is_list = isinstance(cuts, list)
- test_loaders = []
- if not is_list:
- cuts = [cuts]
-
- for cuts_test in cuts:
- logging.debug("About to create test dataset")
- test = K2SpeechRecognitionDataset(
- input_strategy=OnTheFlyFeatures(
- Fbank(FbankConfig(num_mel_bins=80))
- )
- if self.args.on_the_fly_feats
- else PrecomputedFeatures(),
- return_cuts=self.args.return_cuts,
- )
- sampler = SingleCutSampler(
- cuts_test, max_duration=self.args.max_duration
- )
- logging.debug("About to create test dataloader")
- test_dl = DataLoader(
- test, batch_size=None, sampler=sampler, num_workers=1
- )
- test_loaders.append(test_dl)
-
- if is_list:
- return test_loaders
- else:
- return test_loaders[0]
-
- @lru_cache()
- def train_cuts(self) -> CutSet:
- logging.info("About to get train cuts")
- cuts_train = load_manifest(self.args.feature_dir / "cuts_TRAIN.json.gz")
-
- return cuts_train
-
- @lru_cache()
- def valid_cuts(self) -> CutSet:
- logging.info("About to get dev cuts")
- cuts_valid = load_manifest(self.args.feature_dir / "cuts_DEV.json.gz")
-
- return cuts_valid
-
- @lru_cache()
- def test_cuts(self) -> CutSet:
- logging.debug("About to get test cuts")
- cuts_test = load_manifest(self.args.feature_dir / "cuts_TEST.json.gz")
-
- return cuts_test
diff --git a/egs/timit/ASR/tdnn_ligru_ctc/asr_datamodule.py b/egs/timit/ASR/tdnn_ligru_ctc/asr_datamodule.py
new file mode 120000
index 000000000..fa1b8cca3
--- /dev/null
+++ b/egs/timit/ASR/tdnn_ligru_ctc/asr_datamodule.py
@@ -0,0 +1 @@
+../tdnn_lstm_ctc/asr_datamodule.py
\ No newline at end of file
diff --git a/egs/timit/ASR/tdnn_ligru_ctc/train.py b/egs/timit/ASR/tdnn_ligru_ctc/train.py
index 9ac4743b4..452c2a7cb 100644
--- a/egs/timit/ASR/tdnn_ligru_ctc/train.py
+++ b/egs/timit/ASR/tdnn_ligru_ctc/train.py
@@ -95,6 +95,13 @@ def get_parser():
""",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -486,7 +493,7 @@ def run(rank, world_size, args):
params = get_params()
params.update(vars(args))
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -536,6 +543,7 @@ def run(rank, world_size, args):
valid_dl = timit.valid_dataloaders()
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
if epoch > params.start_epoch:
diff --git a/egs/timit/ASR/tdnn_lstm_ctc/asr_datamodule.py b/egs/timit/ASR/tdnn_lstm_ctc/asr_datamodule.py
index b0e28d05d..a7029f514 100644
--- a/egs/timit/ASR/tdnn_lstm_ctc/asr_datamodule.py
+++ b/egs/timit/ASR/tdnn_lstm_ctc/asr_datamodule.py
@@ -1,5 +1,5 @@
# Copyright 2021 Piotr Żelasko
-# 2021 Xiaomi Corp. (authors: Mingshuang Luo)
+# 2022 Xiaomi Corporation (Author: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@@ -17,6 +17,7 @@
import argparse
+import inspect
import logging
from functools import lru_cache
from pathlib import Path
@@ -171,9 +172,19 @@ class TimitAsrDataModule(DataModule):
)
] + transforms
+ # Set the value of num_frame_masks according to Lhotse's version.
+ # In different Lhotse's versions, the default of num_frame_masks is
+ # different.
+ num_frame_masks = 10
+ num_frame_masks_parameter = inspect.signature(
+ SpecAugment.__init__
+ ).parameters["num_frame_masks"]
+ if num_frame_masks_parameter.default == 1:
+ num_frame_masks = 2
+ logging.info(f"Num frame mask: {num_frame_masks}")
input_transforms = [
SpecAugment(
- num_frame_masks=2,
+ num_frame_masks=num_frame_masks,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
diff --git a/egs/timit/ASR/tdnn_lstm_ctc/train.py b/egs/timit/ASR/tdnn_lstm_ctc/train.py
index 2a6ff4787..849256b98 100644
--- a/egs/timit/ASR/tdnn_lstm_ctc/train.py
+++ b/egs/timit/ASR/tdnn_lstm_ctc/train.py
@@ -95,6 +95,13 @@ def get_parser():
""",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -486,7 +493,7 @@ def run(rank, world_size, args):
params = get_params()
params.update(vars(args))
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -536,6 +543,7 @@ def run(rank, world_size, args):
valid_dl = timit.valid_dataloaders()
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
if epoch > params.start_epoch:
diff --git a/egs/yesno/ASR/README.md b/egs/yesno/ASR/README.md
index 6f57412c0..7257bad9a 100644
--- a/egs/yesno/ASR/README.md
+++ b/egs/yesno/ASR/README.md
@@ -10,5 +10,5 @@ get the following WER:
```
Please refer to
-
+
for detailed instructions.
diff --git a/egs/yesno/ASR/tdnn/train.py b/egs/yesno/ASR/tdnn/train.py
index d8454b7c5..f32a27f35 100755
--- a/egs/yesno/ASR/tdnn/train.py
+++ b/egs/yesno/ASR/tdnn/train.py
@@ -71,6 +71,13 @@ def get_parser():
""",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -468,7 +475,7 @@ def run(rank, world_size, args):
params.update(vars(args))
params["env_info"] = get_env_info()
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -520,6 +527,7 @@ def run(rank, world_size, args):
valid_dl = yes_no.test_dataloaders()
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
if tb_writer is not None:
diff --git a/egs/yesno/ASR/transducer/train.py b/egs/yesno/ASR/transducer/train.py
index 7d2d1edeb..deb92107d 100755
--- a/egs/yesno/ASR/transducer/train.py
+++ b/egs/yesno/ASR/transducer/train.py
@@ -114,6 +114,13 @@ def get_parser():
help="Directory to save results",
)
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="The seed for random generators intended for reproducibility",
+ )
+
return parser
@@ -487,7 +494,7 @@ def run(rank, world_size, args):
params.update(vars(args))
params["env_info"] = get_env_info()
- fix_random_seed(42)
+ fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
@@ -532,6 +539,7 @@ def run(rank, world_size, args):
valid_dl = yes_no.test_dataloaders()
for epoch in range(params.start_epoch, params.num_epochs):
+ fix_random_seed(params.seed + epoch)
train_dl.sampler.set_epoch(epoch)
if tb_writer is not None:
diff --git a/icefall/char_graph_compiler.py b/icefall/char_graph_compiler.py
index 4a79a300a..a50b57d40 100644
--- a/icefall/char_graph_compiler.py
+++ b/icefall/char_graph_compiler.py
@@ -36,7 +36,7 @@ class CharCtcTrainingGraphCompiler(object):
"""
Args:
lexicon:
- It is built from `data/lang/lexicon.txt`.
+ It is built from `data/lang_char/lexicon.txt`.
device:
The device to use for operations compiling transcripts to FSAs.
oov:
diff --git a/icefall/decode.py b/icefall/decode.py
index 4c2a8e01b..d3e420eec 100644
--- a/icefall/decode.py
+++ b/icefall/decode.py
@@ -716,10 +716,13 @@ def rescore_with_whole_lattice(
b_to_a_map = torch.zeros(num_seqs, device=device, dtype=torch.int32)
+ # NOTE: The choice of the threshold list is arbitrary here to avoid OOM.
+ # You may need to fine tune it.
+ prune_th_list = [1e-10, 1e-9, 1e-8, 1e-7, 1e-6]
+ prune_th_list += [1e-5, 1e-4, 1e-3, 1e-2, 1e-1]
max_loop_count = 10
loop_count = 0
while loop_count <= max_loop_count:
- loop_count += 1
try:
rescoring_lattice = k2.intersect_device(
G_with_epsilon_loops,
@@ -731,6 +734,11 @@ def rescore_with_whole_lattice(
break
except RuntimeError as e:
logging.info(f"Caught exception:\n{e}\n")
+ if loop_count >= max_loop_count:
+ logging.info(
+ "Return None as the resulting lattice is too large."
+ )
+ return None
logging.info(
f"num_arcs before pruning: {inv_lattice.arcs.num_elements()}"
)
@@ -740,16 +748,15 @@ def rescore_with_whole_lattice(
"is too large, or the input sound file is difficult to "
"decode, you will meet this exception."
)
-
- # NOTE(fangjun): The choice of the threshold 1e-9 is arbitrary here
- # to avoid OOM. You may need to fine tune it.
- inv_lattice = k2.prune_on_arc_post(inv_lattice, 1e-9, True)
+ inv_lattice = k2.prune_on_arc_post(
+ inv_lattice,
+ prune_th_list[loop_count],
+ True,
+ )
logging.info(
f"num_arcs after pruning: {inv_lattice.arcs.num_elements()}"
)
- if loop_count > max_loop_count:
- logging.info("Return None as the resulting lattice is too large")
- return None
+ loop_count += 1
# lat has token IDs as labels
# and word IDs as aux_labels.
diff --git a/icefall/diagnostics.py b/icefall/diagnostics.py
new file mode 100644
index 000000000..fa9b98fa0
--- /dev/null
+++ b/icefall/diagnostics.py
@@ -0,0 +1,409 @@
+# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey
+# Zengwei Yao
+# Mingshuang Luo)
+#
+# See ../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import random
+from typing import List, Optional, Tuple
+
+import torch
+from torch import Tensor, nn
+
+
+class TensorDiagnosticOptions(object):
+ """Options object for tensor diagnostics:
+
+ Args:
+ memory_limit:
+ The maximum number of bytes per tensor
+ (limits how many copies of the tensor we cache).
+ max_eig_dim:
+ The maximum dimension for which we print out eigenvalues
+ (limited for speed reasons).
+ """
+
+ def __init__(self, memory_limit: int = (2 ** 20), max_eig_dim: int = 512):
+ self.memory_limit = memory_limit
+ self.max_eig_dim = max_eig_dim
+
+ def dim_is_summarized(self, size: int):
+ return size > 10 and size != 31
+
+
+def get_tensor_stats(
+ x: Tensor,
+ dim: int,
+ stats_type: str,
+) -> Tuple[Tensor, int]:
+ """
+ Returns the specified transformation of the Tensor (either x or x.abs()
+ or (x > 0), summed over all but the index `dim`.
+
+ Args:
+ x:
+ Tensor, tensor to be analyzed
+ dim:
+ Dimension with 0 <= dim < x.ndim
+ stats_type:
+ The stats_type includes several types:
+ "abs" -> take abs() before summing
+ "positive" -> take (x > 0) before summing
+ "rms" -> square before summing, we'll take sqrt later
+ "value -> just sum x itself
+ Returns:
+ stats: a Tensor of shape (x.shape[dim],).
+ count: an integer saying how many items were counted in each element
+ of stats.
+ """
+
+ count = x.numel() // x.shape[dim]
+
+ if stats_type == "eigs":
+ x = x.transpose(dim, -1)
+ x = x.reshape(-1, x.shape[-1])
+ # shape of returned tensor: (s, s),
+ # where s is size of dimension `dim` of original x.
+ return torch.matmul(x.transpose(0, 1), x), count
+ elif stats_type == "abs":
+ x = x.abs()
+ elif stats_type == "rms":
+ x = x ** 2
+ elif stats_type == "positive":
+ x = (x > 0).to(dtype=torch.float)
+ else:
+ assert stats_type == "value"
+
+ sum_dims = [d for d in range(x.ndim) if d != dim]
+ if len(sum_dims) > 0:
+ x = torch.sum(x, dim=sum_dims)
+ x = x.flatten()
+ return x, count
+
+
+def get_diagnostics_for_dim(
+ dim: int,
+ tensors: List[Tensor],
+ options: TensorDiagnosticOptions,
+ sizes_same: bool,
+ stats_type: str,
+) -> str:
+ """
+ This function gets diagnostics for a dimension of a module.
+
+ Args:
+ dim:
+ the dimension to analyze, with 0 <= dim < tensors[0].ndim
+ options:
+ options object
+ sizes_same:
+ True if all the tensor sizes are the same on this dimension
+ stats_type: either "abs" or "positive" or "eigs" or "value",
+ imdictates the type of stats we accumulate, abs is mean absolute
+ value, "positive" is proportion of positive to nonnegative values,
+ "eigs" is eigenvalues after doing outer product on this dim, sum
+ over all other dimes.
+ Returns:
+ Diagnostic as a string, either percentiles or the actual values,
+ see the code. Will return the empty string if the diagnostics did
+ not make sense to print out for this dimension, e.g. dimension
+ mismatch and stats_type == "eigs".
+ """
+
+ # stats_and_counts is a list of pair (Tensor, int)
+ stats_and_counts = [get_tensor_stats(x, dim, stats_type) for x in tensors]
+ stats = [x[0] for x in stats_and_counts]
+ counts = [x[1] for x in stats_and_counts]
+
+ if stats_type == "eigs":
+ try:
+ stats = torch.stack(stats).sum(dim=0)
+ except: # noqa
+ return ""
+ count = sum(counts)
+ stats = stats / count
+ stats, _ = torch.symeig(stats)
+ stats = stats.abs().sqrt()
+ # sqrt so it reflects data magnitude, like stddev- not variance
+ elif sizes_same:
+ stats = torch.stack(stats).sum(dim=0)
+ count = sum(counts)
+ stats = stats / count
+ else:
+ stats = [x[0] / x[1] for x in stats_and_counts]
+ stats = torch.cat(stats, dim=0)
+ if stats_type == "rms":
+ stats = stats.sqrt()
+
+ # if `summarize` we print percentiles of the stats; else,
+ # we print out individual elements.
+ summarize = (not sizes_same) or options.dim_is_summarized(stats.numel())
+ if summarize:
+ # print out percentiles.
+ stats = stats.sort()[0]
+ num_percentiles = 10
+ size = stats.numel()
+ percentiles = []
+ for i in range(num_percentiles + 1):
+ index = (i * (size - 1)) // num_percentiles
+ percentiles.append(stats[index].item())
+ percentiles = ["%.2g" % x for x in percentiles]
+ percentiles = " ".join(percentiles)
+ ans = f"percentiles: [{percentiles}]"
+ else:
+ ans = stats.tolist()
+ ans = ["%.2g" % x for x in ans]
+ ans = "[" + " ".join(ans) + "]"
+ if stats_type == "value":
+ # This norm is useful because it is strictly less than the largest
+ # sqrt(eigenvalue) of the variance, which we print out, and shows,
+ # speaking in an approximate way, how much of that largest eigenvalue
+ # can be attributed to the mean of the distribution.
+ norm = (stats ** 2).sum().sqrt().item()
+ mean = stats.mean().item()
+ rms = (stats ** 2).mean().sqrt().item()
+ ans += f", norm={norm:.2g}, mean={mean:.2g}, rms={rms:.2g}"
+ else:
+ mean = stats.mean().item()
+ rms = (stats ** 2).mean().sqrt().item()
+ ans += f", mean={mean:.2g}, rms={rms:.2g}"
+ return ans
+
+
+def print_diagnostics_for_dim(
+ name: str, dim: int, tensors: List[Tensor], options: TensorDiagnosticOptions
+):
+ """This function prints diagnostics for a dimension of a tensor.
+
+ Args:
+ name:
+ The tensor name.
+ dim:
+ The dimension to analyze, with 0 <= dim < tensors[0].ndim.
+ tensors:
+ List of cached tensors to get the stats.
+ options:
+ Options object.
+ """
+
+ ndim = tensors[0].ndim
+ if ndim > 1:
+ stats_types = ["abs", "positive", "value", "rms"]
+ if tensors[0].shape[dim] <= options.max_eig_dim:
+ stats_types.append("eigs")
+ else:
+ stats_types = ["value", "abs"]
+
+ for stats_type in stats_types:
+ sizes = [x.shape[dim] for x in tensors]
+ sizes_same = all([x == sizes[0] for x in sizes])
+ s = get_diagnostics_for_dim(
+ dim, tensors, options, sizes_same, stats_type
+ )
+ if s == "":
+ continue
+
+ min_size = min(sizes)
+ max_size = max(sizes)
+ size_str = f"{min_size}" if sizes_same else f"{min_size}..{max_size}"
+ # stats_type will be "abs" or "positive".
+ print(f"module={name}, dim={dim}, size={size_str}, {stats_type} {s}")
+
+
+class TensorDiagnostic(object):
+ """This class is not directly used by the user, it is responsible for
+ collecting diagnostics for a single parameter tensor of a torch.nn.Module.
+
+ Args:
+ opts:
+ Options object.
+ name:
+ The tensor name.
+ """
+
+ def __init__(self, opts: TensorDiagnosticOptions, name: str):
+ self.name = name
+ self.opts = opts
+ # A list to cache the tensors.
+ self.saved_tensors = []
+
+ def accumulate(self, x):
+ """Accumulate tensors."""
+ if isinstance(x, Tuple):
+ x = x[0]
+ if not isinstance(x, Tensor):
+ return
+ if x.device == torch.device("cpu"):
+ x = x.detach().clone()
+ else:
+ x = x.detach().to("cpu", non_blocking=True)
+ self.saved_tensors.append(x)
+ num = len(self.saved_tensors)
+ if num & (num - 1) == 0: # power of 2..
+ self._limit_memory()
+
+ def _limit_memory(self):
+ """Only keep the newly cached tensors to limit memory."""
+ if len(self.saved_tensors) > 1024:
+ self.saved_tensors = self.saved_tensors[-1024:]
+ return
+
+ tot_mem = 0.0
+ for i in reversed(range(len(self.saved_tensors))):
+ tot_mem += (
+ self.saved_tensors[i].numel()
+ * self.saved_tensors[i].element_size()
+ )
+ if tot_mem > self.opts.memory_limit:
+ self.saved_tensors = self.saved_tensors[i:]
+ return
+
+ def print_diagnostics(self):
+ """Print diagnostics for each dimension of the tensor."""
+ if len(self.saved_tensors) == 0:
+ print("{name}: no stats".format(name=self.name))
+ return
+
+ if self.saved_tensors[0].ndim == 0:
+ # Ensure there is at least one dim.
+ self.saved_tensors = [x.unsqueeze(0) for x in self.saved_tensors]
+
+ try:
+ device = torch.device("cuda")
+ except: # noqa
+ device = torch.device("cpu")
+
+ ndim = self.saved_tensors[0].ndim
+ tensors = [x.to(device) for x in self.saved_tensors]
+ for dim in range(ndim):
+ print_diagnostics_for_dim(self.name, dim, tensors, self.opts)
+
+
+class ModelDiagnostic(object):
+ """This class stores diagnostics for all tensors in the torch.nn.Module.
+
+ Args:
+ opts:
+ Options object.
+ """
+
+ def __init__(self, opts: Optional[TensorDiagnosticOptions] = None):
+ # In this dictionary, the keys are tensors names and the values
+ # are corresponding TensorDiagnostic objects.
+ if opts is None:
+ self.opts = TensorDiagnosticOptions()
+ else:
+ self.opts = opts
+ self.diagnostics = dict()
+
+ def __getitem__(self, name: str):
+ if name not in self.diagnostics:
+ self.diagnostics[name] = TensorDiagnostic(self.opts, name)
+ return self.diagnostics[name]
+
+ def print_diagnostics(self):
+ """Print diagnostics for each tensor."""
+ for k in sorted(self.diagnostics.keys()):
+ self.diagnostics[k].print_diagnostics()
+
+
+def attach_diagnostics(
+ model: nn.Module, opts: TensorDiagnosticOptions
+) -> ModelDiagnostic:
+ """Attach a ModelDiagnostic object to the model by
+ 1) registering forward hook and backward hook on each module, to accumulate
+ its output tensors and gradient tensors, respectively;
+ 2) registering backward hook on each module parameter, to accumulate its
+ values and gradients.
+
+ Args:
+ model:
+ the model to be analyzed.
+ opts:
+ Options object.
+
+ Returns:
+ The ModelDiagnostic object attached to the model.
+ """
+
+ ans = ModelDiagnostic(opts)
+ for name, module in model.named_modules():
+ if name == "":
+ name = ""
+
+ # Setting model_diagnostic=ans and n=name below, instead of trying to
+ # capture the variables, ensures that we use the current values.
+ # (matters for name, since the variable gets overwritten).
+ # These closures don't really capture by value, only by
+ # "the final value the variable got in the function" :-(
+ def forward_hook(
+ _module, _input, _output, _model_diagnostic=ans, _name=name
+ ):
+ if isinstance(_output, Tensor):
+ _model_diagnostic[f"{_name}.output"].accumulate(_output)
+ elif isinstance(_output, tuple):
+ for i, o in enumerate(_output):
+ _model_diagnostic[f"{_name}.output[{i}]"].accumulate(o)
+
+ def backward_hook(
+ _module, _input, _output, _model_diagnostic=ans, _name=name
+ ):
+ if isinstance(_output, Tensor):
+ _model_diagnostic[f"{_name}.grad"].accumulate(_output)
+ elif isinstance(_output, tuple):
+ for i, o in enumerate(_output):
+ _model_diagnostic[f"{_name}.grad[{i}]"].accumulate(o)
+
+ module.register_forward_hook(forward_hook)
+ module.register_backward_hook(backward_hook)
+
+ for name, parameter in model.named_parameters():
+
+ def param_backward_hook(
+ grad, _parameter=parameter, _model_diagnostic=ans, _name=name
+ ):
+ _model_diagnostic[f"{_name}.param_value"].accumulate(_parameter)
+ _model_diagnostic[f"{_name}.param_grad"].accumulate(grad)
+
+ parameter.register_hook(param_backward_hook)
+
+ return ans
+
+
+def _test_tensor_diagnostic():
+ opts = TensorDiagnosticOptions(2 ** 20, 512)
+
+ diagnostic = TensorDiagnostic(opts, "foo")
+
+ for _ in range(10):
+ diagnostic.accumulate(torch.randn(50, 100) * 10.0)
+
+ diagnostic.print_diagnostics()
+
+ model = nn.Sequential(nn.Linear(100, 50), nn.Linear(50, 80))
+
+ diagnostic = attach_diagnostics(model, opts)
+ for _ in range(10):
+ T = random.randint(200, 300)
+ x = torch.randn(T, 100)
+ y = model(x)
+ y.sum().backward()
+
+ diagnostic.print_diagnostics()
+
+
+if __name__ == "__main__":
+ _test_tensor_diagnostic()
diff --git a/icefall/utils.py b/icefall/utils.py
index 7237c8d62..c231dbbe4 100644
--- a/icefall/utils.py
+++ b/icefall/utils.py
@@ -25,13 +25,15 @@ from collections import defaultdict
from contextlib import contextmanager
from datetime import datetime
from pathlib import Path
-from typing import Dict, Iterable, List, TextIO, Tuple, Union
+from typing import Dict, Iterable, List, TextIO, Optional, Tuple, Union
import k2
import k2.version
import kaldialign
import torch
+import torch.nn as nn
import torch.distributed as dist
+from torch.cuda.amp import GradScaler
from torch.utils.tensorboard import SummaryWriter
Pathlike = Union[str, Path]
@@ -521,8 +523,8 @@ class MetricsTracker(collections.defaultdict):
for k, v in self.norm_items():
norm_value = "%.4g" % v
ans += str(k) + "=" + str(norm_value) + ", "
- frames = str(self["frames"])
- ans += "over " + frames + " frames."
+ frames = "%.2f" % self["frames"]
+ ans += "over " + str(frames) + " frames."
return ans
def norm_items(self) -> List[Tuple[str, float]]:
@@ -690,3 +692,94 @@ def make_pad_mask(lengths: torch.Tensor) -> torch.Tensor:
expaned_lengths = torch.arange(max_len).expand(n, max_len).to(lengths)
return expaned_lengths >= lengths.unsqueeze(1)
+
+
+def l1_norm(x):
+ return torch.sum(torch.abs(x))
+
+
+def l2_norm(x):
+ return torch.sum(torch.pow(x, 2))
+
+
+def linf_norm(x):
+ return torch.max(torch.abs(x))
+
+
+def measure_weight_norms(
+ model: nn.Module, norm: str = "l2"
+) -> Dict[str, float]:
+ """
+ Compute the norms of the model's parameters.
+
+ :param model: a torch.nn.Module instance
+ :param norm: how to compute the norm. Available values: 'l1', 'l2', 'linf'
+ :return: a dict mapping from parameter's name to its norm.
+ """
+ with torch.no_grad():
+ norms = {}
+ for name, param in model.named_parameters():
+ if norm == "l1":
+ val = l1_norm(param)
+ elif norm == "l2":
+ val = l2_norm(param)
+ elif norm == "linf":
+ val = linf_norm(param)
+ else:
+ raise ValueError(f"Unknown norm type: {norm}")
+ norms[name] = val.item()
+ return norms
+
+
+def measure_gradient_norms(
+ model: nn.Module, norm: str = "l1"
+) -> Dict[str, float]:
+ """
+ Compute the norms of the gradients for each of model's parameters.
+
+ :param model: a torch.nn.Module instance
+ :param norm: how to compute the norm. Available values: 'l1', 'l2', 'linf'
+ :return: a dict mapping from parameter's name to its gradient's norm.
+ """
+ with torch.no_grad():
+ norms = {}
+ for name, param in model.named_parameters():
+ if norm == "l1":
+ val = l1_norm(param.grad)
+ elif norm == "l2":
+ val = l2_norm(param.grad)
+ elif norm == "linf":
+ val = linf_norm(param.grad)
+ else:
+ raise ValueError(f"Unknown norm type: {norm}")
+ norms[name] = val.item()
+ return norms
+
+
+def optim_step_and_measure_param_change(
+ model: nn.Module,
+ optimizer: torch.optim.Optimizer,
+ scaler: Optional[GradScaler] = None,
+) -> Dict[str, float]:
+ """
+ Perform model weight update and measure the "relative change in parameters per minibatch."
+ It is understood as a ratio between the L2 norm of the difference between original and updates parameters,
+ and the L2 norm of the original parameter. It is given by the formula:
+
+ .. math::
+ \begin{aligned}
+ \delta = \frac{\Vert\theta - \theta_{new}\Vert^2}{\Vert\theta\Vert^2}
+ \end{aligned}
+ """
+ param_copy = {n: p.detach().clone() for n, p in model.named_parameters()}
+ if scaler:
+ scaler.step(optimizer)
+ else:
+ optimizer.step()
+ relative_change = {}
+ with torch.no_grad():
+ for n, p_new in model.named_parameters():
+ p_orig = param_copy[n]
+ delta = l2_norm(p_orig - p_new) / l2_norm(p_orig)
+ relative_change[n] = delta.item()
+ return relative_change
diff --git a/requirements-ci.txt b/requirements-ci.txt
new file mode 100644
index 000000000..b5ee6b51c
--- /dev/null
+++ b/requirements-ci.txt
@@ -0,0 +1,21 @@
+# Usage: grep -v '^#' requirements-ci.txt | xargs -n 1 -L 1 pip install
+# dependencies for GitHub actions
+#
+# See https://github.com/actions/setup-python#caching-packages-dependencies
+
+# numpy 1.20.x does not support python 3.6
+numpy==1.19
+pytest==7.1.0
+graphviz==0.19.1
+
+-f https://download.pytorch.org/whl/cpu/torch_stable.html torch==1.10.0+cpu
+-f https://download.pytorch.org/whl/cpu/torch_stable.html torchaudio==0.10.0+cpu
+
+-f https://k2-fsa.org/nightly/ k2==1.9.dev20211101+cpu.torch1.10.0
+
+git+https://github.com/lhotse-speech/lhotse
+kaldilm==1.11
+kaldialign==0.2
+sentencepiece==0.1.96
+tensorboard==2.8.0
+typeguard==2.13.3
diff --git a/requirements.txt b/requirements.txt
index 09d9ef69f..4eaa86a67 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -3,4 +3,3 @@ kaldialign
sentencepiece>=0.1.96
tensorboard
typeguard
-optimized_transducer